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ACT-R
(Anders

on, J.R.
, et al., 2

003. An
information-pr

ocessing
model

of the BOLD response
in symbol manipulat

ion tasks. P
sychon.

Bull.

Rev. 10,
241–261

) relates
the infer

ior dors
o-latera

l prefron
tal corte

x to

a retrieva
l buffer

that hol
ds infor

mation retrieved
from memory and

the posterio
r pariet

al cortex
to an imaginal b

uffer that hol
ds prob

lem

represen
tations.

Because
the number of changes

in a problem

represen
tation is not nece

ssarily correlat
ed with retrieva

l difficu
lties,

it is pos
sible to

dissocia
te prefro

ntal–par
ietal act

ivations
. In two fMRI

experim
ents, we examined this dissocia

tion using the fan effect

paradig
m. Experim

ent 1 compared a recognit
ion task, in which

represen
tation requirem

ent remains the same regardle
ss of retrieva

l

difficult
y, with a recall ta

sk, in which both represen
tation and retrieva

l

loads increase
with retrieva

l difficult
y. In the recognit

ion task, the

prefron
tal activatio

n revealed
a fan effect but not the parietal

activatio
n. In the recall task, both regions

revealed
fan effects.

In

Experim
ent 2, we compared visually

presente
d stimuli and aurally

presente
d stimuli using

the reco
gnition task. W

hile only
the pref

rontal

region revealed
the fan

effect, th
e activa

tion patterns
in the pref

rontal

and the parietal
region

did not differ by stimulus presenta
tion

modality.
In general,

these results provide
support

for the prefron-

tal–pari
etal diss

ociation
in terms of retrie

val and
represen

tation and

the modality-i
ndepend

ent natu
re of the

information processe
d by these

regions.
Using ACT-R,

we also provide
computation

al models that

explain
patterns

of fMRI respons
es in these two areas during

recognit
ion and recall.
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Introdu
ction

In this paper, we used an information-pro
cessing

model to

interpret
function

al magnetic r
esonance

imaging (fMRI) data.
The

topic we
chose is

the memory retrieval,
which has been

one of th
e

most popular
topics in cognitiv

e neuroim
aging, undoubt

edly

because
the retrieval

of inform
ation is critica

l for many cognitive

activities
. Specifica

lly, the retrieval
process

addresse
d in the

current s
tudy is episodic

in nature in the sense that part
icipants

committed novel as
sociation

s to memory and later the
ir retriev

al

performance was tested in fMRI sessions.
In cognitive

neuro-

imaging, ep
isodic m

emory has been
primarily implicated

in medial

temporal, prefronta
l, and parietal

regions
(Cabeza

and Nyberg,

2000; Ru
gg and H

enson, 2
002). Ac

tivations
in the medial tem

poral

lobe, inc
luding hippocam

pus and
surround

ing regions,
have been

shown to reflect th
e associa

tive enco
ding when new information is

introduc
ed (Davach

i et al., 2003
; Stark and Quire, 2

001). Th
e

medial temporal lobe activatio
ns have also been found during

retrieval,
but these findings

have been relatively
inconsist

ent,

suggestin
g that hipp

ocampal activ
ations during retrieval

may be

affected
by the specific

nature of tasks
(Rugg and Henson,

2002).

In contrast,
the prefronta

l cortex
and the posterior

parietal
cortex

have more consisten
tly responde

d to retrievin
g information from

memory (Rugg and Henson,
2002). B

ecause h
uman memory is an

associati
ve network

in which a piece of inform
ation is associ

ated

with multiple other co
ncepts, t

he associati
ve strength

between
the

memory probe and the target fa
ct is critical i

n determining the

speed of retriev
al. In this paper, w

e will spec
ify how associati

ve

strength
should affect re

trieval b
ehavior.

We will als
o specify how

prefronta
l and parietal r

egions s
hould be invol

ved during memory

retrieval,
using an information-pro

cessing model dev
eloped in the

ACT-R architect
ure of cogni

tion.

ACT-R (Anderso
n et al., 20

04a), illu
strated in Fig. 1, in

teracts

with the external
world through

several m
odules a

nd buffers t
hat

are specializ
ed for proce

sses like
identifyi

ng objects i
n the visual

field, co
ntrolling

the hand
, retrievi

ng information from declarati
ve
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Abstract

This research uses fMRI to understand the role of eight cortical regions in a relatively complex

information-processing task. Modality of input (visual versus auditory) and modality of output

(manual versus vocal) are manipulated. Two perceptual regions (auditory cortex and fusiform gyrus)

only reflected perceptual encoding. Two motor regions were involved in information rehearsal as

well as programming of overt actions. Two cortical regions (parietal and prefrontal) performed pro-

cessing (retrieval and representational change) independent of input and output modality. The final

two regions (anterior cingulate and caudate) were involved in control of cognition independent of

modality of input or output and content of the material. An information-processing model, based

on the ACT-R theory, is described that predicts the BOLD response in these regions. Different mod-

ules in the theory vary in the degree to which they are modality-specific and the degree to which they

are involved in central versus peripheral cognitive processes.

! 2006 Elsevier Inc. All rights reserved.

Keywords: Cognitive architecture; fMRI

0010-0285/$ - see front matter ! 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.cogpsych.2006.06.003

* Corresponding author. Fax: +1 412 268 2844.

E-mail address: ja+@cmu.edu (J.R. Anderson).

Cognitive Psychology 54 (2007) 185–217
www.elsevier.com/locate/cogpsych

Endogenous Control and Task Representation:An fMRI Study in Algebraic Problem-solving

Andrea Stocco and John R. Anderson

Abstract

& The roles of prefrontal and anterior cingulate cortices havebeen widely studied, yet little is known on how they interact toenable complex cognitive abilities. We investigated this issue ina complex yet well-defined symbolic paradigm: algebraic prob-
lem solving. In our experimental problems, the demands forretrieving arithmetic facts and maintaining intermediate prob-
lem representations were manipulated separately. An analysis of
functional brain images acquired while participants were solvingthe problems confirmed that prefrontal regions were affected bythe retrieval of arithmetic facts, but only scarcely by the needto manipulate intermediate forms of the equations, hinting ata specific role in memory retrieval. Hemodynamic activity in thedorsal cingulate, on the contrary, increased monotonically as

more information processing steps had to be taken, indepen-
dent of their nature. This pattern was essentially mimicked in thecaudate nucleus, suggesting a related functional role in the con-
trol of cognitive actions. We also implemented a computational
model within the Adaptive Control of Thought—Rational (ACT-R)cognitive architecture, which was able to reproduce both thebehavioral data and the time course of the hemodynamic activityin a number of relevant regions of interest. Therefore, imag-ing results and computer simulation provide evidence that sym-
bolic cognition can be explained by the functional interaction of
medial structures supporting control and serial execution, andprefrontal cortices engaged in the on-line retrieval of specificrelevant information. &

INTRODUCTION
Humans are set apart from other species by their abilityto perform sequences of arbitrary operations over com-plex representations. Such activities include planning, prob-lem solving, and the wide range of symbol-manipulationabilities that probably underlie language and certainlyenable mathematical and logical reasoning. These ca-pabilities are usually credited to an increased capacityfor cognitive control, namely, the ability to voluntarilycoordinate the ongoing cognitive processes in order toachieve a certain goal.
A large part of the literature on this topic has beenconcerned with basic experimental paradigms, such asthe Stroop or the Flanker task, or task switching (e.g.,Yeung, Nystrom, Aronson, & Cohen, 2006; Sohn, Ursu,Anderson, Stenger, & Carter, 2000; Botvinick, Nystrom,Fissell, Carter, & Cohen, 1999; Pardo, Pardo, Janer, &Raichle, 1990). But even under such controlled condi-tions, it is often difficult to distinguish control functionsfrom the processing of task-relevant information. In taskswitching, for instance, the so-called switch cost is usu-ally assumed to reflect the additional control effort forreconfiguring the response set. However, the same ef-fect has been also interpreted as a cost paid in retriev-

ing appropriate information from memory (Logan &Bundesen, 2003; Altmann & Gray, 2002), a lack of ben-efit from successive task repetitions (Sohn & Anderson,2001), and as the interference between the alternatedtask representations (Yeung et al., 2006). Also, the con-tribution of different cognitive strategies to accomplish-ing the same task might be confounded with executivecontrol. As an example, Lovett (2005) presented a modelof the Stroop task that was capable of reproducing mostof the effects reported in the literature as the result ofan internal competition between alternative procedures.As another example, the strategy-conf lict model ofPeebles and Bothell (2004) succeeded in reproducingparticipant’s performance in the sustained-attention-to-response task.
By using both computational modeling and brain im-aging, our research group has previously succeeded intracking the maintenance of temporary representationsand the adoption of cognitive strategies in more complexdomains (Anderson, Albert, & Fincham, 2005; Fincham,Carter, Van Veen, Stenger, & Anderson, 2002), and theeffects of practice and learning (Fincham & Anderson,2006; Qin et al., 2003). In this article, the same approachis used to examine the interplay between task-related andcontrol-related information in algebraic problem solv-ing, a domain which had been investigated in a series ofprevious imaging studies (e.g., Anderson, 2005; Qin et al.,2003, 2004).

Carnegie Mellon University, Pittsburgh, PA

D 2008 Massachusetts Institute of Technology
Journal of Cognitive Neuroscience 20:7, pp. 1300–1314

Role of Prefrontal and Parietal Cortices in

Associative Learning
John R. Anderson, Dana Byrne, Jon M. Fincham and Pat Gunn

Psychology Department, Carnegie Mellon University,

Pittsburgh, PA 15213, USA

Two studies were performed that compared a ‘‘Paired’’ condition in

which participants studied paired associates with a ‘‘Generated’’

condition in which participants completed word fragments to

produce paired associates. In both tasks, participants were

responsible for memory of the material either studied or generated.

The experiments revealed significant differences between the

responses of a predefined prefrontal region and a predefined

parietal region. The parietal region responded more in the

Generated condition than the Paired condition, whereas there

was no difference in the prefrontal region. On the other hand, the

prefrontal region responded to the delay between study and test in

both the Paired and Generated conditions, whereas the parietal

region only responded to delay in the Generated condition. This

pattern of results is consistent with the hypothesis that the parietal

region is responsive to changes in problem representation and the

prefrontal region to retrieval operations. An information-processing

model embodying these assumptions was fit to the blood oxygen

level--dependent responses in these regions.
Keywords: associative learning, encoding, memory, parietal cortex,

prefrontal cortex

Introduction
The prefrontal region has been repeatedly implicated in imaging

research as important for memory (e.g., Buckner et al. 1999;

Lepage et al. 2000; Fletcher and Henson 2001; Wagner et al.

2001; Cabeza et al. 2002; Sohn et al. 2003, 2005; Thompson-

Schill 2003; Wheeler and Buckner 2003; Kohler et al. 2004;

Badre et al. 2005; Dobbins and Wagner 2005). These imaging

results are not particularly surprising given evidence about the

memory deficits associated with prefrontal lesions (Stuss and

Benson 1984; Shimamura 1995), although such lesions tend to

be not as devastating to memory as temporal lesions (Squire

1992; Cohen and Eichenbaum 1993). As noted in the recent

review of Wagner et al. (2005), there is also evidence that the

posterior parietal region is implicated in studies of memory

(e.g., Habib and Lepage 1999; Buckner and Wheeler 2001; Rugg

et al. 2002) even though lesions to this parietal region do not

tend to be associated with deficits in memory. A classic finding

in these studies is that there is greater parietal activation in

recognition memory experiments when old items are correctly

recognized than when foils are correctly rejected. Although

most data implicating the parietal region come from recogni-

tion and source memory experiments, this paper will show that

parietal regions are also active in associative recall tasks.

Cabeza et al. (2003) noted that the parietal and prefrontal

regions are part of a general circuit that also includes the

anterior cingulate and thalamic regions and that these areas

tend to be involved in a number of attention tasks (see also

Dosenbach et al. 2006). They argue that activity in all these

regions may reflect more general processes than just memory.

Based on the ACT-R theory (Anderson, Bothell, et al. 2004), we

have developed an interpretation of the activity in this circuit

(e.g., Anderson 2005; Anderson et al. 2007; Danker and

Anderson 2007) and have argued that different regions serve

different functions. In particular, the prefrontal region serves

a more pure memory function, being engaged by storage and

retrieval operations, whereas the posterior parietal region is

engaged by changes in problem representation. There is

considerable evidence to support the assumption that the

parietal region plays an important role in visual--spatial and

verbal representations. It is engaged in verbal encoding (Dava-

chi et al. 2001; Clark and Wagner 2003), mental rotation

(Alivisatos and Petrides 1997; Richter et al. 1997; Carpenter

et al. 1999; Heil 2002; Zacks et al. 2002), and visual--spatial

strategies in a variety of contexts (Dehaene et al. 1999; Reichle

et al. 2000; Sohn et al. 2004). A number of other researchers

have also proposed a representational role for the parietal

region (e. g., Bunge et al. 2002; Shannon and Buckner 2004).

Many tasks, including memory tasks, will engage both the

representational and retrieval activities. For instance, in a recall

trial for a paired-associate task like the one described here, the

participant must first represent the stimulus, then engage in

retrieval, and then represent the retrieved response. If

representational activities engage the parietal and retrieval

activities engage the prefrontal, it is not surprising that the

activities of these 2 regions are frequently correlated. (Perhaps

the reason why the posterior parietal region is more active

when old items are recognized than when foils are rejected is

that participants are representing their memory of the re-

trieved item). To disentangle these regions, one needs

a manipulation that will affect only the difficulty of the

retrieval or only the difficulty of the representation. Sohn

et al. (2003, 2005) report a series of studies that manipulated

the difficulty of the retrieval process but not the difficulty of

the representational process. According to the ACT-R theory,

fan (a manipulation of associative interference) should slow

the retrieval of the item but should have no effect on the

representational processes that are invoked to represent the

probe and the eventual result of the retrieval. Corresponding

to this theoretical analysis, Sohn et al. found robust activation

in both prefrontal and parietal regions, but fan only affected

the level of activation in the prefrontal region. The purpose

of the current experiments is to go beyond the demonstration

of the previous Sohn et al. experiments by using a double dis-

sociation, with one factor influencing the difficulty of the

representation and another factor affecting the difficulty of the

retrieval operation.

Cerebral Cortex April 2008;18:904--914
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Cognitive modelProblem state

In this paper, a model-based analysis method for fMRI is used with a high-level symbolic process model.

Participants performed a triple-task in which intermediate task information needs to be updated frequently.

Previous work has shown that the associated resource – the problem state resource – acts as a bottleneck in

multitasking. The model-based method was used to locate the neural correlates of ‘problem state

replacements’. To analyze the fMRI data, we fit the computational process model to the behavioral data

and regressed the model's activity against the fMRI data. The brain region responsible for the temporary

representation of problem states, the inferior parietal lobule, and the brain region responsible for long-term

storage of problem states, the inferior frontal gyrus were thus identified. These results show that model-based

fMRI analyses can be performed using high-level symbolic cognitive models, enabling fine-grained

exploratory fMRI research.

© 2011 Elsevier Inc. All rights reserved.

Introduction
If one wants to find the neural correlates of a theorized cognitive

process using the classical fMRI analysis method of cognitive

subtraction (e.g., Cabeza and Nyberg, 2000; Logothetis, 2008), the

first step is to translate the theory into suitable experimental

conditions. Then, an experimental condition placing demands on

the process of interest is compared to a control condition. The control

condition is the same as the experimental condition except for the

absence of the process under investigation. Brain areas that are more

active in the experimental condition than in the control condition are

assumed to be involved in the cognitive process of interest (e.g.,

Friston et al., 2007). However, it would be better to localize cognitive

functions in a more direct way. Especially for more complex tasks, the

translation of theory into experimental conditions is non-trivial. In

complex tasks, central cognitive processes are often used in all

experimental conditions (although with a different frequency or

temporal pattern), which makes it difficult to find a good control

condition that does not include the process of interest. A way to

address this problem and to localize brain functions in a more direct

way is to usemodel-based fMRI analysis (e.g., Gläscher and O'Doherty,

2010; O'Doherty et al., 2007).

In model-based fMRI analysis, information coming from a compu-

tationalmodel that simulates theprocessof interest is correlated against

fMRI data, showingwhich brain areas show activation patterns that are

consistent with the process of interest. This method has proven to be

very successful in locating brain areas involved in reinforcement

learning (e.g., Daw et al., 2006; Hampton et al., 2006; Haruno and

Kawato, 2006; Kim et al., 2006; Wunderlich et al., 2009). Parameters of

mathematical reinforcementmodelswere correlated against brain data,

showing which brain areas are involved in the reinforcement learning

process. In this paper we will use the model-based method with a

higher-level symbolic cognitive model. Such a higher-level model not

only simulates a particular process, but the whole task including, for

example, visual and motor processes. Instead of correlating model

parameters, we will correlate the presence and absence of activity of

cognitive resources against brain data, showing where the cognitive

resources are best represented in thebrain. Thisway,wewill investigate

whether predictions derived from a high-level process model can be

used for model-based fMRI, and whether this combination allows for

more direct exploratory fMRI analyses.

The problem state resourceWe will use model-based fMRI to analyze data of a relatively

complex experimental paradigm, which was developed to investigate

the neural correlates of the ‘problem state resource’ (Borst et al.,

2010a). The problem state resource is defined as the part of working

NeuroImage 58 (2011) 137–147

Abbreviations: ACT-R, Adaptive Control of Thought-Rational; FWE, Family-Wise

Error correction; GLM, General Linear Model; HRF, Hemodynamic Response Function;

LME, Linear Mixed Effects model.
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In general,

these results provide
support

for the prefron-

tal–pari
etal diss

ociation
in terms of retrie

val and
represen

tation and

the modality-i
ndepend

ent natu
re of the

information processe
d by these

regions.
Using ACT-R,

we also provide
computation

al models that

explain
patterns

of fMRI respons
es in these two areas during

recognit
ion and recall.

D 2004 Publishe
d by Elsevier

Inc.
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Introdu
ction

In this paper, we used an information-pro
cessing

model to

interpret
function

al magnetic r
esonance

imaging (fMRI) data.
The

topic we
chose is

the memory retrieval,
which has been

one of th
e

most popular
topics in cognitiv

e neuroim
aging, undoubt

edly

because
the retrieval

of inform
ation is critica

l for many cognitive

activities
. Specifica

lly, the retrieval
process

addresse
d in the

current s
tudy is episodic

in nature in the sense that part
icipants

committed novel as
sociation

s to memory and later the
ir retriev

al

performance was tested in fMRI sessions.
In cognitive

neuro-

imaging, ep
isodic m

emory has been
primarily implicated

in medial

temporal, prefronta
l, and parietal

regions
(Cabeza

and Nyberg,

2000; Ru
gg and H

enson, 2
002). Ac

tivations
in the medial tem

poral

lobe, inc
luding hippocam

pus and
surround

ing regions,
have been

shown to reflect th
e associa

tive enco
ding when new information is

introduc
ed (Davach

i et al., 2003
; Stark and Quire, 2

001). Th
e

medial temporal lobe activatio
ns have also been found during

retrieval,
but these findings

have been relatively
inconsist

ent,

suggestin
g that hipp

ocampal activ
ations during retrieval

may be

affected
by the specific

nature of tasks
(Rugg and Henson,

2002).

In contrast,
the prefronta

l cortex
and the posterior

parietal
cortex

have more consisten
tly responde

d to retrievin
g information from

memory (Rugg and Henson,
2002). B

ecause h
uman memory is an

associati
ve network

in which a piece of inform
ation is associ

ated

with multiple other co
ncepts, t

he associati
ve strength

between
the

memory probe and the target fa
ct is critical i

n determining the

speed of retriev
al. In this paper, w

e will spec
ify how associati

ve

strength
should affect re

trieval b
ehavior.

We will als
o specify how

prefronta
l and parietal r

egions s
hould be invol

ved during memory

retrieval,
using an information-pro

cessing model dev
eloped in the

ACT-R architect
ure of cogni

tion.

ACT-R (Anderso
n et al., 20

04a), illu
strated in Fig. 1, in

teracts

with the external
world through

several m
odules a

nd buffers t
hat

are specializ
ed for proce

sses like
identifyi

ng objects i
n the visual

field, co
ntrolling

the hand
, retrievi

ng information from declarati
ve

1053-81
19/$ - see front matter D 2004 Publishe

d by Elsevier
Inc.
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Abstract

This research uses fMRI to understand the role of eight cortical regions in a relatively complex

information-processing task. Modality of input (visual versus auditory) and modality of output

(manual versus vocal) are manipulated. Two perceptual regions (auditory cortex and fusiform gyrus)

only reflected perceptual encoding. Two motor regions were involved in information rehearsal as

well as programming of overt actions. Two cortical regions (parietal and prefrontal) performed pro-

cessing (retrieval and representational change) independent of input and output modality. The final

two regions (anterior cingulate and caudate) were involved in control of cognition independent of

modality of input or output and content of the material. An information-processing model, based

on the ACT-R theory, is described that predicts the BOLD response in these regions. Different mod-

ules in the theory vary in the degree to which they are modality-specific and the degree to which they

are involved in central versus peripheral cognitive processes.

! 2006 Elsevier Inc. All rights reserved.
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Endogenous Control and Task Representation:An fMRI Study in Algebraic Problem-solving

Andrea Stocco and John R. Anderson

Abstract

& The roles of prefrontal and anterior cingulate cortices havebeen widely studied, yet little is known on how they interact toenable complex cognitive abilities. We investigated this issue ina complex yet well-defined symbolic paradigm: algebraic prob-
lem solving. In our experimental problems, the demands forretrieving arithmetic facts and maintaining intermediate prob-
lem representations were manipulated separately. An analysis of
functional brain images acquired while participants were solvingthe problems confirmed that prefrontal regions were affected bythe retrieval of arithmetic facts, but only scarcely by the needto manipulate intermediate forms of the equations, hinting ata specific role in memory retrieval. Hemodynamic activity in thedorsal cingulate, on the contrary, increased monotonically as

more information processing steps had to be taken, indepen-
dent of their nature. This pattern was essentially mimicked in thecaudate nucleus, suggesting a related functional role in the con-
trol of cognitive actions. We also implemented a computational
model within the Adaptive Control of Thought—Rational (ACT-R)cognitive architecture, which was able to reproduce both thebehavioral data and the time course of the hemodynamic activityin a number of relevant regions of interest. Therefore, imag-ing results and computer simulation provide evidence that sym-
bolic cognition can be explained by the functional interaction of
medial structures supporting control and serial execution, andprefrontal cortices engaged in the on-line retrieval of specificrelevant information. &

INTRODUCTION
Humans are set apart from other species by their abilityto perform sequences of arbitrary operations over com-plex representations. Such activities include planning, prob-lem solving, and the wide range of symbol-manipulationabilities that probably underlie language and certainlyenable mathematical and logical reasoning. These ca-pabilities are usually credited to an increased capacityfor cognitive control, namely, the ability to voluntarilycoordinate the ongoing cognitive processes in order toachieve a certain goal.
A large part of the literature on this topic has beenconcerned with basic experimental paradigms, such asthe Stroop or the Flanker task, or task switching (e.g.,Yeung, Nystrom, Aronson, & Cohen, 2006; Sohn, Ursu,Anderson, Stenger, & Carter, 2000; Botvinick, Nystrom,Fissell, Carter, & Cohen, 1999; Pardo, Pardo, Janer, &Raichle, 1990). But even under such controlled condi-tions, it is often difficult to distinguish control functionsfrom the processing of task-relevant information. In taskswitching, for instance, the so-called switch cost is usu-ally assumed to reflect the additional control effort forreconfiguring the response set. However, the same ef-fect has been also interpreted as a cost paid in retriev-

ing appropriate information from memory (Logan &Bundesen, 2003; Altmann & Gray, 2002), a lack of ben-efit from successive task repetitions (Sohn & Anderson,2001), and as the interference between the alternatedtask representations (Yeung et al., 2006). Also, the con-tribution of different cognitive strategies to accomplish-ing the same task might be confounded with executivecontrol. As an example, Lovett (2005) presented a modelof the Stroop task that was capable of reproducing mostof the effects reported in the literature as the result ofan internal competition between alternative procedures.As another example, the strategy-conf lict model ofPeebles and Bothell (2004) succeeded in reproducingparticipant’s performance in the sustained-attention-to-response task.
By using both computational modeling and brain im-aging, our research group has previously succeeded intracking the maintenance of temporary representationsand the adoption of cognitive strategies in more complexdomains (Anderson, Albert, & Fincham, 2005; Fincham,Carter, Van Veen, Stenger, & Anderson, 2002), and theeffects of practice and learning (Fincham & Anderson,2006; Qin et al., 2003). In this article, the same approachis used to examine the interplay between task-related andcontrol-related information in algebraic problem solv-ing, a domain which had been investigated in a series ofprevious imaging studies (e.g., Anderson, 2005; Qin et al.,2003, 2004).
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D 2008 Massachusetts Institute of Technology
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Role of Prefrontal and Parietal Cortices in

Associative Learning
John R. Anderson, Dana Byrne, Jon M. Fincham and Pat Gunn

Psychology Department, Carnegie Mellon University,

Pittsburgh, PA 15213, USA

Two studies were performed that compared a ‘‘Paired’’ condition in

which participants studied paired associates with a ‘‘Generated’’

condition in which participants completed word fragments to

produce paired associates. In both tasks, participants were

responsible for memory of the material either studied or generated.

The experiments revealed significant differences between the

responses of a predefined prefrontal region and a predefined

parietal region. The parietal region responded more in the

Generated condition than the Paired condition, whereas there

was no difference in the prefrontal region. On the other hand, the

prefrontal region responded to the delay between study and test in

both the Paired and Generated conditions, whereas the parietal

region only responded to delay in the Generated condition. This

pattern of results is consistent with the hypothesis that the parietal

region is responsive to changes in problem representation and the

prefrontal region to retrieval operations. An information-processing

model embodying these assumptions was fit to the blood oxygen

level--dependent responses in these regions.
Keywords: associative learning, encoding, memory, parietal cortex,

prefrontal cortex

Introduction
The prefrontal region has been repeatedly implicated in imaging

research as important for memory (e.g., Buckner et al. 1999;

Lepage et al. 2000; Fletcher and Henson 2001; Wagner et al.

2001; Cabeza et al. 2002; Sohn et al. 2003, 2005; Thompson-

Schill 2003; Wheeler and Buckner 2003; Kohler et al. 2004;

Badre et al. 2005; Dobbins and Wagner 2005). These imaging

results are not particularly surprising given evidence about the

memory deficits associated with prefrontal lesions (Stuss and

Benson 1984; Shimamura 1995), although such lesions tend to

be not as devastating to memory as temporal lesions (Squire

1992; Cohen and Eichenbaum 1993). As noted in the recent

review of Wagner et al. (2005), there is also evidence that the

posterior parietal region is implicated in studies of memory

(e.g., Habib and Lepage 1999; Buckner and Wheeler 2001; Rugg

et al. 2002) even though lesions to this parietal region do not

tend to be associated with deficits in memory. A classic finding

in these studies is that there is greater parietal activation in

recognition memory experiments when old items are correctly

recognized than when foils are correctly rejected. Although

most data implicating the parietal region come from recogni-

tion and source memory experiments, this paper will show that

parietal regions are also active in associative recall tasks.

Cabeza et al. (2003) noted that the parietal and prefrontal

regions are part of a general circuit that also includes the

anterior cingulate and thalamic regions and that these areas

tend to be involved in a number of attention tasks (see also

Dosenbach et al. 2006). They argue that activity in all these

regions may reflect more general processes than just memory.

Based on the ACT-R theory (Anderson, Bothell, et al. 2004), we

have developed an interpretation of the activity in this circuit

(e.g., Anderson 2005; Anderson et al. 2007; Danker and

Anderson 2007) and have argued that different regions serve

different functions. In particular, the prefrontal region serves

a more pure memory function, being engaged by storage and

retrieval operations, whereas the posterior parietal region is

engaged by changes in problem representation. There is

considerable evidence to support the assumption that the

parietal region plays an important role in visual--spatial and

verbal representations. It is engaged in verbal encoding (Dava-

chi et al. 2001; Clark and Wagner 2003), mental rotation

(Alivisatos and Petrides 1997; Richter et al. 1997; Carpenter

et al. 1999; Heil 2002; Zacks et al. 2002), and visual--spatial

strategies in a variety of contexts (Dehaene et al. 1999; Reichle

et al. 2000; Sohn et al. 2004). A number of other researchers

have also proposed a representational role for the parietal

region (e. g., Bunge et al. 2002; Shannon and Buckner 2004).

Many tasks, including memory tasks, will engage both the

representational and retrieval activities. For instance, in a recall

trial for a paired-associate task like the one described here, the

participant must first represent the stimulus, then engage in

retrieval, and then represent the retrieved response. If

representational activities engage the parietal and retrieval

activities engage the prefrontal, it is not surprising that the

activities of these 2 regions are frequently correlated. (Perhaps

the reason why the posterior parietal region is more active

when old items are recognized than when foils are rejected is

that participants are representing their memory of the re-

trieved item). To disentangle these regions, one needs

a manipulation that will affect only the difficulty of the

retrieval or only the difficulty of the representation. Sohn

et al. (2003, 2005) report a series of studies that manipulated

the difficulty of the retrieval process but not the difficulty of

the representational process. According to the ACT-R theory,

fan (a manipulation of associative interference) should slow

the retrieval of the item but should have no effect on the

representational processes that are invoked to represent the

probe and the eventual result of the retrieval. Corresponding

to this theoretical analysis, Sohn et al. found robust activation

in both prefrontal and parietal regions, but fan only affected

the level of activation in the prefrontal region. The purpose

of the current experiments is to go beyond the demonstration

of the previous Sohn et al. experiments by using a double dis-

sociation, with one factor influencing the difficulty of the

representation and another factor affecting the difficulty of the

retrieval operation.
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Cognitive modelProblem state

In this paper, a model-based analysis method for fMRI is used with a high-level symbolic process model.

Participants performed a triple-task in which intermediate task information needs to be updated frequently.

Previous work has shown that the associated resource – the problem state resource – acts as a bottleneck in

multitasking. The model-based method was used to locate the neural correlates of ‘problem state

replacements’. To analyze the fMRI data, we fit the computational process model to the behavioral data

and regressed the model's activity against the fMRI data. The brain region responsible for the temporary

representation of problem states, the inferior parietal lobule, and the brain region responsible for long-term

storage of problem states, the inferior frontal gyrus were thus identified. These results show that model-based

fMRI analyses can be performed using high-level symbolic cognitive models, enabling fine-grained

exploratory fMRI research.

© 2011 Elsevier Inc. All rights reserved.

Introduction
If one wants to find the neural correlates of a theorized cognitive

process using the classical fMRI analysis method of cognitive

subtraction (e.g., Cabeza and Nyberg, 2000; Logothetis, 2008), the

first step is to translate the theory into suitable experimental

conditions. Then, an experimental condition placing demands on

the process of interest is compared to a control condition. The control

condition is the same as the experimental condition except for the

absence of the process under investigation. Brain areas that are more

active in the experimental condition than in the control condition are

assumed to be involved in the cognitive process of interest (e.g.,

Friston et al., 2007). However, it would be better to localize cognitive

functions in a more direct way. Especially for more complex tasks, the

translation of theory into experimental conditions is non-trivial. In

complex tasks, central cognitive processes are often used in all

experimental conditions (although with a different frequency or

temporal pattern), which makes it difficult to find a good control

condition that does not include the process of interest. A way to

address this problem and to localize brain functions in a more direct

way is to usemodel-based fMRI analysis (e.g., Gläscher and O'Doherty,

2010; O'Doherty et al., 2007).

In model-based fMRI analysis, information coming from a compu-

tationalmodel that simulates theprocessof interest is correlated against

fMRI data, showingwhich brain areas show activation patterns that are

consistent with the process of interest. This method has proven to be

very successful in locating brain areas involved in reinforcement

learning (e.g., Daw et al., 2006; Hampton et al., 2006; Haruno and

Kawato, 2006; Kim et al., 2006; Wunderlich et al., 2009). Parameters of

mathematical reinforcementmodelswere correlated against brain data,

showing which brain areas are involved in the reinforcement learning

process. In this paper we will use the model-based method with a

higher-level symbolic cognitive model. Such a higher-level model not

only simulates a particular process, but the whole task including, for

example, visual and motor processes. Instead of correlating model

parameters, we will correlate the presence and absence of activity of

cognitive resources against brain data, showing where the cognitive

resources are best represented in thebrain. Thisway,wewill investigate

whether predictions derived from a high-level process model can be

used for model-based fMRI, and whether this combination allows for

more direct exploratory fMRI analyses.

The problem state resourceWe will use model-based fMRI to analyze data of a relatively

complex experimental paradigm, which was developed to investigate

the neural correlates of the ‘problem state resource’ (Borst et al.,

2010a). The problem state resource is defined as the part of working

NeuroImage 58 (2011) 137–147

Abbreviations: ACT-R, Adaptive Control of Thought-Rational; FWE, Family-Wise

Error correction; GLM, General Linear Model; HRF, Hemodynamic Response Function;

LME, Linear Mixed Effects model.

⁎ Corresponding author.
E-mail addresses: jpborst@ai.rug.nl (J.P. Borst), niels@ai.rug.nl (N.A. Taatgen),

hedderik@van-rijn.org (H. van Rijn).
1053-8119/$ – see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.neuroimage.2011.05.084

Contents lists available at ScienceDirectNeuroImage
j ourna l homepage: www.e lsev ie r.com/ locate /yn img



Paired Associates���
(Anderson, Byrne, Fincham, & Gunn, 2008)	


Figure 1. A comparison of the procedures in the Paired and Generated conditions.
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(Sohn, Goode, Stenger, Jung, Carter, & Anderson, 2005)	
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Figure 1. Design of our experiment. The two series of panels represent two possible trial types. 
Equations could be numeric or parametric (not depicted).

Algebra���
(Stocco & Anderson, 2008)	




Fig. 1. The 28.5-s structure of an fMRI trial. In this instance, it shows that the instruction can either be a word
(e.g., AT) or a number (e.g., 23).

Information Processing���
(Anderson, Qin, Jung, & Carter, 2007)	




Multitasking	

(Borst, Taatgen, & Van Rijn, 2011)	
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Fronto-Parietal Control Network���
(e.g., Cabeza et al., 2003; Cole & Schneider, 2007; Dosenbach et al., 2007; ���

Spreng et al., 2010; Vincent et al., 2008)	
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New ACT-R ROIs?	
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Thank you!	





