The dilemma of unification and simplification in cognitive architectures

Coty Gonzalez

Dynamic Decision Making Lab www.cmu.edu/ddmlab Social and Decision Sciences Department Carnegie Mellon University

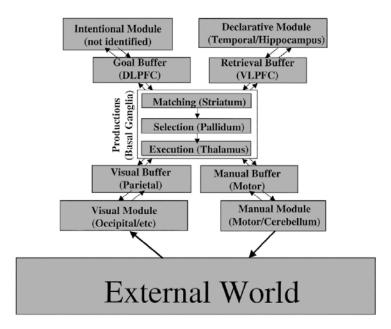
Cognitive Architectures

- Unify: One aim of science
 - "... positing a single system of mechanisms a cognitive architecture that operate together to produce the full range of human cognition." (Newell, 1990)
 - Accumulate knowledge and applicability
 - Unification is served by the fact that the same set of basic processes is used to explain every cognitive phenomenon
- Simplify: Another aim of science
 - Simplicity = "Informativeness" = understandability = clarity = transparency
 - In the philosophy of science, simplicity is a criterion by which to evaluate competing theories
 - it becomes increasingly difficult to explain how ACT-R models work and how they are able to explain human behavior so well.
- Can we Unify and simplify with cognitive architectures?

Depart from the premise that: "All models are wrong"

- Cognitive architectures: big models that represent human cognition
- By definition, the ACT-R architecture is (Anderson et al., 2004):
 - Incomplete
 - Constrained
 - Not totally correct
 - Difficult to handle and to explain
- Representation of full human behavior is a very complex challenge.
- Some capabilities of cognitive architectures may (only) be attained through complex use of technology
 - Technological solutions that have nothing to do with the theory

Growing evidence for the need to simplify the technology


- Frank already gave us many examples
- Bonnie John's CogTool
- Dario Salvucci's Distract-R
- Frank Ritter's ... many attempts
- Coty Gonzalez's IBLTool

Simplification should come not only in the software

- Transparency of the mechanisms
 - Matlab
 - Excel
 - Having to explain the whole ACT-R theory in papers
- Scientific progress: going deeper rather than wider
- Test and Validation of theories
 - Model comparison

1. Possible solutions to the dilemma: ACT-R as a toolbox

- The modular yet integrated view of ACT-R is a good idea:
 - Great conceptual illustration of the modules involved in the cognitive system
 - Mapping to cortical regions
- BUT:
 - What exactly does each "tool" in the box do? – what is a tool?
 - What are exactly the practical implications of "Buffers" in the representation of human behavior?
 - Why do we call something a "module"?
 - How are tools recruited? When is each tool needed? Do we really need to "put it all together"?
 - How do the tools interact?

ACT-R as a toolbox

- The "tools" are not the modules, but the set of equations and parameters
- Unpack the equations
 - Determine when and how and why each component of each equation is needed. For example,
 - IBLT, Gonzalez, Lerch, Lebiere, 2003: full activation equation, blending, similarity
- Repeated binary-choice and sampling tasks (Lebiere, Gonzalez, & Martin, 2007; Lejarraga et al., 2010; Gonzalez & Dutt, 2011)
 - Technion Prediction Competition (Erev et al., 2010)
 - Visual basic implementation of the IBL ideas
 - Matlab and Excel implementation of IBL model for repeated choice tasks
 - More generic IBLTool

Learning mechanisms for repeated choice Gonzalez & Dutt, 2011; Dutt & Gonzalez, 2011; Lejarraga, Dutt & Gonzalez, 2010; Lejarraga, Dutt & Gonzalez, in prep

• Choose the option with the highest "blended" value :

$$V_j = \sum_{i=1}^n p_i x_i$$

• The probability of retrieval is a function of memory Activation (A) of that outcome relative to the activation of all the observed outcomes for that option given by:

$$P_{i,t} = \frac{e^{A_{i,t}/\tau}}{\sum_{j} e^{A_{j,t}/\tau}} \qquad \tau = \sigma \cdot \sqrt{2}$$

• Activation: simplification of ACT-R's mechanism (Anderson & Lebiere, 1998):

$$A_{i,t} = ln\left(\sum_{t_i \in \{1,\dots,t-1\}} (t-t_i)^{-d}\right) + \sigma \cdot ln\left(\frac{1-\gamma_{i,t}}{\gamma_{i,t}}\right)$$

- 2 free parameters:
 - Noise: σ : high s -> high variability if retrieval
 - Decay: d : high d-> More recency

ACT-R as a toolbox

- Unpack the parameters
 - What do the parameters mean?; What do the default values mean?
 - Individual differences work
 - Task and environmental differences

2. Possible solutions to the dilemma: Unified mini-theories

- Theories that use a subset of ACT-R mechanisms.
 - Salvucci & Taatgen's: A unified theory of multi-tasking
 - Gonzalez, Lebiere and others: Instance-Based Learning Theory
- Constrain the current freedom of an ACT-R modeler:
 - Freedom in approaches to develop a representation of the behavior for a task.
 - Freedom in choosing equations and parameter values in order to "fit" model data to human data.

Conclusions

- Allen Newell (1990), cognitive architectures goal of unification presents a dilemma to simplification
 - Simplification is not well served in cognitive architectures
 - It has been neglected in ACT-R
- Possible ways to deal with the dilemma:
 - ACT-R as a toolbox where the tools are the equations and parameters: Transparency and validation of equations and parameters
 - Unified "mini-theories"
 - The creation of explicit computer tools that represent a "minitheory" can give rise to interesting demonstrations and new questions and answers