
Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

ACT-R as Embedded Code

Dario Salvucci
Drexel University

1

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Specifying ACT-R Models

■ At this point, we have several implementations of
the ACT-R architecture
– LISP ACT-R
– jACT-R
– Java ACT-R
– Python ACT-R
– [Distract-R]
– [ACT-RN]
– [Javascript ACT-R]

■ Different implementations of ACT-R have taken
different approaches to specifying models…

2

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Specifying ACT-R Models

■ Approach #1: Interpreted language
– #1(a): Canonical ACT-R
– LISP ACT-R, Java ACT-R  

[+ Javascript ACT-R]
– Same model regardless 

of the language of the 
underlying interpreter

– (Choice of language 
 has greater effect on 
 task implementation)

3

(sgp :esc t :lf .05)

(add-dm
 (a isa count-order first 0 second 1)

…
 (goal isa add arg1 5 arg2 2)
)

(P initialize-addition
 =goal>
 isa add
 …
==>
 =goal>
 sum =num1
 count 0
 +retrieval>
 isa count-order
 first =num1
)

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Specifying ACT-R Models

■ Approach #1: Interpreted language
– #1(b): Different language
– e.g., jACT-R
– Still, language of the  

underlying interpreter 
doesn’t matter

4

 <chunk name="j" type="count-order">
 <slot name="first" equals="9.0"/>
 <slot name="second" equals="10.0"/>
 </chunk>

 <production name="initialize-addition">
 <conditions>
 <match buffer="goal" type="add">
 <slot name="arg1" equals="=num1"/>
 <slot name="arg2" equals="=num2"/>
 <slot name="sum" equals="nil"/>
 </match>
 <query buffer="retrieval">
 <slot name="state" equals="free"/>
 </query>
 </conditions>
 <actions>
 …
 </actions>
 </production>

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Specifying ACT-R Models

■ Approach #2: Embedded code

5

class MyAgent(ACTR):
 focus=Buffer()

 DMbuffer=Buffer()
 DM=Memory(DMbuffer,latency=1.0,threshold=1)

 dm_n=DMNoise(DM,noise=0.0,baseNoise=0.0)
 dm_bl=DMBaseLevel(DM,decay=0.5,limit=None)

 def init():
 DM.add(‘customer:customer1 condiment:mustard')
 focus.set('rehearse')

 def request_chunk(focus='rehearse'):
 print "recalling the order"
 DM.request(‘customer:customer1 condiment:?condiment')
 focus.set('recall')

Python ACT-R

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Specifying ACT-R Models

■ Approach #2: Embedded code

6

// control-attend-near
if ((na == NILVAL) && (when == NILVAL)

&& model.getVision().isVisionFree()
&& model.getVision().getVisualLocation() == null
&& model.getVision().getVisual() == null) {

model.trace("DRIVE", "control-attend-near");
na = NONEVAL;
model.getVision().startVisualLocation(Chunk.KIND_NEAR);
return true;

}

// control-attend-near-wait
if ((na == NILVAL) && (when != NILVAL) && (when <= model.getTime())

&& model.getVision().isVisionFree()
&& model.getVision().getVisualLocation() == null
&& model.getVision().getVisual() == null) {

model.trace("DRIVE", "control-attend-near-wait");
na = NONEVAL;
model.getVision().startVisualLocation(Chunk.KIND_NEAR);
return true;

}

Distract-R

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Specifying ACT-R Models

■ So, which approach is best?
■ Each approach apparently has its value — 

why else would people have made them :)
■ But it’s useful to think about some issues…

7

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Issue #1: Constraints

■ A modeling language constrains the user to specify
knowledge/behavior in a very particular way
– one of the hallmarks of a cognitive architecture
– a unified approach to knowledge representation

■ But often, rules are bent/broken to address
components outside the model’s scope
– e.g., the dreaded !eval!
– not necessarily a bad thing

• might just be a way to abstract over things beyond the model

– if you’re concerned about building useful models,  
it can be used in a productive way

8

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Issue #1: Constraints

■ Two examples…
– Chunks vs. equations

• e.g., the driver model uses an equation to compute steering
angle from visual points
– this is really a stand-in for retrieval of chunks, learned over

time… but abstracts over this issue for simplicity

– Dynamic chunks
• e.g., large-scale database of declarative chunks likely needs to be

implemented differently
– perhaps, create chunks on the fly, rather than storing all
– (analogous problem to equations)

• e.g., natural language
– what if we wanted to store parts of speech in ACT-R?  

how might this be implemented?

9

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Issue #2: Procedural Learning

■ For an interpreted model, rules are created at the
start, but can be changed on the fly
– a la production compilation

■ Embedded code doesn’t (easily) allow for
procedural learning

■ Embedded code also encourages a sequential style
of behavior description — not as rules evaluated in
parallel
– in my mind, it seems to be an open question of how

many models gain from this flexibility

10

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Issue #3: Model Integration

■ In theory, a modeling language facilitates integration
of 2+ models
– they’re all written in the same language, using the same

cognitive representations
■ In practice, as we know, this doesn’t happen much

– the “API” between models is difficult to validate
– embedded code helps to enforce the API

• because of type checking, including packages/libraries, etc.
• e.g., by defining types and specific slots

■ Again, it comes down to what’s easy & useful
■ Which brings us to our user base…

11

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Potential Users

■ We’ve largely targeted ACT-R to other cognitive
scientists
– they are trying to understand cognition
– they care, first and foremost, about the model
– user base: maybe 100-1000 people

■ Meanwhile, there are plenty of “agent builders”
interested in coding behavioral models
– e.g., “behavior trees” for gaming
– the “model” isn’t the 1st, or 7th, thing on their mind
– they need something that integrates quickly and easily
– potential user base: >>1000 people

12

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

“Agent Builder” Needs

■ Get up and running quickly?
– download a library, get code from a tutorial, integrate
– interpreted ACT-R?

• right now, fairly difficult, especially the glue between the task and
what the model sees

– embedded code?
• potentially much faster — if the programming language matches

■ Language interoperability?
– they can’t conform to our language (they already have

100k lines of code in another language)
– (we might spend lots of time integrating a Unity game  

 with LISP code, but I doubt anyone else would)

13

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

“Agent Builder” Needs

■ Access behavior at different levels of abstraction?
– do they need an actual running model?
– or are they looking for smaller functions??

• e.g., calculate mouse movement or keystroke time
• e.g., calculate response time for a visual search

■ Visual editors and IDEs?
– game behavior-tree designers rely heavily on these…

14

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Prototype System

15

class ClickWorld extends World {
private Display display;
private Item button;

ClickWorld() {
super();
display = new Display();
button = new Item("button", 0, 0, 30, 30);
button.addClickListener(new ClickListener() {

@Override
public void click() {

moveButton();
}

});
display.add(button, "X");
moveButton();

}
…

void moveButton() {
display.move(button, 50 + random.nextInt(200), 50 + random.nextInt(200));
log("move");

}

public static void main(String args[]) {
ClickWorld world = new ClickWorld();
new Simulation(new ClickAgent(world)).setRealTime(true).run();

}
}

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Prototype System

16

class ClickAgent extends Agent {
private ClickWorld world;
private DesktopVision vision;
private DesktopMotor motor;

ClickAgent(ClickWorld world) {
super();
this.world = world;
Display display = world.getDisplay();
vision = new DesktopVision(this, display);
motor = new DesktopMotor(this, display, vision);

}

@Override
public void run() {

while (!world.isDone()) {
vision.waitFor(new Pattern(Item.TYPE, "button"));
motor.pointAndClick(vision.getFound());

}
}

}

Start the visual request

Block this thread until
visual item is found

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Prototype System

17

public class Numbers implements MemoryModule {
…

public Numbers() { … }

public NumberChunk get(int n) { … }

@Override
public void addStaticChunks(Memory memory) {
}

@Override
public MemoryChunk getDynamicChunk(Pattern pattern) {

NumberChunk chunk = null;
if (pattern.has("isa", Operator.EQ, "number")) {

SlotPattern slotPattern = pattern.get("value", Operator.EQ);
if (slotPattern != null) {

Integer value = (Integer) slotPattern.getValue();
if (value != null)

chunk = get(value);
}

}
return chunk;

}
}

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Prototype System

18

public class Counting extends Module {
private Memory memory;
private Speech speech;

public Counting(Agent agent, Memory memory, Numbers numbers, Speech speech) {
super("counting", agent);
this.memory = memory;
this.speech = speech;
memory.include(numbers);

}

public void count(int from, int to) {
while (from <= to) {

memory.recall(new Pattern("isa", “number")
.add(NumberChunk.VALUE, from));

speech.say(memory.getRecalled().getString("name"));
from = memory.getRecalled().getInteger("next");

}
}

}

Block this thread until
item is recalled

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Thinking Ahead

■ The prototype system is still built for simulating and
acting, not other levels of abstraction

■ Let’s look at some examples…
– Visual Search
– Arithmetic
– List Memory

19

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Thinking Ahead

■ Visual Search
– example: iLab Vision C++ Toolkit (Itti et al., USC)
– takes raw image as input, can generate as output…

– strong predictions, easy to integrate with other models
20

shifts of attention based on saliencysaliency map

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Thinking Ahead

■ Arithmetic (Lebiere, 1998)
– RT, small & large problems over time…

21

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Thinking Ahead

■ Arithmetic (Lebiere, 1998)
– % correct vs. incorrect responses (age 4)

22

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Thinking Ahead

■ Arithmetic (Lebiere, 1998)
– as a library? runnable actions, simpler functions…

23

public class Arithmetic {

public Arithmetic(int age) { … }

public int add(int x, int y) {
// performs addition with RT, correctness

}

public double getProbabilityCorrect(int x, int y) {
// returns probability correct for this age

}

public double getResponseTime(int x, int y) {
// returns predicted RT for this age, with noise

}

…
}

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Thinking Ahead

■ List Memory (e.g., Anderson, Bothell, Lebiere, Matessa, 1998)

– as a library? …

24

public class ListMemory {

public ListMemory() { … }

public void clear() { … }

public void add(String word) { … } // assumes running time
public void add(String word, double t) { … } // specifies time

public List<Recalled> recall(double t) {
// given current time, returns recalled list with RT and errors

}

…
}

Dario Salvucci, Drexel University. ACT-R Workshop, July 17-19, 2015.

Summary

■ Hunch: Embedded code will facilitate integration
and sharing — at least for “agent builders” — in a
way that interpreted language doesn’t
– at least, for domains where production learning isn’t

necessary or critical
■ Only sketches of a prototype system at this point
■ The proof would come in implementations of

sample domains, like arithmetic, list memory, etc.
■ … and their use by actual users

25

