
Notes on teaching ACT-R
modeling

Bill Kennedy

George Mason University

September 2011

Why Model?

Real world

Data Prediction

Model

Experiment Run

Abstract

Interpret

Modify

From Marvin L. Bittinger(2004) Calculus and Its Applications, 8th Ed.
2

Why Model?

1. Explain (very distinct from
predict)

2. Guide data collection
3. Illuminate core dynamics
4. Suggest dynamical analogies
5. Discover new questions
6. Promote a scientific habit of mind
7. Bound outcomes to plausible

ranges
8. Illuminate core uncertainties
9. Offer crisis options in near-real

time

10. Demonstrate tradeoffs / suggest
efficiencies

11. Challenge the robustness of
prevailing theory through
perturbations

12. Expose prevailing wisdom as
incompatible with available data

13. Train practitioners
14. Discipline the policy dialogue
15. Educate the general public
16. Reveal the apparently simple

(complex) to be complex (simple)

Joshua M. Epstein (2008) JASSS
3

Cognitive Science

• An interdisciplinary field including parts of
Anthropology, Artificial Intelligence,
Education, Linguistics, Neuroscience,
Philosophy, and Psychology

• Goal: understanding the nature of the human
mind

4

Goals of AI & Cog Sci

Artificial Intelligence: “scientific understanding of the mechanisms underlying
thought and intelligent behavior and their embodiment in machines” (from
AAAI website):
demonstrated by functionality

Cognitive Science: understanding the nature of the human mind
as demonstrated by models that match human behavior: i.e., matching human
behavior

5

6

What is it?

Process Input Output System

System

7

What is it?

Process Input Output

8

What is it?

Process Input Output

Perception Cognition Action

9

What is it?

Process Input Output

Perception Cognition Action

Components

• An architecture is the fixed* part of a system that
implements the mind functions

• Associated with an architecture, a model is the
variable* part of a the mind’s processing

• System’s knowledge representation is on the edge

between architectures and models

* with respect to a time scale (from Newell’s 1990 UTC)

10

ACT-R Architecture

11

Perception { } Actuation

Cognition

12

ACT-R Architecture Overview

• Procedure core

• Buffers

• Modules

• 2 types of knowledge representation:

– declarative (facts, “chunks”)

– procedural (deductions, “productions”)

13

Productions

• Procedural knowledge as if-then statements

• Basic process is: match, select, fire

• Many may match current status

• Only 1 selected to fire

14

Productions

• Productions use buffers in IF & THEN parts

• IF part checks buffer contents or status

• THEN part, changes buffer values or requests
buffer/module action

15

Productions

• Useful to translate English to ACT-R

• eg: IF the goal is to count to y AND currently at x, AND
x<>y, THEN remember what comes after x.

16

Production Design

• eg 1: IF the goal is to count to y AND currently at x,
AND x<>y, THEN remember what comes after x.

• but:

– this production will always match and fire...

– another production will deal with the
remembered fact

– it can work with addition of a “state” variable

17

Production Design

• IF the goal is to count to y AND currently at x, AND x<>y, THEN remember what
comes after y.

 (p rule-getnext
 =goal>
 isa count
 to y
 current x
 - current y
 - state recalling-next
 ==>
 +retrieval>
 isa next-fact
 current x
 =goal>
 state recalling-next
)

count chunk type:

 to <n>

 current <m>

 state <w>

18

Production Design 2

• eg 1: IF the goal is to count to y AND currently at x,
AND x<>y, THEN recall what comes after y.

• eg 2: IF the goal is to count with current = x AND “to” is
not x, THEN recall what comes after x

• eg 3: IF the goal is to count with current is x AND “to” is
not x, and we remembered y comes after x, THEN
update current to y and recall what comes after y

19

Production Design (core)

(P increment
 =goal>
 ISA count-from
 count =num1
 - end =num1
 =retrieval>
 ISA count-order
 first =num1
 second =num2
 ==>
 =goal>
 count =num2
 +retrieval>
 ISA count-order
 first =num2
 !output! (=num1)
)

count-from chunk type:

 end <n>

 count <m>

count-order chunk type:

 first <n>

 second <m>

20

Production Design (start)

(P start

 =goal>

 ISA count-from

 start =num1

 count nil

 ==>

 =goal>

 count =num1

 +retrieval>

 ISA count-order

 first =num1

)

21

Production Design (stop)

(P stop

 =goal>

 ISA count-from

 count =num

 end =num

 ==>

 -goal>

 !output! (=num)

)

22

ACT-R & Lisp...

• ACT-R written in Lisp

• ACT-R uses Lisp syntax

• Parts of a model

– Lisp code (~)

– Parameters

– Initialization of memory (declarative & proc)

– Running a model

23

ACT-R & Lisp...syntax

• ; comments

• “(“ <function-name> <arguments> “)”

eg: (clear-all)

 (sgp) <= lists all parameters & settings

 (p ...) <= p function creates productions

24

ACT-R & Lisp...warnings/errors

• Lisp warnings

#|Warning: Creating chunk BUZZ of default type chunk |#

Undefined term, usually insignificant

#|Warning: Invalid chunk definition: (RED

 ISA

 CHUNK) names a
chunk which already exists. |#

Some terms defined within ACT-R as chunks (~reserved words)

25

ACT-R & Lisp...warnings/errors

• Lisp /ACT-R error example 1:
> (help)

UNDEFINED-FUNCTION

Error executing command: "(help)":

Error:attempt to call `HELP' which is an undefined

function..

 Non-existent function call

26

ACT-R & Lisp...warnings/errors

• Lisp /ACT-R error example 2:

 Error Reloading:

 ; loading

 ; c:\documents and settings\bill
kennedy\desktop\psyc-768-s09\demo2.txt

 error reloading model

 error:eof encountered on stream

 #<file-simple-stream

 #p"c:\\documents and settings\\bill
kennedy\\desktop\\psyc-768-s09\\demo2.txt" closed

 @ #x20b2159a>

 Unbalanced parentheses.

27

ACT-R Model (outline)

; header info
(clear-all)
(define-model <model name>
 (sgp :<parm name> <value> <parm name> <value> ...)
 (chunk-type <isa name> <att1> <att2> ...)
 (add-dm
 (<name> isa <chunk-type> <attn> <value>
 <attm> <value> ...)
 (<name> isa <chunk-type> <attn> <value>
 <attm> <value> ...)
 ...
) ; end of add-dm
 (p ...)
 (goal-focus <chunk-name>)
) ; end of model definition

28

ACT-R Model

(p <production name>
 =goal>
 ISA <chunk-type>
 <att> <value>
 ...
 =retrieval>  buffer (content)
 ISA <chunk-type>
 ?retrieval>  buffer (status)
 state full
==>
 =goal>
 <att> <value>
 +retrieval>  request to a module
 ISA <chunk-type>
 <att> <value>
 ...
 -goal>  explicit clearing of a buffer
 !output! (text text =variable text =variable)
)

29

Homework: Data Fitting

• From now on the assignments will be compared to human performance

– Mostly Response time

• Correlation and Mean deviation

• Provides a way to compare and judge the models

• Not the only way!

– Plausibility

– Generality

– Simplicity

• Make sure the model does the right thing before trying to tune it with
parameters!

29

30

Subitizing

• Task: A bunch of objects appear on the display, report the
number by speaking it

• Model starts with the counting facts from 0-11

• Will need to manage visual attention

– Make sure the model gets to every item

– Needs to know when its done

– Given 10 finsts with a long duration to start

• Do not have to use that if you do not want to

• Should not need to adjust parameters to get a reasonable fit
to the data

30

Solution Model

CORRELATION: 0.980
MEAN DEVIATION: 0.230
Items Current Original
 1 0.54 (T) 0.60
 2 0.77 (T) 0.65
 3 1.00 (T) 0.70
 4 1.24 (T) 0.86
 5 1.48 (T) 1.12
 6 1.71 (T) 1.50
 7 1.95 (T) 1.79
 8 2.18 (T) 2.13
 9 2.41 (T) 2.15
 10 2.65 (T) 2.58 0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

data

soln

Mechanism

• Find, attend, count, repeat

• Linear in the number of items

• Any other solutions?

33

Memory’s Subsymbolic Representation

33

34

Memory’s Subsymbolic Representation

• At symbolic level

– chunks in DM

– retrieval process

• When turned on, :esc t,

– retrieval based on chunk’s “activation”
34

(p add-ones
 =goal>
 isa add-pair
 one-ans busy
 one1 =num1
 one2 =num2
 =retrieval>
 isa addition-fact
 addend1 =num1
 addend2 =num2
 sum =sum
==>
 =goal>
 one-ans =sum
 carry busy
 +retrieval>
 isa addition-fact
 addend1 10
 sum =sum
)

35

Memory’s Subsymbolic Representation:
Activation

• Activation drives both latency and probability of
retrieval

• Activation for chunk i:

 A i = B i + e i

• Retrieved *if* activation above a threshold
(retrieval threshold :rt default 0, often -1)

• Latency calculated from activation

35

36

Memory’s Subsymbolic Representation:
Activation

Activation for chunk i:

 Ai = Bi + ei

 Bi = “Base-level activation”

 ei = noise contribution

36

37

Memory’s Subsymbolic Representation: Base-
level Activation

• Base-level activation

– Depends on two factors of the history of usage of
the chunk: recency & frequency

– represented as the log of odds of need (Anderson
& Schooler, 1991)

– due to math representation, can be negative

– includes every previous use

– affected most by most recent use

37

38

38

B

Memory’s Subsymbolic Representation:
Base-level Activation

39

39

Memory’s Subsymbolic Representation:
Base-level Activation

40

40

Memory’s Subsymbolic Representation:
Base-level Activation

With use, decays less

41

Memory’s Subsymbolic Representation: Base-
level Activation

• Chunk events affecting activation (“event
presentations”)

– chunk creation

– cleared from a buffer and entered into DM

– cleared from a buffer and already in DM

– retrieved from DM (credited when cleared)

41

42

Memory’s Subsymbolic Representation: Base-
level Activation

• Base-level activation calculation called “Base-
Level Learning”

• Key parameter, :bll

– the exponent in the formula

– normal value: a half, i.e., 0.5

42

43

Memory’s Subsymbolic Representation: Base-
level Activation

• Full representation requires keeping data on
every previous use...

• Alternate: “Optimized” Learning

• If previous chunk events are evenly spaced, a
simpler formula is possible

• Keeping even 1 previous event is effective

43

44

Memory’s Subsymbolic Representation: Base-
level Activation

44

ACT-R parameter
optimized learning:
:ol t or :ol 1

45

Memory’s Subsymbolic Representation:
Activation

Activation for chunk i:

 Ai = Bi + ei

 Bi = “Base-level activation”

 ei = noise contribution

45

46

Memory’s Subsymbolic Representation:
Activation Noise

• ei = noise contribution

• 2 parts: permanent & instantaneous

• both ACT-R parameters :pas & :ans

• usually only adjust :ans

• :ans setting varies, from 0.1 to 0.7

• noise in model sometimes nec’y to match
noise of human subjects...

46

47

Memory’s Subsymbolic Representation:
Latency(s)

• Activation also affects latency (two ways)

• Latency = F * e-A

A is activation

F is “latency factor” (ACT-R parameter :lf ~0.5)

• Threshold setting affects latency of retrieval
failure

(must wait until latency of threshold passes!)

47

48

Memory’s Subsymbolic Representation

• Activation = base-level and noise

• Base-level dependent of recency & frequency of
previous chunk “presentations”

• Retrieval only when activation above “retrieval
threshold”

• Activation and threshold affect latency

• Many parameters :esc, :rt, :bll, :ol, :ans
48

Memory II:
Other Sources of Activation

• Previously, chunk’s activation over time

• Now, add the effect of context (two types)

49

Other Sources: Spreading Activation &
Partial Matching

• Activation (previous):

 Ai = Base Level Activation + noise

 = Bi + ei

• the effect of context (new):

 Ai = Bi + ei + SA + PM

50

• Learn multiple similar facts, e.g.,

 A hippie is in the park

 A lawyer is in the cave

 A debutante is in the bank

 A hippie is in the cave

 A lawyer is in the church

51

Spreading Activation

• Tests (seen before Y/N?)

 A lawyer is in the park

 A hippie is in the cave

52

Spreading Activation

• Reponses time increases linearly as number of
persons and locations increase, i.e., “fanning
out” of activation

• Foils take longer than targets to decide

53

Spreading Activation

• The context affects retrievals

• Contents of other buffers contribute to
retrieval activation calculation for chunks in
DM

• Affects response time

54

Spreading Activation

• Consider: several matching chunks in memory

• How decide which?

• Activation based on base (recency &
frequency) PLUS small context effect

• Retrieval based on parts of chunk separates
exact matches from non-matches

55

Spreading Activation

Spreading Activation

• Activation (previous):

 Ai = Base Level Activation + noise

 = Bi + ei

• add context: effect of other buffers’ chunks

 Ai = Bi + ei + S S (Wkj Sji))
 buffers(k) slots(j)

56

Spreading Activation

• add context: effect of other buffers’ chunks

 Ai = Bi + ei + S S (Wkj Sji))
 buffers(k) slots(j)

Wkj is weighting of slot j in buffer k (normalized)

Sji is the strength of the association between

 slot j and chunk i

57

Spreading Activation

• add context: effect of other buffers’ chunks

 Ai = Bi + ei + S S (Wkj Sji))
 buffers(k) slots(j)

Wkj is weighting of slot j in buffer k (normalized)

 (default is 1 for goal, 0 for others)

Sji is the strength of the association between

 slot j and chunk i (Sji=0 or S-ln(fanj))

58

Spreading Activation

Fan Effect (Anderson 1974)

• Fan effect: number of associations “fanning
out” from a chunk

• Other buffers hold chunks

• Chunk has slots with other chunks

• How many uses of a chunk affects its Ai

59

60

Spreading Activation: Fan Effect

S11

W1

W2

S12

S13

S21

S22

S23

Slot 1

Slot 2

Source1

Source 2

chunk1

chunk2

chunk3

Goal
B1

B2

B3 A1 = B1 + W1S11 + W2S21

A2 = B2 + W1S12 + W2S22

A3 = B3 + W1S13 + W2S23

• Retrievals based on matching & activation

• Now, other buffers affect retrieval

• But, activation diluted by similar chunks

• Effect:

 Similar but non-matches slow retrievals

61

Spreading Activation: Fan Effect

62

Other Sources: Partial Matching

63

Other Sources: Partial Matching

• Provides ACT-R a mechanism to explain
errors of commission, retrieving wrong
chunk

• (previous activation mechanism explained
errors of omission, Ai < :RT)

Partial Matching

• add context: effect of similar chunks

 Ai = Bi + ei + S S (Wkj Sji)) + S PMli
 buffers(k) slots(j) retrieval slots

P is weighting of slot

Mli is the similarity between values in slot l of retrieval
and slot i of chunk

64

Partial Matching

• add context: effect of similar chunks

 Ai = Bi + ei + S S (Wkj Sji)) + S PMli
 buffers(k) slots(j) retrieval slots

P is weighting of slots (all equal)

Mli is the similarity between values in slot l of retrieval
and slot i of chunk

65

Partial Matching

• Effect is can retrieve a wrong but similar chunk (...
IF chunk hierarchy supports it)

• Retrieval of wrong chunk supports errors of
commission, taking wrong action vice no action

66

67

ACT-R Modeling

• ACT-R Model Development

• ACT-R Model Debugging

67

68

ACT-R Model Development

1. Plan overall model to work in stages.

2. Start simple then add details to your model.

3. Write simple productions using simple chunks.

4. Run the model (with own trace) frequently to test
progress (eg. with every new or changed
production).

68

69

ACT-R Model Development

5. Start with productions doing one thing at a
time (i.e., reference goal + one buffer) and
use multiple productions. Combine later.

6. Use state variables to rigorously control
sequencing until model works, then remove
as many as possible.

69

70

ACT-R Model Development

7. With each buffer request, consider a
production for handling the failure.

8. In using loops, consider preps to start and
how to leave loop.

70

71

ACT-R Debugging Process

• Run ACT-R up to problem...

– set time limit

– change production to stop at problem step

• Check "why not" of expected production

• Check buffers & buffer status

• Check visicon

• Causes ...

71

72

ACT-R Code Debugging

Stops unexpectedly/expected production not firing:

– Conditions not met (use "Why not" to
identify which)

– Conditions over-specified with unnec'y
variable tests which don’t match

– Logic mismatch among conditions

– nil will not match =variable

– ...

72

73

ACT-R Code Debugging

Stops unexpectedly/expected production not firing
(continued):

– Typo on variable name, i.e., not same ref.

– Wrong slot referenced in LHS

– Time ran out

– Production not in memory

– Error on loading (production ignored)

– Production overwritten by duplicate naming
(warning)

73

74

ACT-R Code Debugging

Wrong production firing:

– Firing production also meets current
conditions

– Conditions do not meet expected production
LHS

Production firing repeatedly:

– LHS not changed by firing, i.e., still valid

74

75

ACT-R Code Debugging

Buffer unexpectedly empty:
– Not filled

– Implicit clearing (on LHS but not RHS)

Buffer with unexpected chunk:
– Previous production to fill it didn't fire

– Sensor handling not as expected

– Buffer not updated/cleared as expected

75

76

ACT-R Code Debugging

Retrieval unsuccessful:

– Expected chunk not in memory

– Retrieval specification unintended

• overly specific (too many slots specified)

• unintended chunk type

– Expected chunk’s activation too low

– Wrong chunk retrieved

• under specified (too few slots specified)

• partial matching effect (intended)
76

77

ACT-R Code Debugging

Timing too slow:

– Combine productions

– Driven by retrieval failures and :RT too low

Timing too fast:

– Driven by retrieval failures and :RT too high

77

Unit 4: Zbrodoff’s Experiment

• alpha arithmetic, eg: A + 2 = C: correct?

• possible addends: 2, 3, or 4

• learning over:

– stimuli set (24)

– repetition (5)

– blocks (2) = 192 trials

78

Model Design

• Given model that counts to answer

• Process: read problem, count, answer

• Already creates saves chunks of answers

• Strategy?

79

Model Design - start

• Basic strategy: learn to retrieve answer

• How: attempt retrieval

 if successful, answer based on it
 if fails, resort to counting
 (another basic process...)

• After model runs, adjust :RT

80

Model Design – basic process

81

Read
Problem

Solve
Problem

Save
Solution

Respond
Recall

Solution

--

+

Instance-based action/declarative learning process:

Model Coding

82

Read
Problem

Solve
Problem

Save
Solution

Respond
Recall

Solution

--

+

Ziegler homework: ~80% given

Parameter Tweaking

• After model runs, adjust retrieval threshold
to control when learning occurs vs.
problem solving

83

Unit 5: Siegler Experiment

• Experiment is 4 yr olds answering addition
problems: 1+1 up to 3+3 (answers from 0-8
& “other”)

• Environment starts with problem stuffed into
imaginal buffer as “text”

• Goal: beat 0.976 / 0.058

• Strategy?

84

Model Development Process

1. get working for one case

2. expand for all cases

3. adjust parameters

85

Model / Coding Issue

• Note: one <> “one” <> “1” <> 1,

 (symbol, strings, and a constant)

• Facts stored using different representations
 Number fact: (one ISA number value 1 name "one")

 Addition fact: (f11 ISA plus-fact addend1 one

 addend2 one sum two)

• problem input & response as strings, eg., “one”

86

• Now possible to access to chunk names

 eg., =retrieval

 like previous =visual-location

• Or, (“old school”) add slot with value, eg:

 (four ISA number value 4 name "four" ref four)

87

Model / Coding Issue

Model Design - basics

• Given chunk types and functions to set base

activation and set similarities

• Basic process: encode, retrieve, respond

88

Parameter Tweaking

• Set base level activations for successful

retrievals throughout a run

• Adjust :ans to get “other” responses

• Set similarities to generate error distribution

to match human subjects

89

Siegler Experiment Data

zero one two three four five six seven eight other

1+1 0 0.05 0.86 0 0.02 0 0.02 0 0 0.06

1+2 0 0.04 0.07 0.75 0.04 0 0.02 0 0 0.09

1+3 0 0.02 0 0.1 0.75 0.05 0.01 0.03 0 0.06

2+2 0.02 0 0.04 0.05 0.8 0.04 0 0.05 0 0

2+3 0 0 0.07 0.09 0.25 0.45 0.08 0.01 0.01 0.06

3+3 0.04 0 0 0.05 0.21 0.09 0.48 0 0.02 0.11

90

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 O sum=

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Siegler Data & Models

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

91

0 1 2 3 4 5 6 7 8 O

0 1 2 3 4 5 6 7 8 O

0 1 2 3 4 5 6 7 8 O

Experimental Data

Perfect Behavior
(0.942 / 0.125)

My Model
(0.960 / 0.059)

Procedural Knowledge “Reward”

92

• A reward value is propagated backwards
through rule firings and depreciated by
time

Rule 1 Rule 3 Rule 3 Rule 1

93

Rule-g Rule-d Rule-e Rule-b Rule-j Rule-w

Procedural Knowledge “Reward”

Rule 1 Rule 3 Rule 3 Rule 1

94

Rule-g Rule-d Rule-e Rule-b Rule-j Rule-w

Reward 10 Reward 15

• Eg: (spp Rule-b :reward 10)

 (spp Rule-w :reward 15)

Procedural Knowledge “Reward”

• Eg: (spp Rule-b :reward 10)

 (spp Rule-w :reward 15)

• Rewards propagated back to the last award only

Rule 1 Rule 3 Rule 3 Rule 1

95

Rule-g Rule-d Rule-e Rule-b Rule-j Rule-w

Reward 10 Reward 15

Procedural Knowledge “Reward”

Why?

96

• Multiple rules’ LHS meet current conditions
and appropriate strategy is a balance between
the them.

• Rule selection balance can be learned

• To turn on utility learning: (sgp :ul t)

Learning Utility

97

• Difference Learning Equation:

 Ui(n) = Ui(n-1) + a[Ri(n) – Ui(n-1)]

 Ui(n) is utility of rule i at nth firing

 Ri(n) is reward for rule i at nth firing

 a is “learning rate” (sgp :alpha 0.2)

Learning Utility

98

• Difference Learning Equation effect:

Example: Building Sticks Task

99

• Match a given length by a combination of 3 other
given lengths

• Two strategies: building up or subtracting
(“undershoot”/“overshoot” based on first move)

100

• Searching for combination of A,B, & C that
equals target length (green)

• If current is too long, length is subtracted

Example: Building Sticks Task

101

Demo

A=15, B=200, C=41

Goal: 103

Example: Building Sticks Task

102

Demo

A=15, B=200, C=41

Goal: 103 = B – 2C – A

Example: Building Sticks Task

103

Human performance data:

 available lengths Goal %Overshoot
 a b c

 15 250 55 125 20
 10 155 22 101 67
 14 200 37 112 20
 22 200 32 114 47
 10 243 37 159 87
...

Example: Building Sticks Task

104

• BST model has 27 productions

Example: Building Sticks Task

Perceive
Problem

Evaluate
Current

Choose
Strategy

Implement
Strategy

Perceive
“done”

105

• BST model has 27 productions

Example: Building Sticks Task

Perceive
Problem

Evaluate
Current

Choose
Strategy

Implement
Strategy

Perceive
“done”

106

• BST model has 27 productions

• Key productions decide which length to use based
on whether current length is too long (“over”) or
too short (“under”)

 decide-over

 decide-under

 force-over

 force-under

Example: Building Sticks Task

107

Example: Building Sticks Task

(p decide-under

 =goal>

 isa try-strategy

 state choose-strategy

 strategy nil

 =imaginal>

 isa encoding

 over =over

 under =under

 !eval! (< =under (- =over 25))

==>

 =imaginal>

 =goal>

 state prepare-mouse

 strategy under

 +visual-location>

 isa visual-location

 kind oval

 screen-y 85)

(p force-under

 =goal>

 isa try-strategy

 state choose-strategy

 - strategy under

==>

 =goal>

 state prepare-mouse

 strategy under

 +visual-location>

 isa visual-location

 kind oval

 screen-y 85)

108

• (collect-data 100) corr: 0.803

• Utilities start  end

decide-over 13  13.15

decide-under 13  11.15

force-over 10  12.15

force-under 10  6.59

Example: Building Sticks Task

Unit 6 Homework

109

Model design:
productions

• start by detecting “choose” in window

• generate key-press (heads and tails)

• read actual result

• note matches and non-matches

 settings :ul t (to turn on utility learning)

 :egs noise parameter

 set initial utilities

AND establish rewards for specific productions

Unit 6 Homework

110

Model results (collect-data 100):

 Corr: / Mean Dev.

 official answer: 0.991 / 0.012

Unit 6 Homework

111

Model results (collect-data 100):

 Corr: / Mean Dev.

 official answer: 0.991 / 0.012

 my best: 0.998 / 0.010

Unit 6 Homework

112

Model results (collect-data 100):

 Corr: / Mean Dev.

 official answer: 0.991 / 0.012

 my best: 0.998 / 0.010

 another run: 0.990 / 0.030

 run 200: 0.990 / 0.024

Learning New Rules

113

• Anderson (1982) suggested a 3 stage learning
process:

– “Cognitive” (problem solving, chunking)

– “Associative” (retrieval of solutions)

– “Autonomous” (new procedural knowledge)

Learning New Rules

114

0

20

40

60

80

100

0 500 1,000 1,500 2,000 2,500

Problems

C
o

u
n

t
p

e
r

1
0

0
 P

ro
b

le
m

s

Moves Created Retrievals Production Firings

from Kennedy & Trafton (2007) Long-term Learning, CSR

115

• How? compiling rules that fire sequentially

Abstract:

 Rule AB followed by rule BC

 ...

Learning New Rules

116

• How? compiling rules that fire sequentially

Abstract:

 Rule AB followed by rule BC combined
into a new rule: AB&C

Learning New Rules

117

(p rule1
 =goal>
 isa goal
 state nil
==>
 =goal>
 state start
)

(p rule2
 =goal>
 isa goal
 state start
==>
 =goal>
 add1 zero
)

Learning New Rules

118

(p rule1
 =goal>
 isa goal
 state nil
==>
 =goal>
 state start
)

(p rule2
 =goal>
 isa goal
 state start
==>
 =goal>
 add1 zero
)

Learning New Rules

A


B

B

C

119

(p rule1
 =goal>
 isa goal
 state nil
==>
 =goal> (p rule1+2
 state start =goal>
) state nil
 ==>
(p rule2 =goal>
 =goal> state start
 isa goal add1 zero
 state start)
==>
 =goal>
 add1 zero
)

Learning New Rules

A

B
C

 (add-dm (start isa chunk)

	 (done isa chunk)

	 (blank isa chunk)
 (add-dm (start isa chunk)

	 (done isa chunk)

	 (blank isa chunk)
 (add-dm (start isa chunk)

	 (done isa chunk)

	 (blank isa chunk)

120

(p rule1
 =goal>
 isa goal
 state nil
==>
 =goal> (p rule1+2
 state start =goal>
) state nil
 ==>
(p rule2 =goal>
 =goal> state start
 isa goal add1 zero
 state start)
==>
 =goal>
 add1 zero
)

Learning New Rules

121

• Is that all?

Realistic example:

• Rule 1 initiates retrieval of a chunk

• Rule 2 harvests the retrieved chunk

• New Rule 1+2 built with chunk information
“built in” i.e., no retrieval involved

Learning New Rules

122

Realistic example (specifics):

• Recall the two column addition exercise

• Add by counting from first number, the second

number of times

• Consider a specific case: start with 3 and need to

count 2 steps to get sum

Learning New Rules

123

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 =arg1

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first =arg1

 =goal>

 sum =arg1

 count zero

(P increment-sum

 =goal>

 ISA add

 sum =sum

 count =count

 =retrieval>

 ISA order

 first =sum

 second =new

==>

 =goal>

 sum =new

 +retrieval>

 ISA order

 first =count

124

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 =arg1

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first =arg1

 =goal>

 sum =arg1

 count zero

(P increment-sum

 =goal>

 ISA add

 sum =sum

 count =count

 =retrieval>

 ISA order

 first =sum

 second =new

==>

 =goal>

 sum =new

 +retrieval>

 ISA order

 first =count

Retrieved chunk:
 ISA order
 first three
 second four

125

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 =arg1

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first =arg1

 =goal>

 sum =arg1

 count zero

(P increment-sum

 =goal>

 ISA add

 sum =sum

 count =count

 =retrieval>

 ISA order

 first =sum

 second =new

==>

 =goal>

 sum =new

 +retrieval>

 ISA order

 first =count

Retrieved chunk:
 ISA order
 first three
 second four

126

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 =arg1

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first =arg1

 =goal>

 sum =arg1

 count zero

(P increment-sum

 =goal>

 ISA add

 sum =sum

 count =count

 =retrieval>

 ISA order

 first =sum

 second =new

==>

 =goal>

 sum =new

 +retrieval>

 ISA order

 first =count

Retrieved chunk:
 ISA order
 first three
 second four

127

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count =count

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first =count

Retrieved chunk:
 ISA order
 first three
 second four

128

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count =count

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first =count

Retrieved chunk:
 ISA order
 first three
 second four

129

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count =count

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first =count

130

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count =count

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first =count

131

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count =count

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first =count

132

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count =count

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first =count

133

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count =count

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first =count

134

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count =count

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first =count

135

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count zero

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first zero

136

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count zero

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first zero

137

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count zero

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first zero

138

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count zero

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first zero

139

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count zero

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first zero

140

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count zero

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first zero

141

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count zero

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first zero

142

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first three

 =goal>

 sum three

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count zero

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first zero

LHS

RHS

143

Learning New Rules

(P initialize-add-count

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 +retrieval>

 ISA order

 first six

 =goal>

 sum six

 count zero

(P increment-sum

 =goal>

 ISA add

 sum three

 count zero

 =retrieval>

 ISA order

 first three

 second four

==>

 =goal>

 sum four

 +retrieval>

 ISA order

 first zero

(P initalize+increment

 =goal>

 ISA add

 addend1 three

 addend2 =arg2

 sum nil

==>

 =goal>

 count zero

 sum four

 +retrieval>

 ISA order

 first zero

}

144

Learning New Rules

NOTICE:

1.New rule is very specific due to
adding the retrieved chunk’s
information to the two parent rules

145

Learning New Rules

NOTICE:

2.Very simply written rules can
become more sophisticated with
production compilation (i.e., write
simple rules that get the desired
behavior and let the system learn to
be fast enough to match data...)

146

Learning New Rules

• Utility of new rule?

• Intent: gradual rule use

 (contrary to Soar philosophy)

147

Learning New Rules

• Previous utility rule

 Ui(n) = Ui(n-1) + a [(Ri(n) – Ui(n-1)]

• Utility for new rule

 Ui(n) = Ui(n-1) + a [(U1st parent(n) – Ui(n-1)]

• Starts at 0 (default) and is increased with re-creation

until with noise gets selected. Then gets reward more

directly and can surpass parent.

Learning New Rules

148

0

20

40

60

80

100

0 500 1,000 1,500 2,000 2,500

Problems

C
o

u
n

t
p

e
r

1
0

0
 P

ro
b

le
m

s

Moves Created Retrievals Production Firings

from Kennedy & Trafton (2007) Long-term Learning, CSR

149

Learning New Rules

• Rule compilation conditions:

– no conflicts

– no “externalities”, i.e., reliance on outside world

– must be turned on: (sgp :epl t)

 (default is nil)

150

• Learning new procedural knowledge:
• 2 sequentially-firing rules combine into a new rule

• production learning turned on with (sgp :epl t)

• utility set like reward

• Use: learned new rules eventually take over
and can be much faster than parents

Review

Unit 7 Homework

151

• Model design?

Environment Model Results

Unit 7 Homework

152

Regular

Irregular
Correct

Irregular
Incorrect

• Given:

Unit 7 Homework

153

Regular

Irregular
Correct

Irregular
Incorrect

• Given:

Unit 7 Homework

154

Retrieve
Verb

Success
Complete

Regular

Irregular
Correct

Irregular
Incorrect

Retrieval
Error

Unit 7 Homework

155

Retrieve
Verb

Success
Complete

Apply as
Model

Regular

Irregular
Correct

Irregular
Incorrect

Retrieval
Error

Unit 7 Homework

156

Retrieve
Verb

Retrieve
Any Verb

Success
Complete

Apply as
Model

Regular

Irregular
Correct

Irregular
Incorrect

Retrieval
Error

Unit 7 Homework

157

Retrieve
Verb

Retrieve
Any Verb

Success
Complete

Apply as
Model

Ignore
Non-model

Regular

Irregular
Correct

Irregular
Incorrect

Retrieval
Error

Unit 7 Homework

158

Retrieve
Verb

Retrieve
Any Verb

Success
Complete

Apply as
Model

Ignore
Non-model

Regular

Irregular
Correct

Irregular
Incorrect

Retrieval
Error

Unit 7 Homework

159

Retrieve
Verb

Retrieve
Any Verb

Success
Complete

Apply as
Model

Ignore
Non-model

Regular

Irregular
Correct

Irregular
Incorrect

Retrieval
Error

} }

}

Unit 7 Homework

160

30,000 trials 10,000 trials 500 increment

161

Issues in
Cognitive Modeling

162

• Philosophical issues

• Foundational issues

• Architectural issues

• Modeling issues

• Validation issues

• Scope issues

Issues in
Cognitive Modeling

163

Philosophical Issues

164

• Cognitive Science (& modeling) vs. Artificial
Intelligence

• Sources of knowledge

• Mind-Body problem

• Computational Theory of Mind

Philosophical Issues

165

• Cognitive Science (& modeling) vs Artificial
Intelligence

– similar search for understanding:

• what is intelligence

• how the brain produces behavior

– different purposes

• understanding mind for science’s sake

• applying that understanding to problems

Philosophical Issues

166

• Source of knowledge

– from experience (Locke, Hume, Mill)

– innate, instinct, built-in (Decartes, Kant, &
Pinker’s “Language Instinct”)

Philosophical Issues

167

• Mind-body problem

– mind distinct from body (Dualism)

– mind an extension of the body (Materialism)

– reality is in the mind (Idealism)

Philosophical Issues

168

• Computational hypothesis

 computation as a theory of mind

 < 50 years old

 John Searle’s Chinese Room

Philosophical Issues

169

• Symbol hypothesis

– symbols vs. Gestalt’s holistic, parallel, analog
perception of whole different as from parts

– related to neural network approach to the
Cognitive Science

Philosophical Issues

170

Foundational Issues

171

• Symbol hypothesis (on boarder)

• Levels/bands – what are we studying?

• Where is foundation

• Cognitive plausibility

Foundational Issues

Newell’s Levels & Bands

Architectural term t (sec) Units System Band

1011-13 104-106 years Evolutionary

1010 Millennia Historical

Lifetime 109 ~50 years Historical

108 Years (Expertise) Historical

107 Months (Expertise) Social

Development 106 Weeks Social

105 Days Social

104 Hours Task Rational

Knowledge acq 103 10 min Task Rational

102 Minutes Task Rational

101 10 sec Unit task Cognitive

Performance 100 1 sec Operations Cognitive

Temp storage 10-1 100 ms Deliberate act Cognitive

Primitive act 10-2 10 ms Neural net Biological

10-3 1 ms Neuron Biological

10-4 100 ms Organelle Biological
172

173

• Where is the foundation?

– working from neuron up

– theory of mind down, or

– middle in both directions

Foundational Issues

174

• Cognitive plausibility

– common usage

– formal matching of clever experimental data

– multi-level justification

Foundational Issues

175

Architectural Issues

176

• Goal of architecture

• Perception-cognition boundary

• Movement-movement boundary

• Symbolic memory representation Subsymbolic
representation

• Strong assumptions

Architectural Issues

177

• Goal of architecture

– AI or Cognitive Science

– Narrow behavioral focus or broad

Architectural Issues

178

• Perception-cognition boundary

Architectural Issues

179

• Perception-cognition boundary

Architectural Issues

Process Input Output

Perception Cognition Action

180

• Perception-cognition boundary

– where’s the edge?

– how much does one affect the other?

– being studied

Architectural Issues

181

• Movement-movement boundary

– presumed well defined: thought vs. action

– “Mirror neurons” challenging definition

– not focus of study

– (robotics not the same subject)

Architectural Issues

182

• Symbolic memory representation

– LTM & STM accepted as different

– Procedural generally accepted as different

– Episodic different?

– Images different?

– Spatial different?

– (Feelings different?)

Architectural Issues

183

• Subsymbolic representation

– Generally accepted as necessary

– Architectural design impact not settled

– Neural representation?

– Functional mathematical representation?

– Stochastic representation?

Architectural Issues

184

• Strong assumptions

– disprovable theoretic claims to advance science

– Newell’s UTC stake in the ground

– Icarus’ variation

– Clarion (& ACT-R) neural representation
dependency

– Modularity and physiological comparisons

Architectural Issues

185

Modeling Issues

186

• Standard methodologies

• Bottom-up vs. top-down

• Chunk size

• Production size

• Parameter standardization

• Other: modeling or architecture issues

Modeling Issues

187

• Standard methodologies

– Some:

• rule based behavior

• some patterns of rules
– problem solving techniques

– find, attend, harvest

– prepare, execute

– Lack of standard methodologies an indicator
of the youth of the field or something else...

Modeling Issues

188

• Bottom-up vs. top-down

– Goal driven or environmentally driven?

– Goal: procedural process retrieval

– Env: perception, reactive behavior

– Mixed? How?

Modeling Issues

189

• Chunk size

– How many slots?

• Smaller is better

• When is larger, too large, 7+/- 2? (!)

– How complicated is a slot

• indirect references?

• variable slot names?

• un-named slots?

Modeling Issues

190

• Production size

– How many conditions?

– How complicated is the logic?

• and

• not

• or?

• evaluation function?

– How many actions on RHS?

– How complicated are the actions?

Modeling Issues

191

• Parameter standardization

(ACT-R)

• Production firing: 50ms

• Retrieval threshold: varies

• Move attention: 85ms

• Imaginal vs. goal buffer: ?

• others...

– Other architectures?

Modeling Issues

192

• Other: modeling or architecture issues

– Memory for goals (are goals different?)

– Multi-tasking (interleaved by model or
architecture)

– Emotion affecting cognition

• different rules

• different parameters (eg. RT)

– Motivation(?)

Modeling Issues

193

Validation Issues

194

• Validation criteria

• Validity vs. reliability

• Acceptable evidence

Validation Issues

195

• Validation criteria

• Statistical hypothesis testing

• Goodness of fit

• Verbal protocols

Validation Issues

196

• Validity vs. reliability

• Well defined phenomenon

• Clearly demonstrated

• Explanation rational

• Explanation/model cognitively plausible

Validation Issues

197

• How demonstrated?

– match single human on single experiment

– match multiple subjects on single experiment

– match data on a wide range of behaviors

– replicated

Validation Issues

198

• Natural Language

• “Numerosity” (sense of quantity, size, etc.)

• Judgment

• Realistic vs. rational behavior

• Social behavior

• Abnormal behavior

• Creativity, art, music

• ...

Scope Issues

