
Hands-on with

ACT-UP,
a Cognitive Toolbox for Scalable Models
David Reitter

Carnegie Mellon University

with: C. Lebiere & J. Ajmani

1

Some goals

Enable the implementation of more complex
ACT-R models

Scale up cognitive models to simulate learning /
adaptation in communities
(e.g., about 1,000 models in parallel)

Treat models as hard claims

Evaluate each specified component against data

Underspecify the rest and fit free parameters

2

The Argument
Constraints: Architectural advances require further constraints

Scaling it up: Complex tasks, broad coverage of behavior
(e.g., linguistic), use of microstrategies and predictive modeling
may serve to motivate further architectural constraints

Difficulties: ACT-R is heavily constrained already, and models
are difficult to develop, reuse and exchange

3

Flow Chart
(Finite State
Automaton)

A flow-chart describes an
algorithm (or a cognitive
strategy)

Decision-making points
and states

Not easy to reuse: it fails to
capture generalizations

Computer Science:
pre-Object Orientation,
pre-Functional Programming

4

IF THEN

5

Production Rule System

IF THEN

6

The Argument
Constraints: Architectural advances require further
constraints

Scaling it up: Complex tasks, broad coverage of behavior
(e.g., linguistic), use of microstrategies and predictive
modeling may serve to motivate further architectural
constraints

Difficulties: ACT-R is heavily constrained already, and models
are difficult to develop, reuse and exchange

We need to produce models at a higher abstraction level

However, we’d like to leverage successful cognitive
modules, describing memory retention, cue-based retrieval,
routinization, reinforcement learning

7

Cognitive
Strategy

Symbolic

Subsymbolic
(Learning /
Adaptation)

deterministic

non-deterministic
explains empirical

variance

8

A real-life model

;; get started

(p start-realization
 =goal>
 ISA synsem
 state start
==>
 =goal>
 state realize-clause
 TYPE beginning-of-sentence)

;; MAKE CLAUSE

(p realize-clause-or-lexeme
 =goal>
 ISA synsem
 STATE realize-clause
 FUNCTOR =func 	 ;; this will be retrieved as verb
 FUNCTOR-LEXFORM nil	 	
 ==>
 +retrieval>
 ISA lexeme
 SEM =func

 =goal>
 STATE realize-clause-retrieving

)

;; we have decided on the lexeme for the functor
(p realize-clause-or-lexeme-retrieve-syn
 =goal>
 ISA synsem
 STATE realize-clause-retrieving
 =retrieval>
 ISA lexeme
 SYN nullsyn
 LEX =sfcform

 ==>
; !eval! (show-activation)
 +retrieval>
 ISA syntype ; whatever is most active
 =goal>	
 FUNCTOR-LEXFORM =retrieval
 FUNCTOR-SFCFORM =sfcform
 CURRENT-SEM =retrieval
 CURRENT-SEM2 =retrieval
 CURRENT-SEM3 =retrieval
 STATE realize-clause-retrieving-syn
)

(p realize-clause-or-lexeme-retrieve-arg-order
 =goal>
 ISA synsem
 STATE realize-clause-retrieving-syn
 FUNCTOR-LEXFORM =lexeme
 =retrieval>
 ISA syntype
 ==>
 +retrieval>
 ISA lex-syn-arg-order
 FOR-LEXEME =lexeme
 FOR-SYN =retrieval
 =goal>	
 FUNCTOR-SYNFORM =retrieval

 CURRENT-SEM nil
 CURRENT-SEM2 nil
 CURRENT-SEM3 nil

 STATE retrieving-arg-order
 ;; notice retrieval time. Important to calculate additional wait after prime stimulus.
 !eval! (setq *lexeme-retrieved-time* (mp-time))

)

(p realize-clause-or-lexeme-done-with-arg-order
 =goal>
 ISA synsem
 STATE retrieving-arg-order
 FUNCTOR-LEXFORM =lexeme
 =retrieval>
 ISA lex-syn-arg-order
 ==>
 =goal>	
; FUNCTOR-LEXFORM nil ;; delete so we don't get any more spreading activation coming from this
 ; FUNCTOR-SYNFORM nil ;; same reason
 FUNCTOR-ARGORDER =retrieval
 STATE realize
)

;; REALIZE

;; realize will take the semantics and realize the next role
;; the choice between these depends on utility
;; (but it should also depend on the activation of the stuff that is
;; in the AGENT field -- TODO)

;; find an argument role to realize next
(p finished
 =goal>
 ISA synsem
 STATE realize
 CONTEXT-TYPE S
 ==>
 !stop!
)

(p realize-function-word
 =goal>
 ISA synsem
 STATE realize
 ATTRACT =attracted
 ATTRACT-LEXFORM nil
 ==>
 =goal>
 STATE realized-function-word
 +retrieval>
 ISA lexeme
 SEM =attracted
)

(p realize-function-word-2
 =goal>
 ISA synsem
 STATE realized-function-word
 =retrieval>
 ISA lexeme
 SYN =synform
 LEX =lexform
 ==>
 +retrieval>
 ISA syntype
 SYN =synform ;; retrieve for splitting
 =goal>
 STATE adjoin
 TYPE =synform
 TYPE-LEFT nil
 TYPE-COMB nil
 TYPE-RIGHT nil
 LEX =lexform
 ATTRACT nil ;; delete
)

(p realize-next-argument
 =goal>
 ISA synsem
 STATE realize
 ATTRACT nil

 ==>
 +retrieval>
 ISA themerole
 ;; :recently-retrieved nil

 =goal>
 STATE realize-next-argument
)

(p* realize-next-argument-2
 =retrieval>
 ISA themerole
 SLOT =slotname
 MARKER =marker
 MARKER-DONE =marker-done
 LEXFORM =lexform
 =goal>
 ISA synsem
 STATE realize-next-argument
 =slotname =detailedsemantics ;; requested
 =marker =not-nil ;; not yet realized
 ==>
!output! =slotname
 +retrieval>
 ISA lexeme
 SEM =detailedsemantics
 =goal>
 STATE argument-has-been-picked
 =marker nil ;; argument marked as realized
 =marker-done =marker-done ;; has been realized
 ROLE =lexform)

;; steps 3a/3b take a retrieved lexeme.
;; 3a: some lexemes have the synform hardcoded, in which case we just move on, storing lexeme and synform.
;; 3b: in other cases (here: verbs), the synform is in a separate node, which the general model assumes to be the general case!
;; there, we need to request the synform. The synforms need to be activated via spreading activation, from the lexeme.

(p realize-next-argument-3functor
 =goal>
 ISA synsem
 STATE argument-has-been-picked
 ROLE functor-lexform
 FUNCTOR-SYNFORM =synform
 FUNCTOR-LEXFORM =lexform
 FUNCTOR-SFCFORM =sfcform
 ==>
 =goal>
 LEX =sfcform
 TYPE =synform
 STATE adjoin)

(spp realize-next-argument-3functor :u 1.5) ;;higher utility

(p realize-next-argument-3a
 =goal>
 ISA synsem
 STATE argument-has-been-picked
 ROLE =targetrole
 =retrieval>
 ISA lexeme
 SEM =detailedsemantics
 LEX =lexform
 SYN =synform ; synform is present right in chunk (no extra memory access needed -- this is a simplification)

 ==>

 =goal>
 LEX =lexform
 TYPE =synform
 STATE adjoin)

(p* realize-next-argument-3b
 =goal>
 ISA synsem
 ROLE =targetrole
 STATE argument-has-been-picked
 =retrieval>
 ISA lexeme
 SEM =detailedsemantics
 LEX =sfcform
 SYN nullsyn
 ==>
 +retrieval>
 ISA syntype ;; get whatever is most active now (spreading activation)

;; !eval! (sgp :act t)
 =goal>
 CURRENT-SEM =retrieval
 CURRENT-SEM2 =retrieval
 CURRENT-SEM3 =retrieval
 =targetrole =retrieval ;; =lexform store the name of the retrieved chunk
 LEX =sfcform
 STATE argument-has-been-realized)

;; this step is probably not necessary - we already have the syntype in the retrieval buffer -
;; no need to retrieve it again.
(p found-associated-syntax-node
 =goal>
 ISA synsem
 STATE argument-has-been-realized
 =retrieval>
 ISA syntype
 SYN =synform
 LEFT =left
 COMB =comb
 RIGHT =right
 ==>
 ; can we simply leave the retrieval buffer untouched?
 ;; retrieval should be free, so that certain adjoin rules can fire
;; +retrieval>
;; ISA syntype
;; SYN =synform ;; retrieve for splitting
;!eval! (sgp :act nil)
 =goal>
 STATE adjoin
; CLASS nil
 TYPE =synform
 TYPE-LEFT =left
 TYPE-COMB =comb
 TYPE-RIGHT =right

 CURRENT-SEM nil
 CURRENT-SEM2 nil
 CURRENT-SEM3 nil
)

(p found-associated-syntax-node-simple
 =goal>
 ISA synsem
 STATE argument-has-been-realized
 =retrieval>
 ISA syntype
 SYN =synform
 LEFT nil
 COMB nil
 RIGHT nil
 ==>
 ; can we simply leave the retrieval buffer untouched?
 ;; retrieval should be free, so that certain adjoin rules can fire
;; +retrieval>
;; ISA syntype
;; SYN =synform ;; retrieve for splitting
;!eval! (sgp :act nil)
 =goal>
 STATE adjoin
; CLASS nil
 TYPE =synform
 TYPE-LEFT nil
 TYPE-COMB nil
 TYPE-RIGHT nil

 CURRENT-SEM nil
 CURRENT-SEM2 nil
 CURRENT-SEM3 nil
)

;; role retrieved does not have semantics -- then realize another one
(p* realize-next-argument-no-semantics-for-this-role
 =retrieval>
 ISA themerole
 SLOT =slotname
 MARKER =marker
 =goal>
 ISA synsem
 STATE realize-next-argument
 =slotname nil ;; requested
 =marker nil ;; not yet realized
 ==>

 =goal>
 STATE realize)

(spp realize-next-argument-no-semantics-for-this-role :u 0.5) ;; lower utility

(p* realize-next-argument-already-realized
 =retrieval>
 ISA themerole
 SLOT =slotname
 MARKER =marker
 =goal>
 ISA synsem
 STATE realize-next-argument
 =slotname =some-semantics ;; requested
 =marker nil ;; and realized
 ==>

 =goal>
 STATE realize
)

;; todo: try removing this
(spp realize-next-argument-already-realized :at 0.01) ;; specify lower action time

(p realize-next-argument-no-other-role-left
 ?retrieval>
 state error
 =goal>
 ISA synsem
 STATE realize-next-argument
 CONTEXT-TYPE S
 ==>
!stop!)

; (spp realize-next-argument-no-other-role-left :u 0.1) ;; specify lower utility

(p backtrack-to-older-goal
 =goal>
 ISA synsem
 STATE realize-backtrack
 =retrieval>
 ISA synsem
 ==>

 =goal> =retrieval

 =goal>
 STATE realize)

;; ADJOIN OPERATIONS

;; type needs to be split

(p split-type-before-adjoin
 =goal>
 ISA synsem
 STATE adjoin
 TYPE-LEFT nil
 TYPE-COMB nil
 TYPE-RIGHT nil
 TYPE =some-type
 =retrieval>
 ISA syntype
 CLASS complex
 LEFT =left
 COMB =comb
 RIGHT =right
 ==>
 =goal>	
 STATE adjoin ;; go back to realize
 TYPE-LEFT =left
 TYPE-COMB =comb
 TYPE-RIGHT =right)

(p split-basicsyntype-before-adjoin
 ;; here we basically just clear the retrieval so we can
;; move on to the real adjoin
 =goal>
 ISA synsem
 STATE adjoin
 TYPE-LEFT nil
 TYPE-COMB nil
 TYPE-RIGHT nil
 TYPE =some-type
 =retrieval>
 ISA syntype
 CLASS basic
 SYN =retrievedtype
 ==>
 =goal>	
 STATE adjoin ;; go back to realize
 TYPE-LEFT nil
 TYPE-COMB nil
 TYPE-RIGHT nil
 TYPE =retrievedtype
)

;; we're at the left sentence boundary
(p at-sentence-start
 =goal>
 ISA synsem
 STATE adjoin
 CONTEXT-TYPE-LEFT nil
 CONTEXT-TYPE-COMB nil
 CONTEXT-TYPE nil
 TYPE =wanted-type
 ==>
 =goal>
 STATE split-type
 +retrieval>
 ISA syntype
 SYN =wanted-type
)

(p adjoin-forward-application
 =goal>
 ISA synsem
 STATE adjoin
 CONTEXT-TYPE-LEFT =resulting-type
 CONTEXT-TYPE-COMB forward
 CONTEXT-TYPE-RIGHT =wanted-type
 ;; the left context needs to be of a certain type
 TYPE =wanted-type
==>
;; now we need to split up resulting type to fill it into the GOAL

 =goal>
 STATE split-type

 +retrieval>
 ISA syntype
 SYN =resulting-type
)

(p adjoin-backward-application
 =goal>
 ISA synsem
 STATE adjoin
 TYPE-LEFT =resulting-type
 TYPE-COMB backward
 TYPE-RIGHT =wanted-type
 ;; the left context needs to be of a certain type
 CONTEXT-TYPE =wanted-type
==>
;; now we need to split up resulting type to fill it into the GOAL

 =goal>
 STATE split-type

 +retrieval>
 ISA syntype
 SYN =resulting-type
)

(p adjoin-forward-composition
 =goal>
 ISA synsem
 STATE adjoin
 TYPE-LEFT =swallowed-type
 TYPE-COMB forward
 TYPE-RIGHT =resulting-type-right
 ;; the left context needs to be of a certain type
 CONTEXT-TYPE-LEFT =resulting-type-left
 CONTEXT-TYPE-COMB forward
 CONTEXT-TYPE-RIGHT =swallowed-type

==>
;; now we need to split up resulting type to fill it into the GOAL

 =goal>
 STATE split-type ;; we use split-type to actually combine the type
 +retrieval>
 ISA syntype
 LEFT =resulting-type-left
 COMB forward
 RIGHT =resulting-type-right
)

(p adjoin-backward-composition
;; Y\Z X\Y ==> X\Z
 =goal>
 ISA synsem
 STATE adjoin
 ;; the left context needs to be of a certain type
 CONTEXT-TYPE-LEFT =swallowed-type
 CONTEXT-TYPE-COMB backward
 CONTEXT-TYPE-RIGHT =resulting-type-right
 ;; right (adjoined) element
 TYPE-LEFT =resulting-type-left
 TYPE-COMB backward
 TYPE-RIGHT =swallowed-type
==>
 =goal>
 STATE split-type ;; we use split-type to actually combine the type
 +retrieval>
 ISA syntype
 LEFT =resulting-type-left
 COMB backward
 RIGHT =resulting-type-right
)

(p adjoin-using-stored-combination-1
;; Y\Z X\Y ==> X\Z
 =goal>
 ISA synsem
 STATE adjoin
 ;; the left context needs to be of a certain type
 CONTEXT-TYPE =left-type
 ;; right (adjoined) element
 TYPE =right-type
 TYPE-COMB =comb
;; type must have been split
;; otherwise we're catching the to-be-splitted cases here as well

 ; ?retrieval>
 ; state free
; buffer empty
==>
 =goal>
 STATE adjoin2
 +retrieval>
 ISA combination
 LEFT =left-type
 RIGHT =right-type

)
(spp adjoin-using-stored-combination-1 :u 0.5) ;; specify lower utility

(p adjoin-using-stored-combination-2
;; Y\Z X\Y ==> X\Z
 =goal>
 ISA synsem
 STATE adjoin2
 ;; the left context needs to be of a certain type
 CONTEXT-TYPE =left-type
 ;; right (adjoined) element
 TYPE =right-type
 =retrieval>
 ISA combination
 LEFT =left-type
 RIGHT =right-type
 RESULT =result
==>
 =goal>
 STATE split-type ;; we use split-type to actually combine the type
 CONTEXT-TYPE =result
 CONTEXT-TYPE-LEFT nil
 CONTEXT-TYPE-COMB nil
 CONTEXT-TYPE-RIGHT nil
 TYPE nil
 TYPE-LEFT nil
 TYPE-COMB nil
 TYPE-RIGHT nil
 +retrieval>
 ISA syntype
 SYN =result
)
(spp adjoin-using-stored-combination-2 :u 0.75) ;; prefer to combine directly

;; this rule fires if we can't adjoin normally.
;; in that case, we need to wait for further material
;; to the right and build a subtree (non-incrementally).

(p cannot-adjoin
;; Y\Z X\Y ==> X\Z
 =goal>

 ISA synsem
 STATE adjoin2
 ;; ;; the left context needs to be of a certain type
 CONTEXT-TYPE-LEFT =ctl
 CONTEXT-TYPE-COMB =ctc
 CONTEXT-TYPE-RIGHT =ctr
 CONTEXT-TYPE =ct
 TYPE-LEFT =tl
 TYPE-COMB =tc
 TYPE-RIGHT =tr
 TYPE =t

;; ;; right (adjoined) element
;; TYPE-LEFT =resulting-type-left
;; TYPE-COMB backward
;; TYPE-RIGHT =swallowed-type
 STACKED-CONTEXT-TYPE nil ;; nothing on the stack yet
 ?retrieval>
 state free
==>

;; !bind! =STACKEDVAL (car (define-chunks
;; 	 	 	 (ISA synsem
;; 	 	 	 CONTEXT-TYPE-LEFT =ctl
;; 	 	 	 CONTEXT-TYPE-COMB =ctc
;; 	 	 	 CONTEXT-TYPE-RIGHT =ctr
;;)))

;; to do -- always check whether to retrieve the stacked type
;; perhaps make it universal? i.e. store arbitrary states and retrieve them? but when?

;; then move to realize next element
 +retrieval>
 ISA syntype ;; doesn't matter what
 :recently-retrieved reset

 !output! (New-context-type =t)

 =goal>
 STATE adjoined
 TYPE-left nil
 TYPE-right nil
 TYPE-comb nil
 TYPE nil
 CONTEXT-TYPE-LEFT =tl
 CONTEXT-TYPE-COMB =tc
 CONTEXT-TYPE-RIGHT =tr
 CONTEXT-TYPE =t
 STACKED-CONTEXT-TYPE =ct
 STACKED-CONTEXT-TYPE-LEFT =ctl
 STACKED-CONTEXT-TYPE-COMB =ctc
 STACKED-CONTEXT-TYPE-RIGHT =ctr
)

(spp cannot-adjoin :u 0.025) ;; this is only a backup rule

(P split-type
 =goal>
 ISA synsem
 STATE split-type
 =retrieval>
 ISA syntype
 CLASS complex
 LEFT =left
 COMB =comb
 RIGHT =right
 SYN =typename
 ATTRACT nil
 ==>
 =goal>	
 STATE adjoined ;; go backward to realize
 CONTEXT-TYPE-LEFT =left
 CONTEXT-TYPE-COMB =comb
 CONTEXT-TYPE-RIGHT =right
 CONTEXT-TYPE =typename
 TYPE nil
 ATTRACT nil
)
(p split-type-with-attract
 =goal>
 ISA synsem
 STATE split-type
 =retrieval>
 ISA syntype
 CLASS complex
 LEFT =left
 COMB =comb
 RIGHT =right
 SYN =typename
 ATTRACT =attracted
 ==>
 =goal>	
 STATE adjoined ;; go backward to realize
 CONTEXT-TYPE-LEFT =left
 CONTEXT-TYPE-COMB =comb
 CONTEXT-TYPE-RIGHT =right
 CONTEXT-TYPE =typename
 TYPE nil
 ATTRACT =attracted
)

(p split-basicsyntype
 =goal>
 ISA synsem
 STATE split-type
 =retrieval>
 ISA syntype
 CLASS basic
 SYN =retrievedtype
 ATTRACT nil
 ==>
 =goal>	
 STATE adjoined ;; go back to realize
 CONTEXT-TYPE-LEFT nil
 CONTEXT-TYPE-COMB nil
 CONTEXT-TYPE-RIGHT nil
 CONTEXT-TYPE =retrievedtype
 TYPE nil
 ATTRACT nil
)
(p split-basicsyntype-with-attract
 =goal>
 ISA synsem
 STATE split-type
 =retrieval>
 ISA syntype
 CLASS basic
 SYN =retrievedtype
 ATTRACT =attracted
 ==>
 =goal>	
 STATE adjoined ;; go back to realize
 CONTEXT-TYPE-LEFT nil
 CONTEXT-TYPE-COMB nil
 CONTEXT-TYPE-RIGHT nil
 CONTEXT-TYPE =retrievedtype
 TYPE nil
 ATTRACT =attracted
)

;; here, we try to use the standard mechanism to pop something from the stack.
;; the stacked stuff moves to CONTEXT, and
;; if adjoining is impossible, it will be moved back to the stack.
(p try-adjoining-to-saved-stack
 =goal>
 ISA synsem
 STATE adjoined
 TYPE nil
 LEX =sfcform
 STACKED-CONTEXT-TYPE =sct
 STACKED-CONTEXT-TYPE-LEFT =sctl
 STACKED-CONTEXT-TYPE-COMB =sctc
 STACKED-CONTEXT-TYPE-RIGHT =sctr
 CONTEXT-TYPE =ct
 CONTEXT-TYPE-LEFT =ctl
 CONTEXT-TYPE-COMB =ctc
 CONTEXT-TYPE-RIGHT =ctr
 ==>
 =goal>
 STATE adjoin
 CONTEXT-TYPE =sct
 CONTEXT-TYPE-LEFT =sctl
 CONTEXT-TYPE-COMB =sctc
 CONTEXT-TYPE-RIGHT =sctr
 TYPE =ct
 TYPE-LEFT =ctl
 TYPE-COMB =ctc
 TYPE-RIGHT =ctr

)

(p after-adjoin
 =goal>
 ISA synsem
 STATE adjoined
 LEX =sfcform

 CONTEXT-TYPE =ct
 ==>

 +retrieval>
 ISA syntype ;; doesn't matter what
 :recently-retrieved reset

 !output! (Context-type =ct)
 !eval! (progn
	 (setq *sentence* (format nil "~A ~A" *sentence* =sfcform))
	 (if (not *be-quiet*) (print-warning "~A ~A" =sfcform =ct))
	 (when (equal =sfcform "to")
	 (setq *to-has-been-said* t))
)
 =goal>
 STATE realize
 LEX nil

)

)

;; here, we try to use the standard mechanism to pop something from the stack.
;; the stacked stuff moves to CONTEXT, and
;; if adjoining is impossible, it will be moved back to the stack.
(p try-adjoining-to-saved-stack
 =goal>
 ISA synsem
 STATE adjoined
 TYPE nil
 LEX =sfcform
 STACKED-CONTEXT-TYPE =sct
 STACKED-CONTEXT-TYPE-LEFT =sctl
 STACKED-CONTEXT-TYPE-COMB =sctc
 STACKED-CONTEXT-TYPE-RIGHT =sctr
 CONTEXT-TYPE =ct
 CONTEXT-TYPE-LEFT =ctl
 CONTEXT-TYPE-COMB =ctc
 CONTEXT-TYPE-RIGHT =ctr
 ==>
 =goal>
 STATE adjoin
 CONTEXT-TYPE =sct
 CONTEXT-TYPE-LEFT =sctl
 CONTEXT-TYPE-COMB =sctc
 CONTEXT-TYPE-RIGHT =sctr
 TYPE =ct
 TYPE-LEFT =ctl
 TYPE-COMB =ctc
 TYPE-RIGHT =ctr

)

(p after-adjoin
 =goal>
 ISA synsem
 STATE adjoined
 LEX =sfcform

 CONTEXT-TYPE =ct
 ==>

 +retrieval>
 ISA syntype ;; doesn't matter what
 :recently-retrieved reset

 !output! (Context-type =ct)
 !eval! (progn
	 (setq *sentence* (format nil "~A ~A" *sentence* =sfcform))
	 (if (not *be-quiet*) (print-warning "~A ~A" =sfcform =ct))
	 (when (equal =sfcform "to")
	 (setq *to-has-been-said* t))
)
 =goal>
 STATE realize
 LEX nil

)

)

(p split-basicsyntype
 =goal>
 ISA synsem
 STATE split-type
 =retrieval>
 ISA syntype
 CLASS basic
 SYN =retrievedtype
 ATTRACT nil
 ==>
 =goal>	
 STATE adjoined ;; go back to realize
 CONTEXT-TYPE-LEFT nil
 CONTEXT-TYPE-COMB nil
 CONTEXT-TYPE-RIGHT nil
 CONTEXT-TYPE =retrievedtype
 TYPE nil
 ATTRACT nil
)
(p split-basicsyntype-with-attract
 =goal>
 ISA synsem
 STATE split-type
 =retrieval>
 ISA syntype
 CLASS basic
 SYN =retrievedtype
 ATTRACT =attracted
 ==>
 =goal>	
 STATE adjoined ;; go back to realize
 CONTEXT-TYPE-LEFT nil
 CONTEXT-TYPE-COMB nil
 CONTEXT-TYPE-RIGHT nil
 CONTEXT-TYPE =retrievedtype
 TYPE nil
 ATTRACT =attracted
)

 +retrieval>
 ISA syntype ;; doesn't matter what
 :recently-retrieved reset

 !output! (New-context-type =t)

 =goal>
 STATE adjoined
 TYPE-left nil
 TYPE-right nil
 TYPE-comb nil
 TYPE nil
 CONTEXT-TYPE-LEFT =tl
 CONTEXT-TYPE-COMB =tc
 CONTEXT-TYPE-RIGHT =tr
 CONTEXT-TYPE =t
 STACKED-CONTEXT-TYPE =ct
 STACKED-CONTEXT-TYPE-LEFT =ctl
 STACKED-CONTEXT-TYPE-COMB =ctc
 STACKED-CONTEXT-TYPE-RIGHT =ctr
)

(spp cannot-adjoin :u 0.025) ;; this is only a backup rule

(P split-type
 =goal>
 ISA synsem
 STATE split-type
 =retrieval>
 ISA syntype
 CLASS complex
 LEFT =left
 COMB =comb
 RIGHT =right
 SYN =typename
 ATTRACT nil
 ==>
 =goal>	
 STATE adjoined ;; go backward to realize
 CONTEXT-TYPE-LEFT =left
 CONTEXT-TYPE-COMB =comb
 CONTEXT-TYPE-RIGHT =right
 CONTEXT-TYPE =typename
 TYPE nil
 ATTRACT nil
)
(p split-type-with-attract
 =goal>
 ISA synsem
 STATE split-type
 =retrieval>
 ISA syntype
 CLASS complex
 LEFT =left
 COMB =comb
 RIGHT =right
 SYN =typename
 ATTRACT =attracted
 ==>
 =goal>	
 STATE adjoined ;; go backward to realize
 CONTEXT-TYPE-LEFT =left
 CONTEXT-TYPE-COMB =comb
 CONTEXT-TYPE-RIGHT =right
 CONTEXT-TYPE =typename
 TYPE nil
 ATTRACT =attracted
)

9

Priming Model

Only a small portion of the model
explains the behavioral data at hand

The rest explains that the task can
be accomplished in principle with a
parallel architecture and with
specific cognitive representations
(chunk types)

;; get started

(p start-realization
 =goal>
 ISA synsem
 state start
==>
 =goal>
 state realize-clause
 TYPE beginning-of-sentence)

;; MAKE CLAUSE

(p realize-clause-or-lexeme
 =goal>
 ISA synsem
 STATE realize-clause
 FUNCTOR =func 	 ;; this will be retrieved as verb
 FUNCTOR-LEXFORM nil	 	
 ==>
 +retrieval>
 ISA lexeme
 SEM =func

 =goal>
 STATE realize-clause-retrieving

)

;; we have decided on the lexeme for the functor
(p realize-clause-or-lexeme-retrieve-syn
 =goal>
 ISA synsem
 STATE realize-clause-retrieving
 =retrieval>
 ISA lexeme
 SYN nullsyn
 LEX =sfcform

 ==>
; !eval! (show-activation)
 +retrieval>
 ISA syntype ; whatever is most active
 =goal>	
 FUNCTOR-LEXFORM =retrieval
 FUNCTOR-SFCFORM =sfcform
 CURRENT-SEM =retrieval
 CURRENT-SEM2 =retrieval
 CURRENT-SEM3 =retrieval
 STATE realize-clause-retrieving-syn
)

(p realize-clause-or-lexeme-retrieve-arg-order
 =goal>
 ISA synsem
 STATE realize-clause-retrieving-syn
 FUNCTOR-LEXFORM =lexeme
 =retrieval>
 ISA syntype
 ==>
 +retrieval>
 ISA lex-syn-arg-order
 FOR-LEXEME =lexeme
 FOR-SYN =retrieval
 =goal>	
 FUNCTOR-SYNFORM =retrieval

 CURRENT-SEM nil
 CURRENT-SEM2 nil
 CURRENT-SEM3 nil

 STATE retrieving-arg-order
 ;; notice retrieval time. Important to calculate additional wait after prime stimulus.
 !eval! (setq *lexeme-retrieved-time* (mp-time))

)

(p realize-clause-or-lexeme-done-with-arg-order
 =goal>
 ISA synsem
 STATE retrieving-arg-order
 FUNCTOR-LEXFORM =lexeme
 =retrieval>
 ISA lex-syn-arg-order
 ==>
 =goal>	
; FUNCTOR-LEXFORM nil ;; delete so we don't get any more spreading activation coming from this
 ; FUNCTOR-SYNFORM nil ;; same reason
 FUNCTOR-ARGORDER =retrieval
 STATE realize
)

;; REALIZE

;; realize will take the semantics and realize the next role
;; the choice between these depends on utility
;; (but it should also depend on the activation of the stuff that is
;; in the AGENT field -- TODO)

;; find an argument role to realize next
(p finished
 =goal>
 ISA synsem
 STATE realize
 CONTEXT-TYPE S
 ==>
 !stop!
)

(p realize-function-word
 =goal>
 ISA synsem
 STATE realize
 ATTRACT =attracted
 ATTRACT-LEXFORM nil
 ==>
 =goal>
 STATE realized-function-word
 +retrieval>
 ISA lexeme
 SEM =attracted
)

(p realize-function-word-2
 =goal>
 ISA synsem
 STATE realized-function-word
 =retrieval>
 ISA lexeme
 SYN =synform
 LEX =lexform
 ==>
 +retrieval>
 ISA syntype
 SYN =synform ;; retrieve for splitting
 =goal>
 STATE adjoin
 TYPE =synform
 TYPE-LEFT nil
 TYPE-COMB nil
 TYPE-RIGHT nil
 LEX =lexform
 ATTRACT nil ;; delete
)

(p realize-next-argument
 =goal>
 ISA synsem
 STATE realize
 ATTRACT nil

 ==>
 +retrieval>
 ISA themerole
 ;; :recently-retrieved nil

 =goal>
 STATE realize-next-argument
)

(p* realize-next-argument-2
 =retrieval>
 ISA themerole
 SLOT =slotname
 MARKER =marker
 MARKER-DONE =marker-done
 LEXFORM =lexform
 =goal>
 ISA synsem
 STATE realize-next-argument
 =slotname =detailedsemantics ;; requested
 =marker =not-nil ;; not yet realized
 ==>
!output! =slotname
 +retrieval>
 ISA lexeme
 SEM =detailedsemantics
 =goal>
 STATE argument-has-been-picked
 =marker nil ;; argument marked as realized
 =marker-done =marker-done ;; has been realized
 ROLE =lexform)

;; steps 3a/3b take a retrieved lexeme.
;; 3a: some lexemes have the synform hardcoded, in which case we just move on, storing lexeme and synform.
;; 3b: in other cases (here: verbs), the synform is in a separate node, which the general model assumes to be the general case!
;; there, we need to request the synform. The synforms need to be activated via spreading activation, from the lexeme.

(p realize-next-argument-3functor
 =goal>
 ISA synsem
 STATE argument-has-been-picked
 ROLE functor-lexform
 FUNCTOR-SYNFORM =synform
 FUNCTOR-LEXFORM =lexform
 FUNCTOR-SFCFORM =sfcform
 ==>
 =goal>
 LEX =sfcform
 TYPE =synform
 STATE adjoin)

(spp realize-next-argument-3functor :u 1.5) ;;higher utility

(p realize-next-argument-3a
 =goal>
 ISA synsem
 STATE argument-has-been-picked
 ROLE =targetrole
 =retrieval>
 ISA lexeme
 SEM =detailedsemantics
 LEX =lexform
 SYN =synform ; synform is present right in chunk (no extra memory access needed -- this is a simplification)

 ==>

 =goal>
 LEX =lexform
 TYPE =synform
 STATE adjoin)

(p* realize-next-argument-3b
 =goal>
 ISA synsem
 ROLE =targetrole
 STATE argument-has-been-picked
 =retrieval>
 ISA lexeme
 SEM =detailedsemantics
 LEX =sfcform
 SYN nullsyn
 ==>
 +retrieval>
 ISA syntype ;; get whatever is most active now (spreading activation)

;; !eval! (sgp :act t)
 =goal>
 CURRENT-SEM =retrieval
 CURRENT-SEM2 =retrieval
 CURRENT-SEM3 =retrieval
 =targetrole =retrieval ;; =lexform store the name of the retrieved chunk
 LEX =sfcform
 STATE argument-has-been-realized)

;; this step is probably not necessary - we already have the syntype in the retrieval buffer -
;; no need to retrieve it again.
(p found-associated-syntax-node
 =goal>
 ISA synsem
 STATE argument-has-been-realized
 =retrieval>
 ISA syntype
 SYN =synform
 LEFT =left
 COMB =comb
 RIGHT =right
 ==>
 ; can we simply leave the retrieval buffer untouched?
 ;; retrieval should be free, so that certain adjoin rules can fire
;; +retrieval>
;; ISA syntype
;; SYN =synform ;; retrieve for splitting
;!eval! (sgp :act nil)
 =goal>
 STATE adjoin
; CLASS nil
 TYPE =synform
 TYPE-LEFT =left
 TYPE-COMB =comb
 TYPE-RIGHT =right

 CURRENT-SEM nil
 CURRENT-SEM2 nil
 CURRENT-SEM3 nil
)

(p found-associated-syntax-node-simple
 =goal>
 ISA synsem
 STATE argument-has-been-realized
 =retrieval>
 ISA syntype
 SYN =synform
 LEFT nil
 COMB nil
 RIGHT nil
 ==>
 ; can we simply leave the retrieval buffer untouched?
 ;; retrieval should be free, so that certain adjoin rules can fire
;; +retrieval>
;; ISA syntype
;; SYN =synform ;; retrieve for splitting
;!eval! (sgp :act nil)
 =goal>
 STATE adjoin
; CLASS nil
 TYPE =synform
 TYPE-LEFT nil
 TYPE-COMB nil
 TYPE-RIGHT nil

 CURRENT-SEM nil
 CURRENT-SEM2 nil
 CURRENT-SEM3 nil
)

;; role retrieved does not have semantics -- then realize another one
(p* realize-next-argument-no-semantics-for-this-role
 =retrieval>
 ISA themerole
 SLOT =slotname
 MARKER =marker
 =goal>
 ISA synsem
 STATE realize-next-argument
 =slotname nil ;; requested
 =marker nil ;; not yet realized
 ==>

 =goal>
 STATE realize)

(spp realize-next-argument-no-semantics-for-this-role :u 0.5) ;; lower utility

(p* realize-next-argument-already-realized
 =retrieval>
 ISA themerole
 SLOT =slotname
 MARKER =marker
 =goal>
 ISA synsem
 STATE realize-next-argument
 =slotname =some-semantics ;; requested
 =marker nil ;; and realized
 ==>

 =goal>
 STATE realize
)

;; todo: try removing this
(spp realize-next-argument-already-realized :at 0.01) ;; specify lower action time

(p realize-next-argument-no-other-role-left
 ?retrieval>
 state error
 =goal>
 ISA synsem
 STATE realize-next-argument
 CONTEXT-TYPE S
 ==>
!stop!)

; (spp realize-next-argument-no-other-role-left :u 0.1) ;; specify lower utility

(p backtrack-to-older-goal
 =goal>
 ISA synsem
 STATE realize-backtrack
 =retrieval>
 ISA synsem
 ==>

 =goal> =retrieval

 =goal>
 STATE realize)

;; ADJOIN OPERATIONS

;; type needs to be split

(p split-type-before-adjoin
 =goal>
 ISA synsem
 STATE adjoin
 TYPE-LEFT nil
 TYPE-COMB nil
 TYPE-RIGHT nil
 TYPE =some-type
 =retrieval>
 ISA syntype
 CLASS complex
 LEFT =left
 COMB =comb
 RIGHT =right
 ==>
 =goal>	
 STATE adjoin ;; go back to realize
 TYPE-LEFT =left
 TYPE-COMB =comb
 TYPE-RIGHT =right)

(p split-basicsyntype-before-adjoin
 ;; here we basically just clear the retrieval so we can
;; move on to the real adjoin
 =goal>
 ISA synsem
 STATE adjoin
 TYPE-LEFT nil
 TYPE-COMB nil
 TYPE-RIGHT nil
 TYPE =some-type
 =retrieval>
 ISA syntype
 CLASS basic
 SYN =retrievedtype
 ==>
 =goal>	
 STATE adjoin ;; go back to realize
 TYPE-LEFT nil
 TYPE-COMB nil
 TYPE-RIGHT nil
 TYPE =retrievedtype
)

;; we're at the left sentence boundary
(p at-sentence-start
 =goal>
 ISA synsem
 STATE adjoin
 CONTEXT-TYPE-LEFT nil
 CONTEXT-TYPE-COMB nil
 CONTEXT-TYPE nil
 TYPE =wanted-type
 ==>
 =goal>
 STATE split-type
 +retrieval>
 ISA syntype
 SYN =wanted-type
)

(p adjoin-forward-application
 =goal>
 ISA synsem
 STATE adjoin
 CONTEXT-TYPE-LEFT =resulting-type
 CONTEXT-TYPE-COMB forward
 CONTEXT-TYPE-RIGHT =wanted-type
 ;; the left context needs to be of a certain type
 TYPE =wanted-type
==>
;; now we need to split up resulting type to fill it into the GOAL

 =goal>
 STATE split-type

 +retrieval>
 ISA syntype
 SYN =resulting-type
)

(p adjoin-backward-application
 =goal>
 ISA synsem
 STATE adjoin
 TYPE-LEFT =resulting-type
 TYPE-COMB backward
 TYPE-RIGHT =wanted-type
 ;; the left context needs to be of a certain type
 CONTEXT-TYPE =wanted-type
==>
;; now we need to split up resulting type to fill it into the GOAL

 =goal>
 STATE split-type

 +retrieval>
 ISA syntype
 SYN =resulting-type
)

(p adjoin-forward-composition
 =goal>
 ISA synsem
 STATE adjoin
 TYPE-LEFT =swallowed-type
 TYPE-COMB forward
 TYPE-RIGHT =resulting-type-right
 ;; the left context needs to be of a certain type
 CONTEXT-TYPE-LEFT =resulting-type-left
 CONTEXT-TYPE-COMB forward
 CONTEXT-TYPE-RIGHT =swallowed-type

==>
;; now we need to split up resulting type to fill it into the GOAL

 =goal>
 STATE split-type ;; we use split-type to actually combine the type
 +retrieval>
 ISA syntype
 LEFT =resulting-type-left
 COMB forward
 RIGHT =resulting-type-right
)

(p adjoin-backward-composition
;; Y\Z X\Y ==> X\Z
 =goal>
 ISA synsem
 STATE adjoin
 ;; the left context needs to be of a certain type
 CONTEXT-TYPE-LEFT =swallowed-type
 CONTEXT-TYPE-COMB backward
 CONTEXT-TYPE-RIGHT =resulting-type-right
 ;; right (adjoined) element
 TYPE-LEFT =resulting-type-left
 TYPE-COMB backward
 TYPE-RIGHT =swallowed-type
==>
 =goal>
 STATE split-type ;; we use split-type to actually combine the type
 +retrieval>
 ISA syntype
 LEFT =resulting-type-left
 COMB backward
 RIGHT =resulting-type-right
)

(p adjoin-using-stored-combination-1
;; Y\Z X\Y ==> X\Z
 =goal>
 ISA synsem
 STATE adjoin
 ;; the left context needs to be of a certain type
 CONTEXT-TYPE =left-type
 ;; right (adjoined) element
 TYPE =right-type
 TYPE-COMB =comb
;; type must have been split
;; otherwise we're catching the to-be-splitted cases here as well

 ; ?retrieval>
 ; state free
; buffer empty
==>
 =goal>
 STATE adjoin2
 +retrieval>
 ISA combination
 LEFT =left-type
 RIGHT =right-type

)
(spp adjoin-using-stored-combination-1 :u 0.5) ;; specify lower utility

(p adjoin-using-stored-combination-2
;; Y\Z X\Y ==> X\Z
 =goal>
 ISA synsem
 STATE adjoin2
 ;; the left context needs to be of a certain type
 CONTEXT-TYPE =left-type
 ;; right (adjoined) element
 TYPE =right-type
 =retrieval>
 ISA combination
 LEFT =left-type
 RIGHT =right-type
 RESULT =result
==>
 =goal>
 STATE split-type ;; we use split-type to actually combine the type
 CONTEXT-TYPE =result
 CONTEXT-TYPE-LEFT nil
 CONTEXT-TYPE-COMB nil
 CONTEXT-TYPE-RIGHT nil
 TYPE nil
 TYPE-LEFT nil
 TYPE-COMB nil
 TYPE-RIGHT nil
 +retrieval>
 ISA syntype
 SYN =result
)
(spp adjoin-using-stored-combination-2 :u 0.75) ;; prefer to combine directly

;; this rule fires if we can't adjoin normally.
;; in that case, we need to wait for further material
;; to the right and build a subtree (non-incrementally).

(p cannot-adjoin
;; Y\Z X\Y ==> X\Z
 =goal>

 ISA synsem
 STATE adjoin2
 ;; ;; the left context needs to be of a certain type
 CONTEXT-TYPE-LEFT =ctl
 CONTEXT-TYPE-COMB =ctc
 CONTEXT-TYPE-RIGHT =ctr
 CONTEXT-TYPE =ct
 TYPE-LEFT =tl
 TYPE-COMB =tc
 TYPE-RIGHT =tr
 TYPE =t

;; ;; right (adjoined) element
;; TYPE-LEFT =resulting-type-left
;; TYPE-COMB backward
;; TYPE-RIGHT =swallowed-type
 STACKED-CONTEXT-TYPE nil ;; nothing on the stack yet
 ?retrieval>
 state free
==>

;; !bind! =STACKEDVAL (car (define-chunks
;;
	 	 	
 (ISA synsem
;;
	 	 	
 CONTEXT-TYPE-LEFT =ctl
;;
	 	 	
 CONTEXT-TYPE-COMB =ctc
;;
	 	 	
 CONTEXT-TYPE-RIGHT =ctr
;;)))

;; to do -- always check whether to retrieve the stacked type
;; perhaps make it universal? i.e. store arbitrary states and retrieve them? but when?

;; then move to realize next element
 +retrieval>
 ISA syntype ;; doesn't matter what
 :recently-retrieved reset

 !output! (New-context-type =t)

 =goal>
 STATE adjoined
 TYPE-left nil
 TYPE-right nil
 TYPE-comb nil
 TYPE nil
 CONTEXT-TYPE-LEFT =tl
 CONTEXT-TYPE-COMB =tc
 CONTEXT-TYPE-RIGHT =tr
 CONTEXT-TYPE =t
 STACKED-CONTEXT-TYPE =ct
 STACKED-CONTEXT-TYPE-LEFT =ctl
 STACKED-CONTEXT-TYPE-COMB =ctc
 STACKED-CONTEXT-TYPE-RIGHT =ctr
)

(spp cannot-adjoin :u 0.025) ;; this is only a backup rule

(P split-type
 =goal>
 ISA synsem
 STATE split-type
 =retrieval>
 ISA syntype
 CLASS complex
 LEFT =left
 COMB =comb
 RIGHT =right
 SYN =typename
 ATTRACT nil
 ==>
 =goal>	
 STATE adjoined ;; go backward to realize
 CONTEXT-TYPE-LEFT =left
 CONTEXT-TYPE-COMB =comb
 CONTEXT-TYPE-RIGHT =right
 CONTEXT-TYPE =typename
 TYPE nil
 ATTRACT nil
)
(p split-type-with-attract
 =goal>
 ISA synsem
 STATE split-type
 =retrieval>
 ISA syntype
 CLASS complex
 LEFT =left
 COMB =comb
 RIGHT =right
 SYN =typename
 ATTRACT =attracted
 ==>
 =goal>	
 STATE adjoined ;; go backward to realize
 CONTEXT-TYPE-LEFT =left
 CONTEXT-TYPE-COMB =comb
 CONTEXT-TYPE-RIGHT =right
 CONTEXT-TYPE =typename
 TYPE nil
 ATTRACT =attracted
)

(p split-basicsyntype
 =goal>
 ISA synsem
 STATE split-type
 =retrieval>
 ISA syntype
 CLASS basic
 SYN =retrievedtype
 ATTRACT nil
 ==>
 =goal>	
 STATE adjoined ;; go back to realize
 CONTEXT-TYPE-LEFT nil
 CONTEXT-TYPE-COMB nil
 CONTEXT-TYPE-RIGHT nil
 CONTEXT-TYPE =retrievedtype
 TYPE nil
 ATTRACT nil
)
(p split-basicsyntype-with-attract
 =goal>
 ISA synsem
 STATE split-type
 =retrieval>
 ISA syntype
 CLASS basic
 SYN =retrievedtype
 ATTRACT =attracted
 ==>
 =goal>	
 STATE adjoined ;; go back to realize
 CONTEXT-TYPE-LEFT nil
 CONTEXT-TYPE-COMB nil
 CONTEXT-TYPE-RIGHT nil
 CONTEXT-TYPE =retrievedtype
 TYPE nil
 ATTRACT =attracted
)

;; here, we try to use the standard mechanism to pop something from the stack.
;; the stacked stuff moves to CONTEXT, and
;; if adjoining is impossible, it will be moved back to the stack.
(p try-adjoining-to-saved-stack
 =goal>
 ISA synsem
 STATE adjoined
 TYPE nil
 LEX =sfcform
 STACKED-CONTEXT-TYPE =sct
 STACKED-CONTEXT-TYPE-LEFT =sctl
 STACKED-CONTEXT-TYPE-COMB =sctc
 STACKED-CONTEXT-TYPE-RIGHT =sctr
 CONTEXT-TYPE =ct
 CONTEXT-TYPE-LEFT =ctl
 CONTEXT-TYPE-COMB =ctc
 CONTEXT-TYPE-RIGHT =ctr
 ==>
 =goal>
 STATE adjoin
 CONTEXT-TYPE =sct
 CONTEXT-TYPE-LEFT =sctl
 CONTEXT-TYPE-COMB =sctc
 CONTEXT-TYPE-RIGHT =sctr
 TYPE =ct
 TYPE-LEFT =ctl
 TYPE-COMB =ctc
 TYPE-RIGHT =ctr

)

(p after-adjoin
 =goal>
 ISA synsem
 STATE adjoined
 LEX =sfcform

 CONTEXT-TYPE =ct
 ==>

 +retrieval>
 ISA syntype ;; doesn't matter what
 :recently-retrieved reset

 !output! (Context-type =ct)
 !eval! (progn
	 (setq *sentence* (format nil "~A ~A" *sentence* =sfcform))
	 (if (not *be-quiet*) (print-warning "~A ~A" =sfcform =ct))
	 (when (equal =sfcform "to")
	 (setq *to-has-been-said* t))
)
 =goal>
 STATE realize
 LEX nil

)

)

Crucial request of a chunk from
declarative memory

10

The Argument
Constraints: Architectural advances require further constraints

Scaling it up: Complex tasks, broad coverage of behavior (e.g.,
linguistic), use of microstrategies and predictive modeling may
serve to motivate further architectural constraints

Difficulties: ACT-R is heavily constrained already, and models
are difficult to develop, reuse and exchange

Abstraction: To implement those, we need to produce models
at a higher abstraction level

Underspecification is the key to focus on verifiable
claims, and to avoid overfitting by fitting free
parameters to data

11

Underspecified
models

specify:

deterministic

non-deterministic
explains empirical

variance

underspecify:

12

retrieval requests:
symbolic

chunk templates

Procedural Memory
(if-then rules)

Declarative Memory
(storage and retrieval of chunks)

retrieved
chunks

Contextualization of retrievals via base-level activation
(recency, frequency) and spreading activation (cues). Stochasticity via noise.

Learning upon presentations (base-level) and co-presentations (cues).

cues spread
activation

Perceptual/Motor/etc
Modules

Buffers as Interfaces and
a form of working memory

(e.g., Goal, Retrieval buffers)

IF-THEN
rules

ACT-R

13

retrieval requests:
symbolic

chunk templates

Procedural Memory
(if-then rules)

Declarative Memory
(storage and retrieval of chunks)

retrieved
chunks

Contextualization of retrievals via base-level activation
(recency, frequency) and spreading activation (cues). Stochasticity via noise.

Learning upon presentations (base-level) and co-presentations (cues).

cues spread
activation

Perceptual/Motor/etc
Modules

Buffers as Interfaces and
a form of working memory

(e.g., Goal, Retrieval buffers)

ACT-UP

IF-THEN
rules

retrieval requests:
symbolic chunk templates

Lisp

function calls
retrieved chunks:

Lisp Structures

Lisp
function calls

ACT-R

(Lisp Functions)

14

ACT-UP

A stand-alone system on the basis of Common Lisp

targets an audience that can write simple Lisp programs
(unlike, e.g., CogTool)

Toolbox approach to ACT-R

light-weight: it’s a Lisp library

does not produce production rules (ACT-R/Lisa, ACT-
Simple, CogTool)

Not aimed at implementing all constraints of ACT-R 6 (unlike
Java ACT-R, Python ACT-R)

15

DM

`define-chunk-type’

types are optional

`make-count-order’

`learn-chunk’

`defrule’

`retrieve-chunk’

`count-order-second’

ACT-UP Code

16

ACT-UP is not ACT-R 6...

ACT-UP Interface is synchronous

Serial execution

Deterministic strategies defined as programs

Parallelism (e.g., perceptual/motor modules) possible
[not implemented]

Non-deterministic rule choice is possible

Reinforcement-learning as in ACT-R 6

17

PM / Utility learning

`choose-coin’

calls either `decide-heads
or `decide-tails’

`assign-reward’ reinforces
the decision

Exact production rules are
underspecified,

but decision-making
point is explicit

Choice model replicates
ACT-R and empirical
results

C
om

pe
tit

io
n

se
t

“c
ho

os
e-

co
in

”
ACT-UP Code

18

Rule compilation

(count-model 1 3) --> 3 (speak: “1”, “2”, “3”)

compiled:
(count-model 1 3) --> 3 (cached, no side-effects)

ACT-R utility propagation mechanism applies

19

Rule compilation

ACT-UP Code

20

Rule compilation

side-effects:

retrieval
from DM

DM learning

ACT-UP Code

21

Rule compilation
(form-past-tense “follow”)

retrieval from DM by analogy: start,-ed

learning: follow, -ed

(form-past-tense “follow”) --> (follow -ed)

cached result

stored as ‘compiled rule’ with associated utility

no DM retrieval/learning are executed.

(past-tense-model “follow”) --> (follow -ed)

side-steps reward assignment as well

22

Debugging

23

Debugging

24

Implemented Models

10 Classic models implemented:

count, addition, siegler, zbrodoff, paired, fan, sticks,
semantic, choice, past-tense

* past-tense not yet complete

25

Efficiency

Sentence production (syntactic priming) model

30 productions in ACT-R, 720 lines of code

82 lines of code in ACT-UP (3 work-days)

ACT-R 6: 14 sentences/second

ACT-UP: 380 sentences/second

26

Scalability

Language evolution model

Simulates domain vocabulary emergence
(ICCM 2009, JCSR 1010)

40 production rules in ACT-R (could not prototype)

8 participants interacting in communities

In larger community networks: 1000 agents, 84M interactions
(about 1 minute sim. time each), 37 CPU hours

27

Rapid prototyping/Reuse

Dynamic Stocks&Flows model (JAGI 2010)

Competition entry, model written in < 1 person-month

Instance-based learning (IBL, Gonzales&Lebiere 2003)

Blending (Wallach&Lebiere 2003)

free parameters (timing) estimated from example data

Model generalized to novel conditions

(.... NOT. but it did so better than others.)

Same IBL/blending micro-strategy was re-used directly in a Lemonade
Stand Game entry to a 2009 competition (BRIMS 2010)

28

Drawbacks

Less established code-base than ACT-R 6

Lisp

Lack of architectural timing predictions from rule
matching

Lack of parallelism (planned: fall 2010)

lack of perception/motor modules

Will be available in ACT/Simple-style interface
(Salvucci&Lee 2003)

29

Beta-Test

Limited Release of ACT-UP test version

comes with 10 example models

4 tutorials (paralleling the ACT-R 6 ones)

Full API documentation plus How-do-I... document

Testing period: September-October 2010

Task: implement 1-2 models of your own

Review letter requested (journal-review style)

30

Thank you

Further, published&in-press models to demonstrate
efficiency, scalability, rapid prototyping, and reuse
Come see our ICCM Poster (Saturday 5pm)

Details: ICCM 2010 paper (Reitter&Lebiere)

31

