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Theoretical Background 

Imagine you are asked which city is larger, York or Stockport. About York 
you recently read an article in the newspaper. You remember that it had some 
mentionable industry, but no international airport and also no premier league 
soccer team. Of the city of Stockport you have never heard before. Which 
city will you answer to be the larger one? According to the recognition heu-
ristic (Goldstein, Gigerenzer, 2002), if you recognize one of the alternatives, 
but not the other, you should infer that the recognized one to is larger. Your 
answer would be York. As an alternative to the recognition heuristic, you 
may rely on a strategy that uses your knowledge about the city’s attributes as 
cues. Following corresponding compensatory models of decision-making, 
(e.g. unit-weight linear strategy), you might conclude that the absence of an 
airport and a premier league soccer team speak against York being a large 
city. Consequently, you might infer Stockport to be larger. 

The example illustrates a debate that has received much attention in the deci-
sion-making literature. Are decisions better described by non-compensatory 
simple heuristics, or by complex compensatory decision strategies? A large 
amount of evidence has been gathered in support of as well as against both 
positions – for support of the recognition heuristic (e.g. Gigerenzer et al., 
2008; Pachur, 2010; Volz et al., 2006), and for challenges of the heuristic: 
(e.g. Beaman et al., 2010; Dougherty et al., 2008; Oppenheimer, 2003). 
However, non-compensatory and compensatory processes are broad catego-
ries that subsume a number of different strategies. For instance, compensa-
tory strategies propose that knowledge about the alternatives is used in some 
way; however, they do not agree on how this is done. Constraint satisfaction 
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models, for example, assume that all available information is integrated at 
once, in a parallel, automatic fashion (Glöckner, Betsch, 2008). Evidence 
accumulation models, on the other hand, assume that evidence for the alter-
natives is accumulated sequentially until a decision boundary is reached (e.g. 
Lee, Cummins, 2004).  

In assessing different proposed strategies against each other, research has 
encountered various problems. First, theories are often specified at varying 
levels of detail, making it difficult to directly compare them. Second, they are 
often formulated at a verbally qualitative level and are therefore underspeci-
fied relative to the empirical data against which they are tested. Consider the 
city size example again. Based on the different theories, one might generate 
predictions about decision times, i.e., the time participants need to decide 
which of the two cities is larger. However, participants’ decision times will 
not only depend on the decision strategy itself, but also on other factors, like 
the time it takes to read the names of the cities, to retrieve information from 
memory, and to enter a response. Consequently, the contribution of the deci-
sion strategies themselves might be drowned out by these additional factors. 

In the project we report here, we try to tackle both of these issues. First, we 
implement different strategies that have been proposed for decisions from 
memory into one cognitive modeling framework. This results in directly 
comparable quantitative predictions of the strategies. Second, by using a cog-
nitive architecture for this implementation, we take into account the contri-
bution of and interaction with additional components of cognition, like read-
ing, memory retrieval and giving a motor response. This allows us to assess 
the contribution of different decision strategies in a more detailed way and to 
directly compare them against empirical data.  

Methods: Empirical Data 

To test different decision strategies against each other, we reanalyzed data 
from Pachur et al. (2008), which has been argued to provide evidence for 
both the recognition heuristic and compensatory strategies (Gigerenzer et al., 
2010). Pachur et al. presented their participants with choices between cities, 
as in the introductory example: a recognized city with three associated cues 
and an unrecognized city about which nothing was known. The cues were in-
dustry, airport and soccer and they could be either positive (speaking for a 
city being large) or negative (speaking against a city being large). The cities 
varied in the pattern of associated cues, with three, two, or one of the cues 
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being negative as shown in Table 1. The participants’ task was to decide 
which of the two cities was larger. Decisions and decision times were 
assessed. 

Tab.1 Cues Patterns associated to the recognized cities in Pachur et al. (2008) (+ = positive 
cue value; - = negative cue value). 

 City 

Cue Aberdeen Bristol Nottingham Sheffield Brighton York 

Industry + + +  +  +  + 

Airport + + –  –  –  –  

Soccer  + + +  +  –  –  

Cognitive Model 

The models were implemented in the cognitive architecture ACT-R (Ander-
son et al., 2004), which takes into account both sub-symbolic and symbolic 
components of cognition as well as perceptional and motor processes.  

Assessing Recognition 

There is evidence that, when asked to make a decision between alternatives, 
people will first assess the recognition of the alternatives (Pachur, Hertwig, 
2006). In modeling recognition, we follow Anderson et al. (1998) and 
Schooler et al. (2005) in assuming that an alternative is recognized if it can 
be retrieved from memory. The probability and the time required for the 
retrieval depends on the frequency of encounters with the alternative in the 
past and its usefulness in the current context. The more often it was encoun-
tered and the more useful it is in the current context, the higher the chance 
that it will be retrieved and the faster the retrieval (see Anderson et al., 2004 
for the computational details). 

Assessing Cue Knowledge 

We assume that the same kind of retrieval processes that enable reasoners to 
retrieve the alternatives themselves from memory will be used to retrieve 
knowledge associated to these alternatives. To reflect the fact that positive 
cue knowledge about alternatives seemed to be remembered more easily by 
the participants than negative cue knowledge, we assume that positive cues 
are retrieved faster than negative ones.  
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Decision Strategies 

All models share the assumption that, when presented with alternatives on the 
screen, these alternatives will be read and their recognition will be assessed. The 
models differ in the steps that followed this initial assessment of recognition. 

1. Non-Compensatory Strategies  

The first group of models implements different versions of the non-compen-
satory recognition heuristic. They always decide for the recognized city. 
However, they differ in the amount of knowledge they retrieve from memory 
before this decision is made, and therefore, produce different decision time 
predictions. 

Model 1. Implementing the simplest version of the recognition heuristic, 
Model-1 directly uses the outcome of the recognition assessment and 
responds with the recognized city.  

Model 2. Implementing a more complex version of the recognition heuristic, 
Model-2 retrieves knowledge about the three cues of the recognized city from 
memory. After all cues are retrieved, the model responds with the recognized 
city, without using the retrieved cue knowledge. 

Model-1&2. This model presents a combination of Model-1 and Model-2, in 
assuming a race between their strategies. After recognition is assessed, the 
strategies to directly decide that the recognized city is larger and to retrieve a 
cue race against each other. This race is repeated until the decision is made. 

Model-1&2-F. This model is identical to Model-1&2, but it additionally 
assumes that retrieved cues will at times be forgotten. Forgetting is imple-
mented by an additional race between retrieve-a-cue, respond-with-recog-
nized and forgetting that starts as soon as at least two cues have been 
retrieved from memory. 

2. Compensatory strategies  

The second group of models implements versions of compensatory strategies. 
Depending on the cue knowledge associated to a city, they can decide for and 
against the recognized city. They differ in how the cue knowledge is used in 
this decision and they produce different decision time predictions. 

Model-3. This model implements a strategy that assumes that cue knowledge 
is used implicitly by memory activation processes. It retrieves knowledge 
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about the three cues of the recognized city from memory. After all cues are 
retrieved, the model tries to form an impression about the recognized city’s 
size. It does this by attempting to retrieve information that indicates whether 
the city is large. The probability that this information can be retrieved de-
pends on memory activation spreading from positive cues. The more positive 
cues a city has, the more activation is spread and the higher the chance that 
the city is assessed as large. If the model cannot assess the city as large, it 
will enter the unrecognized city.  

Model-1&3. In assuming a race between the strategies of Model-1 and 3, this 
model implements a combination of the non-compensatory recognition heu-
ristic and a compensatory decision strategy. After recognition is assessed, the 
strategies to directly decide that the recognized city is larger and to retrieve a 
cue race against each other. This race is repeated until the decision is made or 
all cues are retrieved. If all cues are retrieved and no decision has been made 
yet, the model can additionally try to form an impression about whether the 
city is large by using memory activation as implemented in Model-3.  

Model-1&3-F. This model is identical to Model-1&3, but it additionally 
assumes that retrieved cues will at times be forgotten as in Model-1&2-F. 

Model-4. This model uses cue knowledge explicitly by testing cues against a 
decision criterion. It retrieves knowledge about the cues for the recognized 
city after assessing recognition. If enough positive or negative cues are 
retrieved to meet its decision criterion, it responds with the recognized city 
(in case of positive cues) or the unrecognized city (in case of negative cues). 
To reflect different possible decision criteria, the model is implemented in 
different versions. Model-4.1, responds as soon as one positive or negative 
cue is retrieved. Model-4.2, needs two positive or negative cues for a deci-
sion, and Model-4.3 needs all 3 cues to be positive or negative to reach its 
criterion. If the model cannot retrieve enough cues to reach its criterion, it 
uses recognition as its best guess.  

Results 

Pachur et al. (2008) found that part of their participants always answered in 
accordance with the recognition heuristic, whereas other participants seemed 
to sometimes use their cue knowledge to decide against the recognized city.  
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Fig. 1 Decision times (median and quartiles) for participants (grey) and models (black) that 
always chose the recognized city. RMSDs were calculated separately for the median 
and the quartiles and then averaged 

 

Fig. 2 Decision times (median and quartiles) for participants (grey) and models (black) that 
chose the unrecognized city in part of the trials. RSMDs were calculated separately for 
the median and the quartiles and then averaged 

 

Fig. 3  Proportion of choices for the recognized city for participants (grey) and models (black) 
that chose the unrecognized city in part of the trials 
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To investigate the effect of cue knowledge, we analyzed decisions (% of 
choices for recognized city) and decision time distributions (medians and 
quartiles) separately for the different amounts of positive and negative cue-
knowledge. 

Recognition Group 

As one would expect, the three non-compensatory models always decided for 
the recognized city, modeling the decisions of the recognition group. Also 
Model-4.3 showed this decision behavior, because it could never reach its 
decision criterion of three negative cues that would have been necessary to 
decide against the recognized city. The models largely varied in their deci-
sion time patterns (Figure 1). The empirical decision time patterns of the rec-
ognition group were best fit by Model-1&2-F, where decision times had a 
large spread and increased in a linear fashion with the amount of negative 
cues associated to a city.  

Cue Group 

The compensatory models (except for Model-4.3) decide for the recognized 
city in part of the cases, with the exact proportion depending on the amount 
of positive and negative cues and differing between the models (Figure 2). 
The decisions of the cue-group are fit best by Model-1&3-F, where the pro-
portion of choices for the recognized city is overall high, but decreases in a 
linear fashion with the number of negative cues. This model also fits the 
decision time pattern of the cue group best (Figure 3).  

Conclusions 

A number of strategies have been proposed for how people make memory-
based decisions between alternatives. In the current project, we explore how 
such strategies can be evaluated against each other by using the precision of a 
cognitive architecture. By implementing a number of decision models that 
have originally been defined at different levels of description into one archi-
tectural modeling framework, we make these models directly comparable to 
each other. By modeling not only the decision processes, but also the inter-
play of these processes with perceptual, memory, intentional, and motor 
processes, we produce quantitative predictions that can be directly compared 
to the empirical data. Our results suggest that models, which implement a 
race between competing decision strategies, best predict people’s decisions 
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and decision time distributions. This demonstrates how simplifying dichoto-
mies that are so often used in psychological research can dissolve when using 
quantitative models that specify the interplay of underlying cognitive proc-
esses. 
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