Hands-on with

ACI-UP,

a Cognitive Toolbox for Scalable Models

David Reitter
Carnegie:Mellon:University.

with: G Lebiere & J. - Aimani

Some goals

= Enable the implementation of more complex
ACT-R models

® Scale up cognitive models to simulate learning /
adaptation in-.communities
(e.g., about 1,000 models in parallel)

® [reat models as hard claims

» Evaluate each specified component against data

» Underspecify the rest and fit free parameters

The Argument

= Constraints: Architectural advances require further constraints

» Scaling it up: Complex tasks, broad coverage of behavior
(e.g., linguistic), use of microstrategies and predictive modeling
may serve to motivate further -architectural constraints

= Difficulties: ACT-R is:heavily constrained already, and models
are difficult to develop, reuse and exchange

Flow Chart
(Finite State

Automaton)
N
B x A flow-chart describes an
r algorithm (or a cognitive
N strategy)

o

» Decision-making points

A, G0 / and states

= Not easy to reuse: it fails to

- / / capture generalizations
= Computer Science:
pre-Object Orientation,
pre-Functional Programming

= THEN

= THEN

Production Rule System

The Argument

= Constraints: Architectural advances require further
constraints

» Scaling it up: Complex tasks, broad coverage of behavior
(e.g., linguistic), use of microstrategies and predictive
modeling may.: serve to motivate further architectural
constraints

» Difficulties: ACIT-R 1S heavily constrained already, and models
are difficult to develop, reuse and exchange

®x We need to produce models at a higher abstraction level

= However, we'd like to leverage successful cognitive
modules, describing memory retention, cue-based retrieval,
routinization, reinforcement learning

Cognitive
Strategy

Symbolic
i

b deterministic
1

B
/\X/\/

LN

,\//

! ISA synsem
SIAE= adjoined
TYPE ll]

;; we're at the left sentence boundary =% =sfcform
(o at-sentence-start STACKED-CONTEXT-TYPE =sct

=goal> - STACKED-CONTEXT-TYPE-LEFT - =sctl
IS nsem ED-C _TYEE-.CO S
S adjo — D-C@N |
ONTRXT-TlYP TKT-TYPE ot

CONTEXT-TYPE-LEFT =ctl

CONTEXT-TYPE-COMB =ctc

CONTEXT-TYPE-RIGHT =ctr
==>

CONTEXT-TYPE-COMB nil
CONTEXT-TYPE nil
TYPE =wanted-type

==>
. =goal>
=g0al> 4% STATE adjoin
STATESHEDS CONTEXT-TYPE =sct
+retrieval> CONTEXT-TYPE-LEFT =sctl
ISA syntype CONTEXT-TYPE-COMB =sctc
SYN =wanted-type CONTEXT-TYPE-RIGHT =sctr
) TYPE =ct

TYPE-LEFT =ctl

TYPE-COMB -=ctc

TYPE-RIGHT =ctr
(0 adjoin-forward-application

=goal>)

ISA synsem

STATE adjoin (b after-adjoin
CONTEXT-TYPE-LEFT =resulting-type 992>
CONTEXT-TYPE-COMB' forward ISA synsem
CONTEXT-TYPE-RIGHT =wanted-type >II™ - adoned

;; the left context needs to be of a certa%hEﬁ/pe
Sk st Celeliss CONTEXT-TYPE =ot

2
=27
;; now we need to split up resulting type to fill it into the GOAL
+retrieval>
=goal> ISA syntype :;-doesn't matter what

STATE split-type ‘recently-retrieved reset

=goal>

STATE adjoined
TYPE-left nil
TYPE-right nil
' i TYPE-comb nil
(pzsgp()jlglfasmsyntype ety
ISA synsem CONTEXT-TYPE-LEFT =tl
STATE split-type CONTEXT-TYPE-COMB =tc
=retrieval> CONTEXT-TYPE-RIGHT =tr
ISA syntype CONTEXT-TYPE =t
CLASS basic STACKED-CONTEXT-TYPE =ct
SYN - wretrievediype STACKED-CONTEXT-TYPE-LEFT
ATTRACT nil STACKED-CONTEXT-TYPE-COME
258 STACKED-CONTEXT-TYPE-RIGHT
=goal>)

STATE adjoined ; go back to realize
CONTEXT-TYPE-LEFT nil
CONTEXT-TYPE-COMB nil
CONTEXIT-TYPE-RIGHT nil

(spp_cannot-adjoin :u 0.025) -;; this is

CONTEXT-TYPE =retrievedtype (P split-type
TYPE nil =goal>
ATTRACT nil ISA synsem
) STATE split-type
(p split-basicsyntype-with-attract =retrieval>
=goal> ISA ~syntype
[SA synsem CLASS complex
STATE split-type LEFT =left
=retrieval> COMB :pomb
ISA"~ syntype RIGHT =right
CLASS basic SYN =typename
SYN =retrievedtype ATTRACT nil
ATTRACT =attracted ==>
== =goal>
=goal> STATE adjoined ;; go backward to

CONTEXT-TYPE-LEFT =left
CONTEXT-TYPE-COMB =comb
CONTEXT-TYPE-RIGHT =right

STATE adjoined ;; go back to realize
CONTEXT-TYPE-LEFT nil
CONTEXT-TYPE-COMB nil

e Sl
levall - reatd]
SYN =resulting-type (setq *sentence™ (format nil "~A ~A" *sent Cc(:) NI%;%E’E [Blevety/pe ATTRACT nil

) (if (not *be-quiet”) (print-warning "~A ~A" = tﬁ’%ﬁczftﬁattraoted)

(when (equal =sfcform "to")

(p adjoin-backward-application (setq *to-has-been-said* 1))
=goal>)

ISA synsem ik

(o split-type-with-attract
=goal>
ISA synsem
STATE split-type

iiiii STATE realize

Priming Model

= Only a small portion: of the model
explains the behavioral data at hand

® [he rest explains that the task can
be accomplished in principle with a
parallel architecture and with
specific cognitive representations
(chunk types)

The Argument

= Constraints: Architectural advances require further constraints

» Scaling it up: Complex tasks; lbroad coverage of behavior (e.g.,
linguistic), use of microstrategies and: predictive modeling may
serve to motivate further architectural constraints

= Difficulties: ACIT-R is heavily constrained already, and models
are difficult to develop, reuse and exchange

= Abstraction: o implement those, we need to produce models
at a higher apstraction level

» Underspecification is the key to focus on verifiable
claims, and to avoid overfitting by fitting free
parameters to data

Underspecified

models underspecify:

AN

B deterministic
1

B
/\X/\/

e

,\//

Buffers as Interfaces and

a form of working memory
(e.g., Goal, Retrieval buffers)

~

Perceptual/Motor/etc S<cuies spread
Modules activation

al requests:

Procedural Memory Declarative Memory
(if-then rules) (storage and retrieval of chunks)

|
I
I
|
I
I
I
I
I
I
|
I
|
|
|
|

Contextualization of retrievals via base-level activation

(recency, frequency) and spreading activation (cues). Stochasticity via noise.
Learning upon presentations (base-level) and co-presentations (cues).

Buffers as Interfaces and

a form of working memory
(e.g., Goal, Retrieval buffers)

~

Perceptual/Motor/etc

-~ ~cues spread
activa’tiqn

\

Modules

al requests:
olic

Procedural Memory Declarative Memory
(if-then rules) (storage and retrieval of chunks)

(Lisp Functions)

Lis
function calls >
60\(\\)(\(8%
= X\

oV O
R

retrieval requests:
symbolic chunk templates

|
I
I
|
I
I
|
I
I
I
|
I
|
|
I
I

Contextualization of retrievals via base-level activation

(recency, frequency) and spreading activation (cues). Stochasticity via noise.
Learning upon presentations (base-level) and co-presentations (cues).

ACT-UP

= A stand-alone system on the basis of Common Lisp

» fargets an audience that can write simple Lisp programs
(unlike, e.g., Coglool)

= Toolbox approach to AGT=R
= |ight-weight: it’s-a Lisp library

® does not produce production rules (ACT-R/Lisa, ACT-
Simple, Coglool)

» Not aimed at implementing all constraints of ACT-R 6 (unlike
Java ACT-R, Python ACT-R)

;3 ACT-R parameters
Ceeta *rts 1> ACT-UP Code

D M ;535 Defining chunk type

(define-chunk-type count-order first second)

x define-chunk-type’
»x types are optional
= make-count-order’
= learn-chunk’

= defrule’

x retrieve-chunk’

= count-order-second’

ACIT-UP Is not ACI-R 6...

. ACT-UP Interface is synchronous
® Serial execution
» Deterministic strategies defined as programs

= Parallelism (€.9., perceptual/motor modules) possible
not implemented]

= Non-deterministic rule choice is possible

= Reinforcement-learning as in ACT-R 6

PM / Utllity learning

:» Experimental environment
(defun toss-coin ()

= choose-coin’ (if (< (random 1.0) .9) 'heads 'tails))
» calls either decide-heads > e Model | | | |
:+53 Rules that return the choice as symbol heads or tails

or decide-tails’

(defrule decide-tails () QO 5

» assign-reward’ reinforces = :group choose-coin S S
the decision tails) S 0
(defrule decide-heads () 55 é?

= Fxact production rules-are = :group choose-coin §§
underspecified, "heads) O

= put decision-making
point Is explicit

= Choice model replicates
ACT-R and empirical
results

Rule compilation

(defrule count-model (argl arg2)

"Count from ARGl to ARG1.
ARGl 1s the starting point and ARGZ 1is the ending point.
Each increment is 1 unit.”

(speak argl)

(if (not (eq argl argl))

(let ((p (retrieve-chunk (list :chunk-type 'count-order
:first argl))))

(if p
(count-model (count-order-second p) argz)))
argz))

| (()C)Ljr]t-rr]()(jeal 1 CB) -=> 53 (E;F)E}Eit(: “1 n, ‘czzu, cccgu)

® compiled:
(count-model 1 3) --> 3 (cached, no side-effects)

= ACT-R utility propagation mechanism applies

Rule compilation

(defrule ptmodel (word)
"Form past-tense of WORD."
:group past-tense-model
(let ((g (form-past-tense word)))
(if q
(1f (eq (third q) 'blank)
(assign-reward 5.0)
(assign-reward 4.2))
(assign-reward 3.9))

d))

ACT-UP Code

Rule compilation

» 53 Strategies
;55 ALL of them take a word as input and ACT—UP COde

;35 return a List with verb, stem, and suffix.

(defrule strategy-without-analogy (word)

u -Cj ff . "Retrieve memorized past tense form for WORD."
Sige-efiects: :group form-past-tense

(let ((dec (retrieve-chunk (list :chunk-type 'pasttense :verb word))))

i (when dec ;; retrieved?
> retrleval (learn-chunk dec)
frc)rT] [)qu (pass-time 0.05)

(1ist word (pasttense-stem dec) (pasttense-suffix dec)))))

x DM |earning (defrule strategy-with-analogy (word)
"Retrieve some past tense form, using analogy."
:group form-past-tense

(let ((dec (retrieve-chunk (list :chunk-type 'pasttense))))
(when dec ;; retrieved?
(learn-chunk dec)
(pass-time 0.05)

(list word (pasttense-stem dec) (pasttense-suffix dec)))))

Rule compilation

(defrule strategy-without-analogy (word)
» (form—past—teﬂse “fO”OW”) "Retrieve memorized past tense form for WORD."
:group form-past-tense
= retrieval from DM by analogy: start;-ed
» |earning: follow, -ed
x (form-past-tense “follow?) =-> (follow -ed)
x cached result
x stored as ‘compiled rule® with associated utility
= no DM retrieval/learning are executed.
» (past-tense-model “follow”) --> (follow -ed) (defrule ptmodel (word)

"Form past-tense of WORD."
x sSide-steps reward assignment as well :group past-tense-model

Debugging

(defrule count-model (argl arg2)
"Count from ARGl to ARG1.
ARGl 1s the starting point and ARGZ is the ending point.
Each increment is 1 unit.”
(speak argl)
(if (not (eq argl arg2))
(let ((p (debug-detail (retrieve-chunk (list :chunk-type 'count-order
:first argl)))))
(if p
(count-model (count-order-second p) arg2)))

arg2))

Debugging

CL-USER> (debug-detail (do-it 1))

make-match-chunk (make-TYPE*): No such chunk in DM. Returning new chunk (not in DM) of name
Presentation of chunk LOSE (MP: NIL t=72761.26. M: MODEL521436, t=0.
Implicitly creating chunk of name LOST.
Presentation of chunk LOST (MP: NIL t=72761.26. M: MODEL521436
Implicitly creating chunk of name BLANK.
Presentation of chunk BLANK (MP: NIL t=72761.305. M: MODELS521436, t=72761.305.
make-match-chunk (make-TYPE*): No such chunk in DM. Returning new chunk (not in DM) of name
Presentation of chunk HAVE (MP: NIL t=72761.445. M: MODELS521436, t=72761.445.
Implicitly creating chunk of name HAD.
Presentation of chunk HAD (MP: NIL t=72761.445. M: MODEL521436, t=72761.445.
Group PAST-TENSE-MODEL with 1+9 matching rules, choosing rule PTMODEL (Utility)
Group FORM-PAST-TENSE with 3+ matching rules, choosing rule STRATEGY-WITHOUT-ANALOGY (Utility 5.225957)
retrieve-chunk:

spec: (CHUNK-TYPE PASTTENSE VERB GET)

cues: NIL
pmat: NIL

filtered @ matching chunks.
retrieved none out of @ matching chunks.
NIL

signhing rewar .

signing reward 3.853125 to STRATEGY-WITHOUT-ANALOGY. STRATEGY-WITH-ANALOGY remains best regular rule in group FORM-PAST-TENSE.
As si1gning rewar to PTMODEL. Best regular rule among alternatives in group PAST-TENSE-MODEL!
NIL
CL-USER>

Implemented Models

» 10 Classic models implemented:

® count, addition, siegler, zorodoff, paired, fan, sticks,
semantic, choice, past-tense

* past-tense not yet complete

Efficiency

® Sentence production (syntactic: priming) model
» 30 productions InAGCT=R; 720 lines of code
» 82 |ines of code inAGT-UP- (3 work-days)
x ACT-R 6: 14 sentences/second

. ACT-UP: 380 sentences/second

Scalabillity

» | anguage evolution model

® Simulates domain vocabulary emergence
(ICCM 2009, JCSR1010)

» 40 production rules in ACT-R: (could not prototype)

» 8 participants interacting in-.communities

= |n larger community networks: 1000 agents, 84M Interactions
(about 1 minute sim. time each), 37 CPU hours

Rapid prototyping/Beuse

» Dynamic Stocks&Flows model (JAGI2010)
= Competition entry, model written in < 1 person-month
x |nstance-based learning (IBL; Gonzales&lLebiere 2003)
= Blending (Wallach&L.ebiere 2003)
» free parameters (timing) estimated from example data

= Model generalized to novel conditions
= (... NOT. but it did so better than others.)

» Same IBL/blending micro-strategy was re-used directly in a Lemonade
Stand Game entry to a 2009 competition (BRIMS 2010)

Drawbacks

» | ess established code-base than ACT-R 6

= | Sp

» | ack of architectural timing predictions from rule
matching

» | ack of parallelism (planned: fall 2010)
» |ack of perception/motor modules

= \Will be available in ACT/Simple-style interface
(Salvucci&lLee 2003)

Beta- lest

= Limited Release of ACT-UP: test version
® comes with 10 example models
= 4 tutorials (paralleling the AGT-R 6 ones)
» Full APl documentation plus How-do-I... document

» [esting period: September-October 2010

» [ask: Implement 1-2 models of your own

» Review letter requested (journal-review style)

Thank you

= [Further, published&in-press models to demonstrate
efficiency, scalability, rapid-prototyping, and reuse
Come see our ICCM Poster (Saturday 5pm)

» Details: ICCM 2010 paper (Reitter&lLebiere)

