
Standard

Task-Actor

Protocol
Vladislav “Dan” Veksler

Participant pool

Task  Actor

Task logic model

Participant pool

Task  Actor

Task logic model

Loc Att Kind Value Color ID

--------- --- ------ ---------- ----- ----------------

(25 25) NEW TEXT “textBox1” BLACK VISUAL-LOCATION0

(35 55) NEW BUTTON “button1” BLACK VISUAL-LOCATION1

(55 55) NEW BUTTON “button2” BLACK VISUAL-LOCATION2

Participant pool

Tasks  Actors

Loc Att Kind Value Color ID

--------- --- ------ ---------- ----- ----------------

(25 25) NEW TEXT “textBox1” BLACK VISUAL-LOCATION0

(35 55) NEW BUTTON “button1” BLACK VISUAL-LOCATION1

(55 55) NEW BUTTON “button2” BLACK VISUAL-LOCATION2

Task A logic
ACT-R

model

Py-IBL

model

Soar

model

Sigma

model

Task B logic

Task C logic

Does the model scale to other tasks?

Does the task scale to other models?

 How much work is needed to interface a

given model with a new task-

environment?

 Is a given task-environment suitable for

cross-framework modeling simulations, as

well as human empirical studies?

 Will different models and human actors all

be presented with similar information?

Scaling Up

Creating a standard task-

actor protocol

 Save Resources

 Task/model Reuse

 Scientific Replication

Why?

Participant pool

ACT-R
Py-IBL

Soar
Sigma

Standard

Task-Actor

Protocol

* Restriction

Task A logic

Task B logic

Task C logic

STAP

(Simple Task-Actor Protocol)

 Worked on as a part of Robotics and

Network Science Collaborative Task

Alliances

What?

https://github.com/vdv7/stap

Demo
Shepard,

Hovland,

Jenkins (1961)

IED-tactical

(hearts &

minds)

SS-RICS robot

navigation

task

Human

Participant   

ACT-R (lisp)

  

IBL (python)

  

https://github.com/vdv7/stap

STAP v1.0

 Meant to allow

 Hierarchical state description and vector graphics

 Varying types of actions (e.g., click, hold-down, type)

 Varying types of feedback (e.g. success/fail, temp
reward, long-term score)

 FTRT simulations

 Seamless playback &
 3rd party observation

 Backwards compatibility

 Auto-genera instructions

How?

{
 <<handshake>>
 “s”: <<state>>,
 “t”: <<title info>>,
 “a”: <<allowed actions>>,
 “r”: <<reward>>,
 “$”: <<score>>
}

https://github.com/vdv7/stap

STAP v1.0

 Resource savings, Reuse, Replication

 Don’t worry about gui development

(just pick a template)

 Write task logic once, serve it to varying

devices and computational models

 Standard logging/playback

 Online studies or FTRT local simulations

So what?

Task A logic star$ model star$

{
 “s”: <<state>>,
 “t”: <<title info>>,
 “a”: <<allowed actions>>,
 “r”: <<reward>>,
 “$”: <<score>>
}

https://github.com/vdv7/stap

Questions?

Participant pool

Task A logic
Act-r

Soar
Py-IBL

Sigma

Task B logic

{
 “s”: <<state>>,
 “t”: <<title info>>,
 “a”: <<allowed actions>>,
 “r”: <<reward>>,
 “$”: <<score>>
}

https://github.com/vdv7/stap

