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Matthew Walsh + John Anderson: Statistical 

learning and anticipatory start-point selection.

Clayton Stanley + Michael Byrne: Processes 

influencing visual search efficiency in conjunctive 

search: a rational analysis approach.

02:50 pm   BREAK

03:10 pm   Symposium

Kevin Gluck, Sue Kase, Glenn Gunzelmann + 

Brad Best: Large-scale computing resources and 

ACT-R modeling.

04:30 pm   Discussion

The future of ACT-R  and the ACT-R workshop

SUNDAY, JULY 20

08:00 am   Continental breakfast

08:45 am   Welcome

09:00 am   Language + Integration

Marc Destefano: The development of Lisp 

bindings for the D-bus interprocess communica-

tion system.

Jerry Ball: Modeling long-distance dependencies 

in double R language.

Markus Guhe + Ellen Gurman Bard: Adapting the 

use of attributes to the task environment in joint 

action: results and a model.

David Reitter, Frank Keller, + Johanna Moore: 

Structural priming in language production 

emerging from learning in an ACT-R model.

Mike Matessa: HBA: integrating task network 

modeling and ACT-R.

10:40 am   BREAK

11:00 am   Robotics + Theory of the Mind

Gregory Trafton, Magdalena Bugajska, William 

Kennedy, Anthony Harrison, Benjamin Fransen, + 

Raj Ratwani: ACT-R/E: E for Embodied.

William Kennedy, Magdalena Bugajska, Anthony 

Harrison, + Gregory Trafton: Simulation within 

ACT-R as a theory of mind.

Anthony Harrison, William Kennedy, Benjamin 

Fransen, + Gregory Trafton: Exploring theory-of-

mind components within embodied robotics.

Eric Avery + Troy Kelley: ACT-R on a robot: 

considerations and extensions.

12:20 pm   ADJOURN

Schoelles:  How a modeler's conception of 

rewards influences a model's behavior: investigat-

ing ACT-R 6's utility learning mechanism.

Varun Dutt + Cleotilde Gonzalez: Instance and 

strategy ACT-R models of choice in a dynamic 

control task: a model comparison story.

Michael Schoelles, Wayne Gray, + Hansjörg Neth: 

The Sudoku model: a dynamic decision maker.

Danilo Fum + Antonio Napoli: Putting new wine 

into old bottles: on the role of markers, instances 

and utilities in the Iowa gambling task.

10:40 am   BREAK

11:00 am   Human Computer Interaction

Dario Salvucci: Using ACT-R for rapid prototyping 

and evaluation of in-vehicle interfaces.

Bonnie John: Making ACT-R typewrite right.

Leonghwee Teo + Bonnie John: Toward a tool for 

predicting goal-directed exploratory behavior.

Robert West:  Building an SGOMS model 

(Sociotechnical GOMS) using ACT-R: Issues with 

cognitive modelling and macro cognition.

12:20 pm   LUNCH (PROVIDED - in basement of 

Baker Hall in Coffee Lounge)

01:30 pm   Visual Perception + Skill Acquisition

Scott Douglass: ACT-R's answers to six 

questions about visual routines.

Niels Taatgen + Daniel Dickison: Modeling 

eye-movement patterns in the Flight Management 

Task: combining bottom-up and top-down vision.

John Laird: Cognitive Architecture: Past, Present, 

and Future.

04:10 pm   John Anderson: Comments on 

Cognitive Architecture: Past, Present, and Future.

04:40 pm   Open Discussion

06:00 pm   ACT-R Workshop Dinner (see back for 

directions)

SATURDAY, JULY 19

08:00 am   Continental Breakfast

08:45 am   Welcome

09:00 am   Utility Learning and Decision Making

Erik Altmann: Short-term decay of production 

values for cognitive control.

Christian Janssen, Wayne Gray, + Michael 

Ion Juvina + Niels Taatgen: How do we ignore 

irrelevant information presented on displays?

Leendert van Maanen: An integrated model of 

sequential sampling.

Martin Greaves + Richard Young: A modular 

approach to modeling cognitive processes: 

Examining the encoding and recall of items in 

updating working memory.

Jong Kim, Frank Ritter, + Richard Koubek: 

Explorations of the ACT-R architecture for learning 

and forgetting performance.

12:20 pm   LUNCH 

01:30 pm   Architecture

Glenn Gunzelmann: Confronting architectural drift 

in ACT-R.

Frank Ritter, Michael Schoelles, Sue Kase, + 

Laura Cousino Klein: Simulating pre-task 

appraisal of serial subtraction.

Christan Lebiere + Bradley Best: Architectural 

support for adversarial behavior.

Nele Pape + Leon Urbas: The influence of task 

demands in a model of time estimation.

02:50 pm   BREAK

03:10 pm   Invited Speaker

FRIDAY, JULY 18

08:00 am   Continental Breakfast

08:45 am   Welcome

09:00 am   The Brain

John Anderson + Angela Brunstein: Learning 

algebra by discovery: What's ACT got to do with 

it?

Jelmer Borst, Niels Taatgen, Andrea Stocco, + 

Hedderik van Rijn: Locating the problem 

representation bottleneck in the brain.

Daniel Cassenti: Bringing EEG data into the 

ACT-R fold.

Terrence Stewart + Chris Eliasmith: Implementing 

the ACT-R production system in spiking neurons.

Andrea Stocco, Christian Lebiere, + John 

Anderson: Taking the procedural module 

seriously: A neural model of selection, execution, 

and learning in the basal ganglia.

10:40 am   Break

11:00 am   Declarative Memory
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John R. Anderson

Angela Brunstein

Word Problem (the

notation of millennia):

A number is multiplied by

5 and 4 is added to the

product.   If the result is

39 what was the original

number?

Data Flow

(CMU notation for

the new millennium)
Standard Equation

(the notation of

Descartes)

5x + 4 = 39

Solving Algebra with an Untrained Eye

! ((2x - 5x) + 13 ) + 9x = 67

! -3x + 13 + 9x = 67

! 13 + 6x = 67

! 6x = 54

! x = 9

15.51 sec14.95 sec

7.51 sec

7.81 sec
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Fit to 181 Problems from Foerster

Effects of Instruction and Practice

! 2x2 Design

! Factor 1:

a) Instruction: Direction on first one or two problems in a

section and guidance available on request for rest.

b) Discovery: No instruction and have to guess

transformations.  Told if guessed transformations are

correct on first one or two problems and whether final

answer is correct on rest.

! Factor 2:

a) Long: All odd problems (174) for 4 chapters.

b) Short: Subset of 45 that maintains first two and about two

others per section Long instruction condition basically

replicates earlier study

!Long instruction condition basically replicates earlier study

15TH ANNUAL ACT-R WORKSHOP 5



Time to Solve Problems

!Half of Subjects dropped out in Short Discovery Condition

!Subjects in short instruction condition are becoming help abusers

!Long Discovery students are better than Long Instruction students on later problems

!Total time for 174 problems (long condition) is 193 minutes for discovery vs. 226

minutes in instruction -- a significant effect.

 

Failure to

Semantically

Constrain

Transformations

!Discovery has .01 transformation errors per problem; instruction .20 errors

! “(5 + x) – 3” --> 11 of “(5 - 3) – x”, 2 of “(5 + 3) – x”, 1 of “(5 + 3) + x”

! “(15 - x) + 9” --> 12 of “(15 - 9) + x”, 5 of (15 - 9) – x”, 3 of “(15 + 9) + x”

! “(54 * x) / 9” --> 5 of “(54*9) / x”, 2 of “(54 / 9) / x”, 1 of “(9 / 54) * x”

!Common feature is preserving main operator

!General problem of Misinterpretation

Long Short

Instruction 0.37 1.16

Discovery 0.12 0.71

Average Transformation Errors Per Problem 

Over 4 Chapters

Section 2.6

Long Instruction

Condition

15TH ANNUAL ACT-R WORKSHOP 6



Simulating Instruction Condition

!Buggy instruction interpretation rules were added that complete with correct rules

on a 50-50 basis.

!In short condition have their first encounter with entering a fraction on last problem

in section 1-7.   Model starts out knowing how to do it.

!Last problem of 2-6 is the first opportunity to debug the misconception about the

main operator in the short condition.

!In general short instruction condition is at a disadvantage because there are not

enough problems to debug misconceptions.

Discovering New Transformation in a

Section 1.7 (X + 3 = 8)

!Subjects are basically wandering around the search space until they

stumble onto the transformation.

!In the long condition once they have discovered the transformation they

don’t have problems on later problems.

New Transformation Old Transformation

15TH ANNUAL ACT-R WORKSHOP 7



Exp 1&2: First Problems in Section

!Interaction between transformation, practice and instruction: F(1,76) = 11.54; p <

.005

!Subjects are showing greater difficulty in the short discovery condition on the first

transformation which is new than on the second transformation which is old.

25%,20%

25%,20%

50%,60%

Long , Short

50%,60%

50%,60%

25%,20%

25%,20%

25%,20%

25%,20%

40%,50%

15%,15%

30%,20%

15%,15%

40%,50%

30%,20%

60%,50%

Actions

Expected Observed

Long 34.7 32.1

Short 65.6 63.5

Random Search for Discovery

15TH ANNUAL ACT-R WORKSHOP 8



Simulating Discovery

!Because searches are longer in short condition model cannot often

cannot recall correct sequence.

!As a consequence the model often has to search on later problems

and there are not enough problems to always learn the operators.

!More generally, discovery learning is effective learning is effective as

long as the discovery episodes do not get too complex to learn from.

Question: Where is ACT-R?

!Of course, ACT-R allows us to model the data but where are

the ACT-R assumptions contributing to an explanation?

!The problem with the instruction condition was modeled by

programming in misinterpretations.

!Short instruction is worse because there are not enough

examples to debug misinterpretations.

!Discovery condition at advantage because correct

interpretation of discovery episodes programmed in.

!Short discovery at a disadvantage because similarities are set

to make guesses poorer -- this is never really explained.

!Base-level activation is dropping memory for steps below

retrieval threshold in short discovery condition.

15TH ANNUAL ACT-R WORKSHOP 9



Locating the Problem Representation Bottleneck in the Brain 
 

Jelmer Borst (jpborst@ai.rug.nl)1,2 

Niels Taatgen (taatgen@cmu.edu)1,2 
Andrea Stocco (stocco@cmu.edu)2 

Hedderik van Rijn (d.h.van.rijn@rug.nl)1 
 

1Department of Artificial Intelligence, University of Groningen, The Netherlands 
2Department of Psychology, Carnegie Mellon University, The Netherlands 

 

The Problem Representation Bottleneck 
In their theory of multitasking, Threaded Cognition, 

Salvucci and Taatgen (2008) presented evidence for two 
central cognitive bottlenecks: declarative memory and 
procedural memory. However, in combination with ACT-R 
(Anderson, 2007), Threaded Cognition suggests a third 
resource that can act as a bottleneck: the problem 
representation resource. The problem representation 
resource is used for mentally maintaining information that is 
necessary for performing a task. This information is 
typically not present in the world and often constitutes an 
intermediate solution to a problem. For instance, if one has 
to solve a problem like 2x + 5 = 10, the intermediate step, 2x 
= 5, would be stored as the problem representation (e.g., 
Anderson, 2007). According to ACT-R, the problem 
representation resource (the imaginal buffer) can hold only 
one piece of information concurrently. This would mean 
that if two tasks need to use the problem representation 
resource at the same time, this would result in interference. 
In two experiments we have shown that the problem 
representation indeed acts as a cognitive bottleneck (Borst 
& Taatgen, 2007; Borst, Taatgen, & Van Rijn, submitted). 
Cognitive models were developed to account for these 
results, showing that a problem representation bottleneck 
can indeed explain the human data. 

In the current research, we used functional Magnetic 
Resonance Imaging (fMRI) to test our model of the problem 
representation bottleneck further. First, we let our existing 
ACT-R model make a priori brain activation predictions. 
Afterwards we tested these predictions in the scanner. 

Experiment & Model Predictions 
The experiment existed of two tasks that had to be 

performed concurrently: subtraction and text entry. Both 
tasks were presented in two versions: an easy version in 
which maintaining a problem representation was not 
required and a hard version in which it was. The behavioral 
data shows a significant interaction effect of subtraction 
difficulty and text entry difficulty on the reaction times, 
comparable to the results in Borst et al. (submitted). 

We used our existing model of the task to generate brain 
activation predictions. Basically, when an ACT-R module is 
active, it will produce a hemodynamic response in the brain 
region associated with it (for details, see Anderson, 2007). 
As the model explains the interference effects by using a 
problem representation bottleneck, we were most interested 
in the left parietal cortex (Talairach coordinates x = -23, y = 

-64, z = 34), the region associated with the problem 
representation resource (Anderson, 2007). The model 
predicted a strong interaction effect in this region: no 
activity in the easy subtraction / easy text entry condition, 
some activation in the easy/hard and hard/easy conditions 
(the problem representation is then involved in one of the 
tasks), and very strong activation in the hard/hard condition 
(the problem representation has to be swapped out 
constantly, see Borst et al., submitted). The model also 
predicted activation in five other important regions. 

Results 
With respect to the problem representation resource, the 

results were mixed. First of all, the raw fMRI data does not 
show the predicted interaction effect. The main reason for 
this is that in the easy/easy condition – where no activation 
was predicted – we did find high activation levels. However, 
the problem representation region is known to follow 
activation in the fusiform gyrus (associated with the visual 
module in ACT-R). If we discount the visual part of the 
activation in the problem representation region, so that the 
activation in the easy/easy condition approaches 0, the 
activation is reasonably similar to our a priori model 
predictions (R2 = .64). 

Of the other five regions, the visual, motor and goal areas 
showed a reasonably good fit. The procedural area was hard 
to interpret, that is, we did not have strong predictions, and 
the results are not showing clear effects either. The 
prefrontal cortex (declarative memory) shows two groups of 
results: 4 participants showed negative activation, unlike our 
model, the other 5 participants showed positive activation, 
showing a similar pattern as the model (R2 = .76). 

 
References 

 
Anderson, J.R. (2007). How Can the Human Mind Occur in 

the Physical Universe? New York: Oxford 
University Press. 

Borst, J.P., & Taatgen, N.A. (2007). The Costs of 
Multitasking in Threaded Cognition. In Proceedings 
of the Eighth International Conference on Cognitive 
Modeling (pp. 133-138). Ann Arbor, USA. 

Borst, J.P., Taatgen, N.A., & Van Rijn, D.H. (submitted). 
Problem Representations in Multitasking: An 
Additional Cognitive Bottleneck. 
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an integrated theory of concurrent multitasking. 
Psychol Rev, 115(1), 101-130. 
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Bringing EEG Data into the ACT-R Fold 
 

Daniel N. Cassenti (dcassenti@arl.army.mil)  
U.S. Army Research Laboratory, AMSRD-ARL-HR-SE, Aberdeen Proving Ground, MD 21005 

 
 The ideal for ACT-R is to become a unified theory of cognition (Anderson & Lebiere, 1998) or a system that 
explains all mental phenomena (see Newell, 1990). ACT-R has a long way to go before it can become a unified 
theory of cognition, but an initial effort to model neurological phenomena in ACT-R (Sohn, Ursu, Anderson, 
Stenger, & Carter, 2000) has brought the modeling system much closer to the goal. Neurological phenomena belong 
to another class of research that is meant to understand cognition – cognitive neuroscience. 
 The effort by Sohn et al. (2000) represented fMRI (functional magnetic resonance imaging), one of the two 
most widely used types of neurological measures. The other major source of neurological information comes from 
electroencephalography (EEG), a practice that collects electro-magnetic data from sensors placed on the scalp. 
Whereas fMRI provides spatial precision to detect which brain regions are active during task performance, EEG 
provides temporal precision to determine when brain regions are active. The reverse is also true; fMRI represents 
task-level activity because fMRI has little temporal resolution, whereas EEG represents large portions of the brain 
because EEG has little spatial resolution. 
 Anderson (2007) used fMRI data to assign brain regions to mechanisms, modules, and buffers in the ACT-R 
cognitive modeling system. Introducing EEG modeling to ACT-R may also have a large impact on ACT-R 
modeling. In typical cognitive experimentation, two explicit temporal markers appear: onset of stimulus and 
response. EEG provides temporal markers between these end points. The N100 (a negative charge typically between 
100 and 200 ms after stimulus onset) and the P300 (a positive charge typically between 300 and 400 ms after 
stimulus onset) are two events found during most EEG studies. Although there is some discord in the literature, the 
N100 is generally considered to mark perceptual encoding of a stimulus while the P300 marks context updating 
(e.g., classifying the frequency of an event with events in memory). 
 Two EEG experiments were modeled in ACT-R. Experiment 1 was a simple visual experiment and 
Experiment 2 was a simple auditory experiment. Instead of being limited by the stimulus onset and response 
markers, the model was also constrained by the N100. The perceptual encoding portion of the ACT-R models was 
given the mean and standard deviation parameters from the data of both experiments. The P300 had a different type 
of effect. The experiments revealed that the P300 often occurs after the response. As such, the context updating that 
the P300 marks was modeled as a parallel process that is enacted at the same time as the model executes toward the 
response. 
 By incorporating EEG into ACT-R, the studies show that the time course of mental processes can have more 
specificity than with traditional cognitive research. This adds to the capabilities of ACT-R researchers by giving 
them additional information on timing of mental processes.  
 

References 
 

Anderson, J. R. (2007). How can the human mind occur in the physical universe? New York: Oxford University 
 Press. 
Anderson, J. R. & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum. 
Newell (1990). Unified theories of cognition. Cambridge, MA: Cambridge University Press. 
Sohn, M.-H., Ursu, S., Anderson, J. R., Stenger, V. A., & Carter, C. S. (2000). The role of prefrontal cortex and 
 posterior parietal cortex in task-switching. In Proceedings National Academy of Science, 97 (24), 13448-13453. 
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Supplementing Neural Modelling with ACT-R

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Bryan Tripp (bptripp@uwaterloo.ca)

Chris Eliasmith (celiasmith@uwaterloo.ca)
Centre for Theoretical Neuroscience, University of Waterloo
200 University Ave West, Waterloo, ON N2L 3G1 Canada

There has been significant progress in recent years  where 
modern neuroscience has informed the further development 
of ACT-R.  Modules have been mapped on to brain regions, 
and detailed fMRI evidence has been gathered.  Given this 
state of affairs, we believe ACT-R can now, in turn, inform 
neuroscience research.

A common limitation of lower-level neural circuit models 
is  that  they  lack  a  realistic  environment  with  which  to 
interact.  This  limitation  is  less  serious  for  models  of 
peripheral sensory and motor networks (e.g. a digital image 
is a reasonable model of bottom-up input to V1). However, 
models of more central areas, such as prefrontal cortex or 
basal  ganglia,  would  benefit  a  great  deal  from improved 
models  of  their  connections  with  surrounding  neural 
systems. From a neural modelling perspective, ACT-R can 
essentially provide a realistic, interactive test harness. 

Neural Modelling
To  achieve  this,  we  have  integrated  a  Python 
implementation of ACT-R (Stewart & West, 2007) with the 
Nengo  neural  simulator  <http://nengo.ca>.   This  allows 
ACT-R models to interact with models of groups of spiking 
neurons.  Nengo supports neuron models as simple as the 
standard Leaky-Integrate-and-Fire (LIF)  model, as well  as 
more detailed conductance-based models.  Neural properties 
such as the post-synaptic time constant and refractory period 
can  be  set  to  match  empirically-determined  properties  of 
various cell types.

Importantly, Nengo makes use of the Neural Engineering 
Framework  (NEF;  Eliasmith  &  Anderson,  2003).   This 
framework  provides  an  integrated  theory  of  population 
coding  and  network  dynamics,  spanning  (1)  distributed 
representation  of  scalars,  vectors,  and  functions  by  spike 
patterns  in  groups  of  neurons,  (2)  transformation  of 
represented values via synaptic connection weights, and (3) 
a  control-theoretic perspective  on the way in which these 
transformations  determine  network  dynamics.   This 
approach has been used to model a variety of sensorimotor 
systems and cognitive models, including working memory 
(Singh & Eliasmith,  2006)  and the  Wason card  selection 
task (Eliasmith, 2005).

In  NEF,  any  group  of  neurons  can  be  interpreted  as 
representing  a  vector  of  values.   This  vector  can  be  of 
arbitrary length,  and is  generally  less than the number of 
neurons in the group.  This means that each neuron does not 
represent a single number in the vector.  Instead, the neural 
spiking  patterns  form  a  distributed  representation. 
Increasing the number of  neurons improves accuracy and 
provides robustness to neuron death.

Integrating ACT-R
We wish to use ACT-R to model the various parts of the 
brain involved in the experimental task, but which are not 
being modelled neurally.  To do this, we need to provide a 
mapping between neural states and ACT-R states.  Since the 
neural groups can represent vectors and ACT-R states are 
normally in terms of chunks, we need to transform chunks 
into numerical vectors and back again.  Our current system 
allows  arbitrary  mappings,  including  simple  associations 
between vectors and slot values, and more complex Vector 
Symbolic Architectures where arbitrary symbol trees can be 
transformed to a fixed-length vector.

Demonstration
To test this process, we have built  a model of an ACT-R 
goal buffer using 300 LIF neurons.  This buffer is based on 
the NEF working memory model, which can be thought of 
as a neural integrator, which accumulates and stores input 
over time.  The non-neural portion of the model consists of 
standard  ACT-R  with  three  productions.   These  simply 
change the goal buffer so that the model continually cycles 
between three goal states.  Figure 1 shows the spike patterns 
for the 300 neurons in the goal buffer over 500msec, along 
with the NEF decoded state information.

Figure 1: Activity of the 300 LIF neurons in the goal buffer.

References
Eliasmith,  C.  (2005).  Cognition  with  neurons:  A  large-

scale, biologically realistic model of the Wason task. 27th 
Annual Meeting of the Cognitive Science Society.

Eliasmith,  C.,  &  Anderson,  C.  H.  (2003).  Neural  
engineering: Computation, representation and dynamics  
in neurobiological systems. Cambridge, MA: MIT Press.

Singh,  R.,  &  Eliasmith,  C.  (2006).  Higher-dimensional 
neurons  explain  the  tuning  and  dynamics  of  working 
memory cells. Journal of Neuroscience, 26, 3667-3678.

Stewart,  T.C.,  &  West,  R.L.  (2007)  Deconstructing  and 
Reconstructing  ACT-R.  Cognitive  Systems  Research. 
8(3), 227-236.
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Implementing the ACT-R Production System in Spiking Neurons

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Chris Eliasmith (celiasmith@uwaterloo.ca)

Centre for Theoretical Neuroscience, University of Waterloo
200 University Ave West, Waterloo, ON N2L 3G1 Canada

There  is  a  strong  consensus  that  the  procedural  memory 
component of ACT-R can be identified with specific areas 
of  the  basal  ganglia.   This  system  must  be  capable  of 
collecting input (buffer states) from various regions of the 
cortex, identifying which productions match, selecting one 
of the matching productions,  and then communicating the 
effects of that production to the relevant brain regions.  We 
present  here  a  method  for  efficiently  implementing  this 
system using spiking neurons.  This approach also identifies 
biological limitations to such a system which limit both the 
complexity of the production matching rule and the types of 
patterns that can be matched.

Representing Chunks in Neural Firing Patterns
We base our model on the Neural Engineering Framework 
(NEF;  Eliasmith  &  Anderson,  2003),  which  provides  an 
optimal method for representing and manipulating vectors 
using realistic neural populations.  To encode a chunks as 
vectors,  we use Vector Symbolic Architectures (VSAs), a 
family  of  techniques  for  reliably  transforming  arbitrarily 
complex  symbolic  trees  into  fixed  length  vectors  (see 
Gayler, 2003 for an overview).

We assume neural projections from various cortical areas 
provide  a  representation  of  buffer  contents  and  module 
states.  The accuracy of these representations depends on the 
length  of  the  vector,  number  of  neurons,  and  the  neural 
properties.   For  example,  different  neurotransmitters  have 
different  re-uptake  rates,  affecting  the  time course  of  the 
post-synaptic  current,  and  thus  how  quickly  the  encoded 
representation can change.

Production Matching
Given this NEF/VSA representation, the matching for most 
ACT-R productions can be implemented via a single linear 
transformation.  The slots and values to be matched define a 
VSA that will be similar to the current representation from 
the cortex.  NEF determines the optimal synaptic connection 
weights  that  calculate  the  degree  of  similarity  for  all 
productions at once.  For productions that require negative 
testing,  we can create  specialized pseudo-productions that 
inhibit the basic production when they match.

A more complex system is needed for productions that 
require the same value in two different slots.  This operation 
could be implemented via a separate  specialized group of 
neurons,  but  this  requires  a  significant  increase  in  the 
number of neurons involved.  NEF also allows for dendritic 
nonlinearities to be used instead, but it is unclear whether 
this approach corresponds to the observed nonlinearities in 
striatal neurons.

Selection and Execution
After  the  matching  stage,  multiple  productions  may  be 
active.  To select which of these to fire requires a winner-
take-all  mechanism.   While  this  is  typically  done  with 
mutual inhibition between neurons, we can also implement 
this  as  a  neural  integrator  where  a  production is  selected 
after  its  represented  value  has  accumulated  above  a 
threshold.  The temporal dynamics  of this process and its 
interaction with utility learning are still works in progress.

To execute the selected production, these neurons project 
to  the  thalamus  along  a  narrow  communication  channel, 
which is likely too limited to also include details as to the 
bound variables  for  the  production.   For  this  reason,  the 
output  from  the  thalamus  to  the  cortex  cannot  just  be 
encoded  symbols  indicating  values  to  be  placed  in  slots. 
Instead,  the  thalamus  must  indicate  transformations  that 
should be applied to various buffers based on the values in 
other buffers (e.g. “copy the value from slot A in buffer X to 
slot B in buffer Y”).

To implement this, we note that VSAs allow symbol tree 
manipulations of this form to be encoded as a vector as well. 
The  output  from  the  thalamus  is  thus  a  set  of 
transformations sent to all areas of the cortex, acting as a 
controlled gating mechanism.  Learning and executing these 
transformations  has  been  previously  demonstrated  in  a 
model of the Wason selection task (Eliasmith, 2005).

Predictions
While  this  model  is  still  in  the  preliminary  stages,  two 
predictions  are  evident.   First,  we  note  that  using  noisy 
spiking  neurons  to  encode  VSAs  places  limits  on  the 
complexity of production that can be consistently matched. 
Our initial analysis indicates that accuracy will drop below 
95% when more than 6 slots are used.

Second, a separate module may be introduced to address 
the issue of matching only when two slots have the same 
value.  This leads to slightly different timing predictions for 
situations  requiring  a  production  of  this  form,  due  to 
requiring an extra production to indicate the slots of interest.
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Taking the Procedural Module Seriously: A Neural Model of Selection, Execution, 
and Learning in the Basal Ganglia 
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Department of Psychology, Carnegie Mellon University 
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Introduction 
Although crucial, the association between the procedural 
module and the basal ganglia is probably the least 
elaborated of ACT-R's module/brain mappings. BOLD 
predictions derived from the number of productions firing 
often mismatch the actual measurements in fMRI 
experiments, and crucial learning and execution 
mechanisms lack a biological basis. 

In order to reduce this gap between computations and 
their biological substrate, we built a neural model of the 
basal ganglia and explored how the circuit’s anatomy could 
support the functions of the procedural module. The model 
is based on the assumption that production rules specify 
how buffer contents can be moved across modules. 

The Model 
An overview of the model is presented in Figure 1. In the 
model, the striatum is the entry point to the circuit, receiving 
widespread projections from the cortical areas. The 
thalamus is the output of the system, projecting back to the 
cortex. Both the striatum and the thalamus are organized 
into compartments that mirror the organization of cortical 
areas. 

The striatum selects one incoming representation from the 
cortex, and retrieves an associated destination map for each 
of them.  These two pieces are conveyed separately on the 
two branches of the direct pathway, one of the two bundles 
of projections originating in striatum. The wiring between 
basal ganglia and the thalamus is such that the selected 
content is eventually routed to the thalamic compartment 
indicated by the destination map, and therefrom to the 
cortex. 

The network is capable of binding and moving variables 
by allowing cortical representations to pass through, and 
transfer them across different buffers. It also accounts for 
some of ACT-R's assumptions  (e.g., the serial bottleneck) 
and some aspects of procedural learning, (e.g, the 
transformation of variables into constants with practice). 

The Indirect Pathway and Learning 
The second bundle of striatal projections is called indirect 
pathway. It is longer than the direct one and runs lateral to 
it. In the model, it is hypothesized to hold a delayed 
memory of the previous destination map. This memory is 

used to detect circumstances where two consecutive 
productions can be compiled. This triggers the release of 
dopamine in the striatum, which fosters learning and leads 
to the compilations of two consecutive steps into a single 
operations. 

The model was tested on a simple task: The aural-vocal 
part of Schumacher et al (2001) dual-task paradigm.  It is 
shown that it succeeds in modeling the initial, unskilled 
execution of the task as well as skilled performance after 
production compilation.  
 

 
 
Figure 1: An overview of the architecture of the basal 
ganglia model. White arrows represent inhibitory 
connections; black arrows represent excitatory projections; 
solid lines represent one-to-many connections; and dotted 
lines represent one-to-one connections. 
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We will present empirical and computational work aiming to contribute toward a coherent theory of 
how humans ignore irrelevant information presented on displays.  

How do we ignore irrelevant information presented on 
displays?  

Ion Juvina (ijuvina@andrew.cmu.edu) 
 Niels Taatgen (taatgen@cmu.edu) 

Department of Psychology, Carnegie Mellon University 5000 
Forbes Avenue, Baker Hall 336A, Pittsburgh PA, 15213 USA 

An experiment was conducted with an isomorph of the classical Stroop task. A treatment condition included 
to-be-ignored extra-stimuli beside the typical Stroop stimuli. The treatment block was preceded and 
followed by control blocks composed of typical Stroop trials. Half of the participants received three 
color-patches and the other half received three words as extra stimuli. Some of the extra stimuli were 
randomly set to coincide with the target or distracter dimension of the main stimulus.  

The results show that adding to-be-ignored stimuli to the Stroop task can be disruptive or facilitative 
depending on the nature of these stimuli. When extra-stimuli are of the same kind as (but not identical to) 
the distracter dimension of the main stimulus (words) they are facilitative. When one of the extra stimuli 
matches (either visually or semantically) the distracter dimension of the main stimulus there is a disruptive 
effect on performance. These results alone would be best explained by a “lateral inhibition” account. A 
visual stimulus activates its own mental representation and inhibits representations of similar stimuli.  

However, a lateral inhibition account would also predict effects of the extra-stimuli on the target 
dimension of the main stimulus (color). Adding extra colors should disrupt performance on the primary 
Stroop task (color naming), except when one of the extra colors coincides with the target color, in 
which case the effect should be facilitative. None of these latter effects have been observed empirically.  

These results pose interesting challenges to modeling cognitive control in display-based tasks. Some 
modeling explorations will be presented and discussed at the Workshop.  

Abstract  
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 Leendert van Maanen 

(leendert@ai.rug.nl)   
Dept. of Artificial Intelligence University 
of Groningen P.O.Box 407 9700 AK 

Groningen, the Netherlands   

Retrieval by Accumulation Evidence (RACE, Van Maanen & Van Rijn, 2007), can also be classified as a 
sequential sampling model. However, RACE differs from most sequential sampling models in that it is 
integrated in a cognitive architecture (ACT‐R, Anderson, 2007). This enables the possibility to develop 
cognitive models  of  complete  tasks  that  involve  simple  decision making,  whereas most  sequential 
sampling models only model the decision‐making aspects of the task. In this talk, I will argue that such 
a isolated approach may not be enough for understanding the processes underlying task performance 
in these simple decision tasks. I will present data from a picture‐word interference study that can only 
be accounted for when taking the full cognitive process into account (Van Maanen & Van Rijn, 2008). 
The model demonstrates that taking advantage of the strengths of sequential sampling as well as the 
strengths of  a  cognitive  architecture  can  clarify  the underlying  cognitive process  for  this  particular 
task, while neither of the approaches in isolation can account for the data.   

References   

Human behavior  involves continuously making simple decisions,  such as  remembering  the name of 
someone you meet at a conference (“was that John or Jay I was just talking to?”), or reading the title of 
this abstract and deciding on the meaning of  the words. Many of  these simple decisions comprise a 
retrieval of a relevant chunk from declarative memory. The study of simple decision making has led to 
a  class  of  models  that  is  often  referred  to  as  sequential  sampling models  (Ratcliff  &  Smith,  2004). 
Although  the  details  vary  from model  to model,  they  have  in  common  that  the  decision  process  is 
considered as a gradual accumulation of evidence  for each of  the units of  information (e.g.,  chunks) 
under  consideration.  The  decision  depends  on whether  the  activation  of  a  chunk  crosses  a  certain 
threshold criterion (Ratcliff & Smith, 2004; Usher & McClelland, 2001). 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The picture‐word interference effect is a Stroop effect after all. 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 V.  Sloutsky,  B.  Love  &  K.  McRae  (Eds.),  Proceedings  of  the  30th  Annual Meeting  of  the  Cognitive 
Science Society. Washington DC.   

An Integrated Model of Sequential Sampling   

Anderson, J. R. (2007). How can the human mind occur in the physical universe? New York: Oxford UP. 
Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two‐choice reaction 
time. Psychological Review, 111(2), 333‐367. Usher, M., & McClelland, J. L. (2001). The time course of 
perceptual choice: The leaky, competing accumulator model. Psychological Review, 108(3), 550‐592. 
Van Maanen, L., & Van Rijn, H. (2007). An accumulator model of semantic interference. Cognitive 
Systems Research, 8(3), 174‐181. 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Martin Greaves (m.greaves@herts.ac.uk) 

Psychology Department 
University of Hertfordshire 

Hatfield, Herts AL10 9AB, UK 
 

Richard M. Young (r.m.young@ucl.ac.uk) 
UCL Interaction Centre 

University College London 
Gower Street, London WC1E 6BT, UK 

This talk argues for and illustrates the use of ‘modular’ models as a tool to help understand people’s cognition in 
cases where different people adopt different strategies for a task, or whereone person adopts different strategies at 
different times or under different conditions.  

A Modular Approach to Modelling the Updating of Items 
in Working Memory  

The standard rhetoric says that a cognitive model is supposed to be a computer program which illuminates the 
cognitive processes involved in a task by performing it in the same way as peopledo. But if people do the task in 
different ways, then there is no single “same way” for the model to mirror. Ideally in such cases, a completely 
inclusive, self-contained model would adapt itsstrategy to the circumstances in a way that predicts what people do 
(though that still leaves problems if people differ in ways that cannot be captured in simple parametric variation of 
asingle model).  

But such ideal, complete models are hard to attain. In their absence, we propose that useful insight into the 
cognitive phenomenon can be provided by a modular toolkit of models, fromwhich specific models are 
assembled, corresponding to particular strategies, rather as a Lego model is assembled from standard components. 
The purpose of such models is not to “predict what people will do”— because there is no single thing that people 
do — but instead to exploreand understand the space of possible strategies, and to make more circumscribed 
predictionsrelative to those strategies.  

We propose such modular models for the task of running memory span (RMS). In the RMS task, a subject is 
presented with a long series, of unpredictable length, of items such asmonosyllabic words. When the presentation 
ends, the S has to try to report the last N items from the list. The RM span is defined as the length of the consecutive 
block of such items, including the final item, all of which are correctly reported.  

The task is surprisingly difficult. Compared to the standard result of immediate memory span of 7 ± 2 items, typical 
results for RMS report a mean of 3-5 items for digits. For bi-syllabic words, RM span is typically 2 -3 items. There 
is controversy in the literature over how Ss perform thetask, specifically whether Ss can employ a special process of 
directly updating information in working memory as items arrive (e.g. Morris & Jones, 1990), or whether instead 
the familiarprocesses of attention and rehearsal are sufficient to explain behaviour (e.g. Ruiz, Elosúa &Lechuga, 
2005).  
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In a series of experiments (Greaves, 2008), we examined the effect on RMS of varying the details of the task: rate of 
presentation, grouping, immediate vs delayed recall, the number ofitems to be reported (N), whether Ss were 
instructed to use specific strategies, and so on. Wereported use of a variety of strategies for performing the task. 
These include N-item rehearsal, in which S tries to rehearse a sliding list of up to the N most recent items as they 
arrive; single-item rehearsal, in which S rehearses, perhaps repeatedly, just the most recent item to arrive; and 
so-called passive rehearsal (which we here call no-rehearsal) in which S does not actively rehearseat all, but just 
focuses on the items one by one as they come in.  

The findings reported here rely also on analysis of the temporal patterns of recall: the order in which items were 
reported, both from within the RMS and other items both recent (but outsidethe RMS as defined) and from 
farther back in the list.  

Our approach to modelling focuses on the cognitive resources and how they are deployed in thetask. The primary 
relevant resources are  

• A serial phonological buffer, identified with Act-R/PM’s audicon, with a capacity of around 2-3 
seconds of speech-like items. With additional control processes, this buffer can be used as the basis of a 
“phonological loop” able to rehearse internally generated items as well as external input.  
• A declarative memory, subject to decay, and sensitive to recency and frequency,identified with 
Act-R’s DM.  
• A single-item aural buffer, corresponding to echoic memory.  

The first two of these resources provide essentially two separate memory systems for performingthe RMS task (or 
many other memory tasks), but with very different properties. The audicon provides good order information and 
good item recall, but its capacity is sharply delimited intime, both in duration and in delay. Declarative memory, on 
the other hand, is effectivelyunlimited in raw capacity and is longer lasting than the audicon, but provides poor 
orderinformation (at least for independent items, as in these tasks) and is unreliable for iteminformation. The main 
interest in strategies concerns how these resources are utilised to greateror lesser effect.  

The space of modelled strategies has two main dimensions: what is done during input(encoding); and what 
is done during output (recall). For encoding and rehearsal, the main options are  

• No-rehearsal: the item is simply retrieved from the audicon, acting as an input buffer.  
• Single-item rehearsal: following retrieval from the audicon, the item is subvocally repeated once, which 
results in its being re-encoded into the audicon.  

For recall of items, the main options are  
• Recall from audicon, no-rehearsal: simply retrieves the earliest item from the external sources, and 
reports it.  
• Recall from audicon, single-item rehearsal: retrieves the earliest item from an internal source, and 
reports it.  
• Recall from declarative memory: an item is recalled from DM (thereby strengthening it).Repeated 
recall of the same item is blocked by holding recalled items in the goal chunk (a  
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technique described by the present authors at a previous Act-R workshop), but this limits  
the number of items that can be recalled from DM.  

Data from the experiments, including especially patterns of recall order, show clear evidence of the use of more 
than one memory structure. (See Greaves, 2008, for details.) Signature patterns include:  

• Short runs of recent items in forwards order, indicative of recall from the phonological buffer.  
• Separated items in backwards order, not necessarily consecutive, indicative of recall from 
declarative memory.  
• When the first two patterns both occur, the runs in forwards order tend to come beforethose in 
backwards order, reflecting the short-lived nature of the phonological store.  
• Initial recall of the final item, usually followed by one of the above, indicative of recallfrom echoic 
memory.  

Test runs of the models largely support these interpretations and provide further understanding ofpossible strategies. 
For example, the model for no-rehearsal coupled with recall from DM, on 60% of its runs provided a reporting 
pattern of (P1 P2) or (P1 P2 P3), i.e. backwards recall of thelast two or three items. (Pi means the i-th item counting 
backwards from the last.) There is also a scattering (around 12% each) of (P1 P3), (P1 P3 P2), and (P1 P2) followed 
by earlier items.Broadly similar patterns appear in the data from Ss instructed to use the no-rehearsal strategy. 
Similarly, with single-item rehearsal and retrieval from DM, the two most common patterns(around 40% each) were 
(P1 P2 P3 …) and (P1 P2 P4 …), i.e. starting with backwards recall ofthe last three items, or the last two followed 
by the fourth. These again are found among the dominant patterns of experimental Ss instructed to use the 
single-item strategy (although ofcourse the human data are mixed in with other patterns such as forward recall of the 
last 3 or 4items, indicative of recall from the phonological store). With recall from the audicon, no-rehearsal leads to 
recall of the last 2-3 items in forwards order for the default decay-time of 3 seconds in the audicon. With single-item 
rehearsal, consistent recall of the final 3 items (P3 P2 P1) is observed.  

Further to these findings, an interesting and unexpected finding from the modelling is the existence of 
micro-strategies. As Gray & Boehm-Davis (2000) point out, small shifts in thetiming of cognitive process steps can 
make a significant impact on the overall performance. For example, with single-item rehearsal, instead of clearing 
the aural buffer at the end of theencoding step, the clearing can be left to the subsequent cycle of rehearsal. This 
leaves the contents of the aural buffer available for immediate recall following rehearsal, corresponding tothe 
residual availability of an item in echoic memory. Another possibility is to defer rehearsal ofan item until the arrival 
of the following item. This delays recoding of the first item until as lateas possible, minimising the time during 
which the rehearsed item is subject to decay. This again allows the immediate recall of the final item. These 
micro-strategic variations can, under theright conditions, contribute a whole extra item to the RMS, raising it for 
example from 2 to 3, orfrom 3to 4.  

Overall, the study showed that people performing the RMS task adopt a variety of strategiesdrawing on different 
cognitive resources, and that their performance can be accounted for bystandard processes of attention and 
rehearsal with no need to invoke a special updating process.  
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The role of modelling has been, firstly, to test and refine our intuitive analysis of the behaviouralconsequences of 
the different strategies; and secondly, to help us interpret and dissect theempirical data, and to understand the 
necessarily compound and messy patterns of recall seen in the data as being composed of distinct contributions 
from the different resources and strategies.The modular structure of the models allows one component to be 
changed leaving othercomponents unchanged. This approach to modelling allows alternative accounts to be tested 
within a single framework, showing whether specific components can account for a particularaspect of behaviour, 
or whether they should be ruled out.  

Looking to the future, we see further ways in which these “toolkit” models can be used:  

 
(1)  Like some other modular models, this one offers hints as to how the strategies might arise.If each module 
makes local sense in terms of the task requirements, then it is plausible thatSs would choose to do it, at least up to the 
point where there is evidence that it doesn’twork. For example, attending to each incoming item has the automatic 
side-effect of storing the item in DM. So DM is always available as a resource for recall. Likewise, if an item is 
available for recall from a very fragile store, such as the aural buffer, it makes sense to report it before moving on to 
less ephemeral resources.  
 

(2)  These models may not be able to predict “what people do” (even allowing that there is noone thing that 
they do do), but Act-R, as a model of the human cognitive architecture,should excel at telling us which potential 
strategies are humanly executable and which arenot. For example, we devised a counter-intuitive strategy for RMS 
in which each incoming item is added to the beginning (instead of the end) of the list being rehearsed, and later 
partsof the list are simply abandoned when it gets too long. In principle, because this strategy allows S to focus on 
the first few elements of the list, which are the easiest ones to rehearse,it should have played to the strengths of both 
human cognition and of the task requirementsby constantly maintaining a list of the most recent, say, six items. In 
practice however, Ss found the strategy too complex, and were losing incoming items while still struggling to work 
out what they were supposed to do with a previous item.  
 

(3)  Another question where Act-R should be in a position to predict the answer, is the matter ofwhat happens 
if a strategy is practised and used repeatedly over a long time. To continue with the same example, if the 
“backwards encoding” strategy just described were practised repeatedly, perhaps with a gradually increasing 
presentation rate, it is still possible that itwould turn out to be effective. Act-R ought to be able to tell us.  

Finally, we mention briefly two other related attempts at modelling working memory tasks.David Huss, working 
with Mike Byrne, several years ago built an implementation of thephonological loop using the Act-R/PM audicon. 
In the end our modelling took a differentdirection, but we studied his model closely and learned from it. And 
recently, after the work reported here was finished, we became aware of a PhD by Krawitz (2007) which presents 
an EPIC model of a number of updating-style working memory tasks. His findings largely agreewith or 
complement ours, but he has far less interest in multiple strategies and, so far as we can see, none at all in patterns 
of order of recall.  
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We explored the learning and forgetting performance of 30 participants in an office work task, using a relatively 

unknown spreadsheet. Participants were randomly assigned to three different retention intervals (6-, 12-, and 18-

days) to investigate forgetting.  The Power Law of Learning again matched human learning behavior. Retention 

intervals (6-day, 12-day, or 18-day) showed clear effects on the amount of forgetting. The ACT-R theory, which is 

used as the main theoretical background, was tested against human data with regard to learning and forgetting. The 

skill retention model in ACT-R was developed to predict a mouse user’s learning and forgetting performance in one 

subtask. The model predicted the learning performance on this a half minute task with 

€ 

r2  = 0.8 and RMSSD = 1.4, 

compared with human data. The model showed that an ACT-R model is able to predict learning. The endeavor of 

human performance modeling using ACT-R can be used to evaluate efficacy of a training regimen by predicting 

learning. We note the advantages and disadvantages of using a current cognitive architecture in predicting training 

and provide suggested directions toward exploration of smart training. 
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Confronting Architectural Drift in ACT-R 
 

Glenn Gunzelmann (glenn.gunzelmann@mesa.afmc.af.mil) 
Air Force Research Laboratory; 6030 South Kent Street; Mesa, AZ  85212 USA 

 
The ACT-R architecture continues to experience vibrant 
development, resulting in theoretical progress and a 
continuous stream of implementation changes that improve 
upon the details of the architecture. Since the initial release 
of ACT-R 6.0 at the 2005 ACT-R Workshop in Trieste, 
Italy, over 500 ACT-R code updates have been committed 
to the Subversion server. The modifications implement 
incremental changes that address a variety of issues, from 
correcting bugs and extending the capabilities of ACT-R so 
that the implementation better reflects the theory, to 
updating documentation and “extras” (e.g., the Environment 
interface, contributed files). In general, major theoretical 
additions and changes have been rare, although p* 
productions, reinforcement learning for production utilities, 
and the new vision module are notable exceptions. 

Development of the architecture does not come without a 
cost, however. As the implementation is improved and 
theoretical details are refined, there are potentially 
important, though often subtle, changes in ACT-R’s 
behavior. This issue became more salient in recent efforts to 
update a model of the impact of fatigue from ACT-R 5 to 
ACT-R 6. The model performs a simple task called the 
Psychomotor Vigilance Test (PVT), a sustained attention 
task where participants are asked to monitor a known 
location and respond to the onset of a stimulus by pressing a 
response button. The model itself is straightforward, but 
there are a number of subtleties in the human data, including 
the impact of sleep loss and circadian rhythms, which we 
account for in our model in ACT-R 5 (see Gross, 
Gunzelmann, Gluck, Van Dongen, & Dinges, 2006). 

Because of the simplicity of the model, updating the 
syntax of the task delivery code and model to run in ACT-R 
6 was straightforward, though care was required because the 
effects of some operations in ACT-R 6 are different in 
influential ways from ACT-R 5. Using the “old” (ACT-R 5) 
utility mechanism for production selection, the behavior of 
the ACT-R 6 model is roughly equivalent to the ACT-R 5 
model when the fatigue mechanisms are disengaged in both. 
However, as the impact of the fatigue mechanisms 
increases, the performance of the ACT-R 6 model diverges 
from the performance observed in ACT-R 5 (Figure 1). 

An investigation of this issue has led to some possible 
answers. The most likely appears to be the interplay 
between the “run” command and the ACT-R clock and 
scheduler. Variations in how the clock is managed and 
events are scheduled on the boundaries of run calls appear 
to result in small but significant changes to the model 
predictions. This illustrates that the behavior of ACT-R 6 
can differ from ACT-R 5 depending upon the task context 
and the details of the implementation. In cases where the 
microstructure of ACT-R’s behavior can impact the 
conclusions drawn from models – where milliseconds 
matter (e.g., Gray & Boehm-Davis, 2000) – these small 
differences may have important implications. 

 
Figure 1: Median alert response time on the PVT as fatigue 

mechanisms are engaged (increasing micro-lapses). 
  
Dealing with this issue could involve locking the model in 

a particular version of the architecture. However, the goal is 
to develop a cumulative theory that can be used to generate 
predictions of human performance in novel contexts by 
using tasks like to PVT to baseline fatigue parameters. To 
take advantage of emerging capabilities in the architecture, 
bug fixes, and extensions, it is important to remain current. 
Thus, it is imperative to carefully validate the model as it is 
run in new and different versions of ACT-R. Here, this 
requires careful analysis of ACT-R traces to ensure that 
action sequences and event timings remain consistent. The 
right approach to addressing architectural drift like this 
depends on the model and application, but it is something 
that modelers must confront somehow in their research. 
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Not too long ago ACT-R was little more than a memory system. 
Perception and motor processes were added to embody ACT-R. 
One of the next development goals is the addition of emotions. 
Incorporating the effects of stress and other behavioral 
moderators into the ACT-R architecture represents our 
contribution to meeting this goal.  
As a starting point we looked at existing theories of stress and 
how to incorporate them into the ACT-R architecture in the 
form of overlays (Ritter et al, 2007). An overlay is a change to 
the existing architecture to implement some feature and may be 
as simple as a change to a default parameter or as complex as a 
new module. We were able to identify some potential overlays 
but we often found that the existing theories were not precise 
enough for encoding into a cognitive architecture. The next step 
was to conduct an experiment on the effect of behavioral 
moderators and develop a model that would incorporate the 
overlays we had identified if possible and identify new ones.  

The Trier Social Stressor Task (TSST) (Kirschbaum, Pirke & 
Hellhammer, 1993) has been widely used to study the 
physiological effects of stress. Part of the TSST is a serial 
subtraction task that lends itself to computational cognitive 
modeling. It includes a pre-task appraisal measurement that 
allows the experimenter to group participants into “threatened” 
(little control over performance, less able to cope) and 
“challenged” (in control, can more than cope) groups. These 
pre-task appraisals can moderate stress responses to the task and 
performance on this task (Quigley, Feldman Barrett, & 
Weinstein, 2002).  

In the TSST, serial subtraction consists of subtracting 7 or 13 
from a 4-digit number, speaking the answer, and then 
proceeding with the next subtraction for the answer just given. 
This is done for 120 s at which time the experimenter interjects 
a stress inducing comment. The task then continues for 120 s. 
The participant is given feedback for incorrect responses and 
cannot proceed to the next number until the correct response is 
spoken. In our empirical study (Ritter et al., submitted) we 
found a high variance in number of subtraction attempts and 
accuracy. We also found several strategies for speaking the 
answer.  
Our effort at modeling these distinctions is an ACT-R model 
with overlays to the architecture. Our ACT-R model of this task 
integrates declarative, procedural, and vocal processes. Several 
different vocalization strategies are implemented. These 
strategies contribute substantially to the model’s ability to 
simulate the threatened/challenged distinction. This suggests 
that stress can be simulated in ACT-R not only through overlays 
but through strategy selection, which is a different type of 
control than changing  

the architecture. The overlays that we use to model this 
difference are parameter setting overlays. That is, different 
settings of parameters are used for simulating a threatened and a 
challenged participant. We are currently comparing the model 
to human performance on the number of subtraction attempts, 
accuracy, and error types.  
Developing the parameter setting overlays required searching a 
vast parameter space. For example, Wickens proposes a reduced 
“working memory” under high stress. In ACT-R there are 
several parameters involved in “working memory” such as the 
retrieval threshold, the base level constant, the activation noise, 
and the latency factor. To date we have looked at activation 
noise and the base level constant and are in the process of 
incorporating retrieval threshold and the latency factor into an 
overlay. To find settings for these requires new ways of using 
high performance computers to run models. We have developed 
a methodology using genetic algorithms for running the serial 
subtraction model on high performance computing systems 
(Kase, Ritter, & Schoelles, 2008). An interesting finding of this 
effort has been the types of errors made by the different 
groups—the vocalization strategy seems to play a large part in 
this. We hypothesize that activation may be spreading from the 
vocal buffer inducing memory errors. We are currently 
investigating how to accomplish this in ACT-R.  
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Adversarial behavior is a pervasive aspect of human activity.  It happens every day in naturalistic settings as diverse 
as driving, work, and interpersonal relationships.  In more abstract settings, it is featured prominently in paradigms 
ranging in complexity from simple games (e.g. board games) to first-person shooter video games (e.g. Doom, 
Quake, etc) to command-and-control simulations in military settings (e.g. Command and Conquer) to massive multi-
player online environments (e.g. EverQuest).  Adversarial behavior has been a central application area of Artificial 
Intelligence from its early days (e.g. Samuels’ checker player) and a key form of performance benchmark (e.g. the 
Friedkin Prize for chess, Robocup).  In economics, a formal theory (game theory) has been developed to account for 
the unique aspects of behavior that it brings forth. 
 
In stark contrast, adversarial behavior has received comparatively little attention in cognitive psychology, for a 
number of reasons both practical and theoretical.  However, we have shown that, despite that lack of interest, 
cognitive models of adversarial behavior can provide both high-levels of functionality (e.g. Roshambo competition, 
ICCM Poker symposium) as well as close correspondence to human performance (e.g. PRS player, baseball batting, 
backgammon player).  Moreover, those models have exposed the flaws in game-theoretic accounts of adversarial 
behavior (e.g. PRS, Prisoner’s Dilemma) as well as the functional advantages of cognitive architectures over 
machine learning approaches (e.g. baseball batting). 
 
However, as one moves from those simple, formal domains to more naturalistic ones (e.g. MOUT), complexities 
arise.  Central characteristics of adversarial behavior, including constant unpredictiveness and adaptivity, stress 
some underlying assumptions of cognitive architectures.  Key aspects of the practice if not the theory of cognitive 
modeling such as the ability to anticipate and reflect in the design of the cognitive model the structure of the 
problem-solving process and the representation of information received from the environment that are mainstays of 
experimental psychology designs are under stress in adversarial environments.  The change in the nature of task 
from a static experimental design to constantly changing, dynamic adversaries raises the bar for flexibility and 
adaptivity in cognitive models. 
 
We will illustrate those challenges using a task involving teams of adversarial agents in a synthetic environment.  
Key aspects of needed functionality for cognitive agents in that environment are the needs to flexibly and robustly 
represent the current context, access declarative information such as plans and strategies, manage conflicting goals, 
and reconcile goal-directedness and reactivity in mapping context to strategies.  We will describe approaches at 
providing that functionality within the context of the ACT-R cognitive architecture and attempts at validating it 
using traditional modeling methods.  We propose a 3-level validation methodology for cognitive architecture 
mechanisms that include Functionality (which capability is added or improved?), Fitting (which results are 
accounted for in a better or more natural way?) and Compatibility (impact on existing models as per Simon’s 
methodology of backward-fitting: simpler/more robust accounts (great), unaffected (good), or requiring change 
(good or bad)). 

15TH ANNUAL ACT-R WORKSHOP 27



The Influence of Task Demands in a Model of Time Estimation 
 

Nele Pape (nele.pape@zmms.tu-berlin.de)) 
GRK Prometei, ZMMS, Technische Universität Berlin 
Franklinstr. 28-29, FR 2-7/2, 10587 Berlin Germany 

Leon Urbas (leon.urbas@tu-dresden.de) 
Dept. of. Electrical and Computer Engineering, Technische Universität Dresden 

Helmholtzstrasse 10, 01069 Dresden Germany 
 

Abstract 

A model of prospective time-estimation is introduced which 
explains the interplay of working memory demands on 
duration estimation. The approach is integrated into ACT-R 
and tested by estimating the duration of a task that varied 
coordinative and sequential demands on working memory. 
The comparison with experimental data shows that the model 
is able to simulate the influence of these demands on human 
time-estimation. 

Introduction  
The cognitive ability to be aware of the passage of time is 
beneficial in dynamic environments. Time-judgments are 
important to stay tuned to this environment, to plan steps in 
a task, and to identify problems (e.g. after an expected 
duration of booting a computer the monitor stays blank).  

In the context of human-machine interaction, the 
knowledge of temporal dependencies is of great interest. For 
example, in order to drive safely, drivers need to divide their 
visual attention in a reasonable way between traffic and 
secondary tasks such as In-Vehicle-Information-Systems. 
Operators can deduce a malfunction from the system’s 
temporal behavior in comparison to the temporal properties 
of a functioning system (Schulze-Kissing, 2007). 

Here we introduce a computational model of time-
estimation that shows how a demanding task disrupts the 
ability to judge time. In this model, the need to maintain and 
update information (e.g. a number in arithmetic) during a 
task distorts the construction of time representation during 
this period. The approach is integrated into ACT-R (atomic 
components of thought – rational analysis; Anderson et al., 
2004). In this way the influence of cognitive processes and 
demands on the construction of time representations can be 
explored in a cognitive context. For cognitive architectures, 
it is valuable to have an integrated component that simulates 
temporal human behavior. This is especially important for 
modeling switching tasks, multitasking and tasks under 
time-pressure. 

The integrated timing-model is tested within a counting 
task (Dutke, 1997) with varying demands to compare 
human data to the performance of the model.  

 
Psychological Models of Time-Estimation 

The research field of human time-estimation explains 
differences in estimates on a number of factors such as the 
duration of the interval, the kind of instruction given to the 

subjects, when and how an interval is estimated (production, 
reproduction), or the number of incidents experienced 
during a given interval.  

It is generally found that a demanding task affects time-
estimation. Time-estimates are shorter when compared to 
less demanding conditions (Zakay, 1993; Dutke, 1997; 
Brown, 1997). A number of authors (e.g. Block & Zakay, 
1996; Brown & West, 1990) assume that attention-
allocation is the responsible factor for the interference 
between task and time-estimates. A number of other authors 
assume a strong influence of working memory on time-
estimation. 

Quantitative Time-Estimation Model 
The proposed model of prospective time estimation consists 
of four parts: a pacemaker that generates pulses, an 
accumulator which collects pulses for short durations, a 
process of construction which updates the time 
representation, and a procedure which finally estimates 
time, e.g. by comparing an old time representation with a 
new interval as in the reproduction task. The first two parts 
are modeled by adding a timing-module to the architecture. 
The third and forth parts of the approach integrate the output 
of the new timing-module with already existing processes 
and modules of the cognitive architecture. 

Discussion 
The approach under discussion explains the way working 
memory demands effect duration estimation. For a time-
estimation, the temporal representation during an interval 
has to be updated continuously. In order to do this the latest 
representation has to be maintained in working memory. A 
task that calls upon working memory mechanisms interferes 
with the working memory mechanism of maintaining the 
latest time-representation. Compared to other theoretical 
accounts of duration estimation, this model is more 
parsimonious in that no additional elements like an 
attentional gate or processes of a central executive are 
necessary to explain observable distortions of the estimation 
process.  
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The Influence of Task Demands in a 
Model of Time Estimation

Nele Pape, Technische Universität Berlin

219.07.2008 Nele Pape ACT-R Workshop 2008

Time-judgments are important to:

stay tuned to the environment 

to plan steps in a task 

to detect delays, i.e. absence of events 

• In the context of human-machine interaction, the 
knowledge of temporal dependencies is of great interest, 
e.g.: 

in order to drive safely 

to deduce a malfunction from the system’s temporal 
behavior

319.07.2008 Nele Pape ACT-R Workshop 2008

Why is time estimation important for 
cognitive architectures?

• It is valuable to have an integrated component 
that simulates temporal human behavior: 

switching tasks 

multitasking

tasks under time-pressure (subjective time on 
task / remaining time)

timing of action without external cues

419.07.2008 Nele Pape ACT-R Workshop 2008

Psychological Model: Attentional-Gate

Problems: 

What is attention-to-time? 

What corresponds to this in ACT-R?

[Block & Zakay 1996; Zakay & Block 1997]
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Models of prospective time-estimation...

... are already implemented in ACT-R 
(Byrne, 2006; Taatgen, van Rijn & Anderson, 2007) 

• Byrne: Attentional Gate
Attention can either be devoted to time (which opens the 
“gate,” allowing pulses to be counted), or to other tasks
In ACT-R terms, this means:

a production has to fire to increment the counter
pulses can be missed, producing underestimates

• Taatgen: Slow down of pacemaker (duration < 15 sec)
If a task is very demanding people forget to estimate time 
and have to restart their estimation
no account what kind of task demands are responsible for 
distortions in time-estimates

619.07.2008 Nele Pape ACT-R Workshop 2008

The ‘Task Sensitive Time Estimation Module’
(TaSTE Module)

• Target:
Prospective time estimation for longer durations 

• Foundations:
Empirical findings of influence of task demands on 
time estimation (Brown, 1997; Dutke, 2005)

Time Traces in Episodic Memory (Baddely, 2002)

• No Magic Doctrine:
Use regular memory processes such as Spreading 
Activation and the concept of Working Memory 
already implemented in ACT-R to „Emerge“ human 
time estimation effects 

(Lovett, Reder & Lebiere, 1999)
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The ‘Task Sensitive Time Estimation Module’
(TaSTE Module)

• Pacemaker

• Accumulator

• Reconstruction 
Process

• Reproduction or 
comparisonDeclarative Memory

First
time

chunk
0

Very old
time

chunk
8

Pacemaker
Accumulated 
pulses:

Timing Module

4

Old
time

chunkOlder
time

chunk
15

19

Latest
time

chunk
24

Accumulated 
pulses
+  retrieved chunk

Production
model perceived

special event
Elicits timing

Timing Buffer

Retrieval Buffer Newtime
chunk28

No need for a 
‘Gate’!

Distortions of time 
estimates emerge 
naturally+temporal> 

isa start +temporal> 
isa stop

+temporal> 
isa event

0

819.07.2008 Nele Pape ACT-R Workshop 2008

Context information and Spreading Activation

Declarative Memory

First
time

chunk
0

Very old
time

chunk
8

Pacemaker
Accumulated 
pulses:

Timing Module

4

Old
time

chunkOlder
time

chunk
15

19

Latest
time

chunk
24

Accumulated 
pulses
+  retrieved chunk

Production
model perceived

special event
Elicits timing

Timing Buffer

Retrieval Buffer Newtime
chunk28

First
time

chunk
0

First
Time
chunk

0
38

16

38
nil

67

Found Target:38

• Context dependent

• Explains influence of WM demand (Lovett, Reder & Lebiere, 1999)

• Episodic Memory Traces (Baddley, 2002)
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An example task

Counting task (Dutke, 2005) :

Subjects had to scan the list for: 

(1) one target (16) or...

(2) one of three targets (16, 38, 67)

… and say “yes” at the third occurrence 16 38 67 N

cond. 4cond. 2seq+

cond. 3cond. 1seq-

coor+coor-

• High coordinative demands (coor+)

The WM system has to coordinate storing, 
refreshing, updating, and responding –
without confusing the tallies

• High sequential demands (seq+) 

The system has to deal with a higher rate 
of updating the results of the counting 
process (35% vs. 68%) (14 vs. 27 targets)

1019.07.2008 Nele Pape ACT-R Workshop 2008

An example task

Subject had to reproduce the 
duration they experienced 
(400sec)

16 38 67 N

cond. 4cond. 2seq+

cond. 3cond. 1seq-

coor+coor-

Hypotheses:

Both demands will distort time estimation 
if the Attentional Gate Model is true

Just coordinative demands will distort 
time estimation if they depend on 
specific wm resources
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Results counting Task
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Outlook 

• Next steps:

Evaluate predictive power of the model

Variation of task

Influence on well learned durations

Different durations

Different ways of using time representations 
(reproduction with/without task)
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Fixed mechanisms and structures that underlie 

cognition 

–!Processors that manipulate data 

–!Memories that hold knowledge 

–!Interfaces that interact with an environment 

•! Sharp distinction between  

–!task-dependent knowledge and  

–!task independent architecture 

2 

Goal 

Modeling Functionality 

Compare to human data: 
- Generality 

- Reaction time 

- Error rates 

- Learning rates 

- Changes in brain physiology 

… 

Solve problems: 
- Generality 

- Efficiency  

- Robustness 

- Flexibility 

- Instructability 

… 

•! Coarse-grain integration 
–! Connecting all capabilities, from perception to action 

•! Fine-grain integration of capabilities/knowledge 
–! Dynamic intermixing of perception, reaction, situational assessment, planning, 

meta-reasoning, language, … 

•! Ubiquitous learning that 
–! is not deliberately cared for and controlled 

–! is incremental and real-time 

–! doesn’t interfere with reasoning 

–! impacts everything an agent does 

•! Long-term existence 
–! Behave for hours or days, not minutes 

–! Scaling to tasks employing large bodies of knowledge 

–! Generation of goals, drives, internal rewards, …  

•! Turing equivalence isn’t sufficient 
–! Architectures have different complexity profiles 
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•! GPS (Ernst & Newell, 1969) Means-ends analysis, recursive subgoals 

•! ACT (Anderson, 1976) Human semantic memory 

•! CAPS (Thibadeau, Just, Carpenter) Production system for modeling reading 

•! Soar (Laird, & Newell, 1983) Multi-method problem solving, production systems, and problem spaces 

•! Theo (Mitchell et al., 1985) Frames, backward chaining, and EBL 

•! PRS (Georgeff & Lansky, 1986) Procedural reasoning & problem solving  

•! BB1/AIS (Hayes-Roth & Hewitt 1988) Blackboard architecture, meta-level control 

•! Prodigy (Minton et al., 1989) Means-ends analysis, planning and EBL 

•! MAX (Kuokka, 1991) Meta-level reasoning for planning and learning 

•! Icarus (Langley, McKusick, & Allen,1991) Concept learning, planning, and learning  

•! 3T (Gat, 1991) Integrated reactivity, deliberation, and planning 

•! CIRCA (Musliner, Durfee, & Shin, 1993) Real-time performance integrated with planning 

•! AIS (Hayes-Roth 1995) Blackboard architecture, dynamic environment 

•! EPIC (Kieras & Meyer, 1997) Models of human perception, action, and reasoning 

•! APEX (Freed et al., 1998) Model humans to support human computer designs  
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1970 
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2000 

•! GPS (Ernst & Newell, 1969) Means-ends analysis, recursive subgoals 

•! ACT (Anderson, 1976) Human semantic memory 

•! CAPS (Thibadeau, Just, Carpenter, 1982) Production system for modeling reading 

•! Soar (Laird, & Newell, 1983) Multi-method problem solving, production systems, and problem spaces 

•! Theo (Mitchell et al., 1985) Frames, backward chaining, and EBL 

•! PRS (Georgeff & Lansky, 1986) Procedural reasoning & problem solving  

•! BB1/AIS (Hayes-Roth & Hewitt 1988) Blackboard architecture, meta-level control 

•! Prodigy (Minton et al., 1989) Means-ends analysis, planning and EBL 

•! MAX (Kuokka, 1991) Meta-level reasoning for planning and learning 

•! Icarus (Langley, McKusick, & Allen,1991) Concept learning, planning, and learning  

•! 3T (Gat, 1991) Integrated reactivity, deliberation, and planning 

•! CIRCA (Musliner, Durfee, & Shin, 1993) Real-time performance integrated with planning 

•! AIS (Hayes-Roth 1995) Blackboard architecture, dynamic environment 

•! EPIC (Kieras & Meyer, 1997) Models of human perception, action, and reasoning 

•! APEX (Freed et al., 1998) Model humans to support human computer designs  
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Psychological Modeling 
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•! GPS (Ernst & Newell, 1969) Means-ends analysis, recursive subgoals 

•! ACT (Anderson, 1976) Human semantic memory 

•! CAPS (Thibadeau, Just, Carpenter, 1982) Production system for modeling reading 

•! Soar (Laird, & Newell, 1983) Multi-method problem solving, production systems, and problem spaces 

•! Theo (Mitchell et al., 1985) Frames, backward chaining, and EBL 

•! PRS (Georgeff & Lansky, 1986) Procedural reasoning & problem solving  

•! BB1/AIS (Hayes-Roth & Hewitt 1988) Blackboard architecture, meta-level control 

•! Prodigy (Minton et al., 1989) Means-ends analysis, planning and EBL 

•! MAX (Kuokka, 1991) Meta-level reasoning for planning and learning 

•! Icarus (Langley, McKusick, & Allen,1991) Concept learning, planning, and learning  

•! 3T (Gat, 1991) Integrated reactivity, deliberation, and planning 

•! CIRCA (Musliner, Durfee, & Shin, 1993) Real-time performance integrated with planning 

•! AIS (Hayes-Roth 1995) Blackboard architecture, dynamic environment 

•! EPIC (Kieras & Meyer, 1997) Models of human perception, action, and reasoning 

•! APEX (Freed et al., 1998) Model humans to support human computer designs  
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1970 

1975 

1980 

1985 

1990 

1995 

2000 

Active Architectures 

•! Explosion of different architectures 

–!Developed with different goals in mind 

•! Lots of different components  

•! But some significant commonalities 
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Goal 

Type of Model Design Inspiration 

Modeling Functionality 

Brain 

Structure 

Leabra: O’Reilly 

Arbib 

Granger 

Grossberg 

Overt 

Behavior 

ACT-R 

EPIC 

Clarion 

LIDA/IDA 

4CAPS 

Soar 

ICARUS 

Companions 

Polyscheme 

Psychology 

4D/RCS 

NARS 

NCE 

VARIAC 

Comirit 

I-Cog 

Engineering 

OSCAR 

MicroPsi 

RASCALS 

Philosophy 

10 

Symbolic 

Short-term Memory 

Procedural  

Long-term Memory 

Declarative  

Long-term Memory 

Perception Action 

Action 

Selection 

Procedure 

Learning 

Declarative 

Learning 

Goals 

Symbolic Long-Term Memories 
Procedural 

Symbolic Short-Term Memory 
Decision 

Procedure 

Chunking Reinforcement 

Learning 

Semantic 

Semantic 

Learning 

Episodic 

Episodic 

Learning 

Perception Action 

Imagery 

A
p
p
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s  
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Goal Buffer 

Declarative 

Module 

Buffer 

Intentional 

Module 

Manual 

Module 

Manual Buffer 

Visual Module 

Visual Buffer 

Environment 

Imaginal 

Module 

B

u

f

f

e
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Procedural 

Production Rules 

Rule Selection 

Rule 

Composition 

Declarative 

Learning 

Action-centered 

explicit representation 
Non-action-centered 

explicit representation 

Action-centered 

implicit representation 

Non-action-centered 

implicit representation 

Goal Structure 

Drives 

Reinforcement 

Goal setting 

Filtering 

Selection 
Regulation 

ACS NACS 

MS MCS 

Action 

Perception 

Perception 
Short-term 

Conceptual 
Memory 

Long-term 

Conceptual 
Memory 

Long-term 

Skill 
Memory 

Skill 

Retrieval 

Short-term 

Goal/Skill 
Memory 

Skill 

Execution 

Environment 

Categorization 

and Inference 

Problem 

Solving 

Skill Learning 

Perception Declarative 

Memory 

Procedural 

Memory 

Action 

Selection 

Action 

Global 

Workspace 
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•! Complex behavior arises from sequence of simple decisions 

over internal and external actions controlled by knowledge 

–! No monolithic plans 

–! Significant internal parallelism, limited external parallelism 

–! For cognitive modeling, ~50msec is basic cycle time of cognition 

•! Knowledge access must be bounded to maintain reactivity 

•! Symbolic long- & short-term knowledge representation 

–! Procedural & semantic (Clarion also has non-symbolic) 

–! Relational representations (-Clarion) 

•! Non-symbolic representation for action selection 

•! Learning is incremental & on-line (-LIDA) 
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•! Categorization [ICARUS & LIDA] 

•! Episodic Memory [Soar & LIDA] 

•!Attention [LIDA] 

•!Mental Imagery [Soar] 

•!Appraisals – emotion [Soar] 

•!Drives [Clarion] 
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Evaluate 

Operators 

Evaluate 

Operators 

Production 

Memory 

Working 

Memory 

Soar 101: Eaters 

East 

South 

North 

Propose 

Operator 

North > East 

South > East 

North = South 

Apply 

Operator 
Output Input 

Select 

Operator 

If cell in direction <d> 

is not a wall,  

-->  

propose operator  

move <d> 

If operator <o1> will move to a 

bonus food and operator <o2> 

will move to a normal food,  

-->  

operator <o1> > <o2> 

If an operator is 

selected to move <d> 

-->   

create output 

move-direction <d>  

Input 
Propose 

Operator 
Select 

Operator 

Apply 

Operator 
Output 

If operator <o1> will move to a 

empty cell 

-->  

operator <o1> < 

North > East 

South < 

move-direction 

North 

Soar 102: Substates 

East 

South 

North 

Propose 

Operator 

Evaluate 

Operators 

Apply 

Operator 
Output Input 

Select 

Operator 
Input 

Propose 

Operator 
Evaluate 

Operators 

Select 

Operator 

Tie 

Impasse 

Evaluate-operator  

(North) 

North = 10 

Evaluate-operator  

(South) 

Evaluate-operator  

(East) 
= 10 = 10 = 5 

North > East 

South > East 

North = South 

•! Working memory representation & size 

–!Fixed buffers vs. unbounded graph structure 

•! Persistence of working memory elements 

–!Persistent vs. persistent and non-persistent 

•! Encoding of procedural knowledge 

–!Rules vs. operators/parallel rules + parallel elaborations 

•! Goal structures 

–!Deliberate vs. architectural substates 

•! Meta-data 

–!?? vs. architectural impasses/substates 
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Symbolic Short-Term Memory 

•! Learn from rewards 

–! Reinforcement learning 

•! Learn facts 

–! What you know 

–! Semantic memory 

•! Learn events 

–! What you remember 

–! Episodic memory 

•! Basic drives and … 

–! Emotions, feelings, mood 

•! Non-symbolic reasoning 

–! Mental imagery 

•! Working memory relevance 

–! Activation 
18 
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Reinforcement 

Learning 

Soar: 1990-2003 
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•! Negatives 
–! Unbounded working memory 

–! Unbounded goal stack 

•! Positives 
–! Incorporates many additional components 

•! Episodic memory, mental imagery, appraisals 

•! Easy to distinguish current situation from hypotheticals 

–! At longer time scales, knowledge dominates behavior, not 
architecture 

•! Indistinguishable from ACT-R for Pyramid problems & rat mazes 

–! Easy and fast to explore complex behavior 
•! ~1,000 times cognitive real time on simple tasks (no learning) 

–! Scales up to large and long problems 
•! > 8,000 rules for some tasks  

•! > 5,000,000,000 decisions = 7 years real time (no learning) 
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21 

Current 

Cognitive 

Architectures 

Implementation Technology 

General AI & Applications 

Model More Complex Behavior 

Up 

Down 

Sideways Sideways 

Expanded 

Architecture Evaluation 

•! Many more complex, knowledge-rich capabilities 

–! Natural language, planning, spatial, temporal, meta-reasoning, reflection to 
improve performance, develop strategies 

•! Long-term behavior 
–! Multiple interacting goals where history matters 

•! Interactions between those capabilities 

–! Natural language interaction to aid planning 

–! Planning during natural language generation 

•! Social agents that perform many different tasks 

•! Learning is everywhere (wild learning) 
–! From imitation, instruction, experience, reflection, …  

–! Transition from programming to training, learning by experience 

•! Real world applications 

–! Intelligent assistants, robots, training & education, computer games 

•! Connect to the rest of psychology 
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E-2C

GCC

Target 1

FACWanda

original flight

actual flight path

Cougar

TAD
TACC

F/A-18’s
1

2

3

4

5

MiG-23’s

radio

Elmer

Jud

6

Controls simulated aircraft in 

real-time training exercises 

(>3000 entities) 

Flies all U.S. air missions 

Dynamically changes missions 

as appropriate 

Communicates and coordinates 

with computer and human 

controlled planes 

>8000 rules 

[1997] 

•! Challenge 

–!Real systems run for days, weeks, months, …  

–!Real applications will require huge knowledge bases 

•!8,000 rules in TacAir-Soar 

•!3,000,000 facts in OpenCyc 

–!Real learning leads to lots of knowledge 

–!Architectures assume constant time memory retrieval  

•! Common response:  

–!“Don’t worry, Moore’s Law will save us.” 

24 
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Uniprocessor performance by year 

[Courtesy Mark Horowitz, Stanford] 

Power is  

the new 

limiter 

•! Coarse-grain:  
–!Multi-core & multi-processor clusters [Companions] 

–!But Amdahl’s law – still stuck with most costly process 

•! Fine-grain: New hardware architectures 
–!FPGAs for memories 

–!GPUs for imagery 

–!??? 

•!Available technology can (should?) impact 
cognitive architecture design 
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•! Extend models to the brain phenomena (fMRI) 

–!Anderson et al. (problem solving) 

–!Mitchell et al. (nouns) 

•!Neural models: Leabra (O’Reilly) 

•! Circuit models: Arbib, Grossberg, Ganger 

•!More brain structures and structure 
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•! Low-level vision & motor control (learning) 

•! Categorization, classification, …  

•!Development 

•! Prediction 

•! Emotion 

•!Drives and Motivation [origin of goals] 

•!Non-symbolic representations, reasoning, learning  

–!Mental Imagery 

–!Probability  

28 

•!Advantages of architecture 

–!Stable & efficient 

–!Has access to architectural data 

–!Available for all tasks independent of learning 

•!Advantages of knowledge 

–!Can be task-specific 

–!Can change over time 

–!Simplifies architecture (RISC vs. CISC) 

29 

•!No “gold standard” for comparison 

•!No common tasks or metrics 

•!No agreed upon evaluation methodology 

•!Need series of tasks that require more and more 

capabilities 

–!Where generality and learning are necessary 

30 
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•! Cognitive Constraint Modeling: CORE 

–!Howes, Lewis, Vera 

31 

Task Environment 

Constraints 

Strategies 

Architecture  

Constraints 

CORE 

•! We are in a “Golden Age” of cognitive architecture 
•! Even after 25 years, lots of exciting research ahead 
•! Many challenges: 

–! Performance:  
•! Scaling to large knowledge while maintaining reactivity over long times 

–! Applications 
•! Putting cognitive architectures to work 

–! Evaluation 
•! How do we get people to work on common problems and compare 

–! Consolidation 
•! Bring together best ideas 

–! Connect to the Brain 
–! Connect to rest of AI and psychology 

•! Prediction 
–! Prediction is the current/next “big” thing.  

32 
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Short-term decay of production

values for cognitive control

Erik M. Altmann

Michigan State University

Decay in cognitive control
(Altmann & Gray, in press, Psychological Review)

• Declarative control information

– Task codes

– Indicate what to do now, as opposed to last time

– Decay limits proactive interference

• Procedural control information

– Grabs system cycles to encode a task code

– Those cycles are lost to other processes

– But decay prevents lockout (see Salvucci & Taatgen, 2007)

Trial line

Even Odd

4

Response

Cue-stimulus

interval (CSI)

Task cue

(can switch or repeat from previous trial)

Imperative stimulus

Response

latency

Encoding productions

identify-cue

  When a task cue has onset,

retrieve its meaning, and

use it to create a new task code in episodic memory

activate-task-code

  When the new task code is not active enough yet,

increment its activation (fires iteratively)

• Values start the trial high, at cue onset

– Decay during cue-stimulus interval

– Relative to the unrelated-process production

Source of switch cost:

repeat cues are 

repetition-primed
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A general pattern

• Main effect of cue-stimulus interval is too

gradual to fit with constant production values

– Seems that either production values decay,

or the production approach is wrong, here

• May offer an account of alertness effects
(e.g., Luce, 1986; Posner & Boies, 1971)

– Aversion to maintaining full preparedness =

architectural decay of encoding productions

Implications

• A basic mechanism of endogenous control:

– Spike the value of encoding productions

– Basic: Applies to any input

– Output (task code) projects control into the future

• Decay then frees the central processor

– Automatically, unlike inhibition; safety feature

– Quickly, so other processes have access

– Preserves cognitive flexibility and reactivity

15TH ANNUAL ACT-R WORKSHOP 41



How a Modeler’s Conception of Rewards Influences a Model’s Behavior:  
Investigating ACT-R 6’s Utility Learning Mechanism 

 
Christian P. Janssen1,2, Wayne D. Gray2 and Michael J. Schoelles2  

cjanssen@ai.rug.nl, grayw@rpi.edu, schoem@rpi.edu 
1: Department of Artificial Intelligence, University of Groningen 

2: Cognitive Science Department, Rensselaer Polytechnic Institute 
 

There’s a lot to Learn about Utility Learning 
Temporal difference learning has recently been introduced 
as the new utility learning mechanism in ACT-R 6 (e.g., Fu 
& Anderson, 2004). Common practices for using it still 
have to emerge. In this study we take a first step by 
investigating two critical aspects of utility learning: the 
location and size of rewards.  

As a case study we use the Blocks World task (Gray et al., 
2006). In this task subjects have to copy a pattern of eight 
blocks, depicted in a target window, by moving blocks from 
a resource window to a workspace window. Information in 
each of the windows is covered by a gray rectangle and only 
becomes available when subjects move the mouse cursor 
into the window area. In addition, the information in the 
target window only becomes available after waiting for a 
lockout time of 0, 400 or 3200 milliseconds (manipulated 
between subjects). As the size of the lockout time increases, 
subjects tend to study and place more blocks per visit to the 
target window. 

Previous attempts in modeling the task in ACT-R 5 did 
not provide good fits to human data. Analysis indicated that 
this might be because ACT-R 5’s expected value equation 
can only handle binary feedback (Gray, Schoelles, & Sims, 
2005). As ACT-R 6’s utility learning mechanism is not 
limited to binary feedback, its use seems more promising. 

ACT-R 6 Models of the Blocks World task 
The ACT-R 6 models of the Blocks World task are kept 
close to the ACT-R 5 models, but also take benefit of new 
ACT-R 6 features. Crucially, the model has eight encode-x 
productions that determine its strategy: the number of 
blocks (x, ranging between 1 and 8), which the model will 
study during a visit to the target window. Using utility 
learning, the model tries to learn which encode-x 
strategies/productions lead to the best overall performance.  

We tested six different models that have the same 
parameter settings and production rules, but differ in two 
aspects: the location of the reward and the size of the 
reward. The location of the reward can either be once per 
trial after completing the whole trial or each time that the 
model has tried to place blocks in the workspace window 
and either finishes the trial, or starts studying blocks in the 
target window again. The location of the reward is 
important for utility learning, as the utility of a production 
converges towards the size of the experienced reward minus 
the average time between the firing of that production and 
the time the reward was triggered (Anderson, 2007). 

The second manipulation between models is the size of 
the rewards. Due to space limitations we will not describe 
each of these models in detail, but fundamentally the 
manipulations differ in what aspect of the task the model 
conceptualizes as a reward. On the one hand, a reward can 
be expressed in how good the model performs the task itself: 
how many blocks does it place after a visit to the target 
window, and how many blocks does it study but forget? 
Different models have different reward functions, but in 
general the rewards range between -8 (all blocks studied, 
none placed) and 8 (all blocks placed). A totally different 
conception is to express rewards in terms of how fast the 
model performs the task (or specific parts of it). Different 
models have different reward functions, but in general the 
rewards are negative: the more time the model spends on the 
trial (or on specific parts of it), the more negative the reward 
is. In this case rewards range between 0 and about -80.  

Results and Discussion 
As shown in our example above, the modeler’s conception 
of the rewards of a task has a big influence on the reward 
size. The reward size has a big influence on the utility of 
productions, and this has a big influence on the behavior of 
a model. In the end, the modeler’s conception of rewards 
has a big influence on the model's behavior.  

In our simulations of the Blocks World task, each model 
behaves different from others. Despite the broad exploration 
of model types, none provides a good fit to the human data. 
Some models seem to be at least as good as the best ACT-R 
5 models (Gray et al., 2005).  Unlike the ACT-R 5 models, 
these models do not require changes to the architecture. 
They require a different conception of what a reward is.  
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Instance and Strategy ACT-R models of choice in a dynamic control task: a 
model comparison story 

 
Varun Dutt (vdutt@andrew.cmu.edu) 
& Cleotilde Gonzalez (coty@cmu.edu) 

Dynamic Decision Making Laboratory 
Carnegie Mellon University 
Pittsburgh, PA 15213 USA 

 
 

In ACT-R, choice has traditionally been modeled by representing strategies into productions.  Each 

production in ACT-R has a utility value and ACT-R learns to choose the production with the maximum utility, 

among a possible set of applicable productions by using the conflict resolution and reinforcement learning 

procedures.  A second approach to modeling choice in ACT-R is instance-based, by representing alternatives into 

chunks.  Each chunk in ACT-R has an activation value, and ACT-R learns to choose the chunk with the highest 

activation, determined by frequency, recency, decay, and similarity of the chunk to the goal.  These effects of chunk 

activation clearly reproduce characteristics of human memory. 

 
We implemented two models of choice using Strategy-Based Learning (SBL) and Instance-Based Learning (IBL) 

approaches in ACT-R.  The models interacted in real-time with a dynamic control task, Dynamic Stocks and Flows 

(DSF).  The goal in DSF is to maintain the level of a stock (water in a tank) at a target level through repeated trials 

while external flows remove or add water into the tank.  The two models were compared in different dimensions:  

(1) Applicability: how well each model fits human data; (2) Robustness: how well each model with its own 

parameters with which it fits human data, is able to fit a new data set; and (3) Adaptability: how well each model is 

able to reproduce the way humans learn in one scenario of the task (i.e. training) and transfer to a new scenario. 

 

The results demonstrate that both models fit human data well.  However, the results also show that the IBL 

model is more robust and adaptable than the SBL model.  This exercise opens up for a discussion of how we 

evaluate the goodness of our models, and the advantages and disadvantages of traditional representations of choice 

in ACT-R.  
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The Sudoku Model: A Dynamic Decision Maker 
Michael J. Schoelles, Wayne D. Gray and Hansjörg Neth  

Cognitive Science Department, Rensselaer Polytechnic Institute 
 

Routine Behavior and Decision Making. 

While decision-making is often thought to be a product of 
high-level cognition, we contend that routine interactive 
behavior at the 300–1000 ms time scale can affect human 
decisions made at longer time scales. The ACT-R 6.0 
Sudoku model is being developed to explore how resource 
allocation strategies (Gray et al., 2006) used in routine 
interactive behavior influence decision-making strategies. 
The model is being developed in conjunction with a series 
of empirical studies.  
   Sudoku is a 9-row by 9-column matrix subdivided into 9 
3-row by 3-column matrices (called boxes). Each row, 
column and box must be filled with numbers 1 through 9 
with each number appearing only once in each row, column, 
and box. The puzzle starts out with some of the cells filled 
in and the solver must fill in the rest. Sudoku is well-suited 
to study the impact of interactive behavior on decision 
making, since it requires many decisions based on the 
interactions of human memory and vision. It is a popular 
game so the training time is minimal, and it is repetitive. 
The repetitive nature is important for 
electroencephalography (EEG) data collection, which we 
will do in future studies. Another advantage of Sudoku is 
that the level of difficulty of different games can be 
determined.  
   Sudoku has been well studied in the Artificial Intelligence 
(AI) community as a constraint satisfaction problem or logic 
problem (Simonis 2005). The solutions methods studied 
include the constraint of difference method, integer 
programming and graph theory. Little attention has been 
given to the study of the psychology of Sudoku, except for 
Lee et al. (2006). They report three experiments to 
determine what types of deductions people use to solve 
certain Sudoku configurations.  

Empirical Studies 
We are conducting a series of studies. In the first study, 
participants played a total of eight games each. The first 
three were practice games, the next three were games where 
the difficulty was manipulated and the last two were normal 
games. The difficulty manipulation was covering up 0, 6 or 
8 boxes. The manipulation required clicking on the box 
cover to remove it and see the cells in the box. This added a 
motor component to the task plus increased the amount of 
interaction between memory and vision. All the games in 
this study were rated as easy, which means that the game 
can be solved through constraint satisfaction without any 
search. We have also written an AI program to solve any 
Soduku puzzle and verified that these games require only 
propagation of constraints. This program can determine the 
level of difficulty of any Sudoku game in terms of the 

number of constraints propagated and the amount of search 
required. 

The Model  
The Sudoku model shows how the difficulty manipulation 
of the first empirical study influences the decision-making 
strategy. The current status of the model is that the first 
version of the model has been written and is being tested on 
different games. The current model can solve very easy and 
easy puzzles. The time the model takes is longer than 
humans but the model can make errors. The current model 
has been developed only for the manipulation where 0 boxes 
are covered.  
   To describe the operation of the model, the term unit will 
be used to refer to a row, column, or box. The current model 
scans the puzzle looking for a unit with 4 or fewer empty 
cells. For each empty cell in the unit it determines what are 
the possible values and encodes them. To determine a value 
the model scans the row, column and box for every possible 
value. If a value is not encountered it can encode it as a 
possible value. If the model has exhausted all possible 
values and recalls only one possible value then it will enter 
the recalled value into the cell. The model uses simple 
heuristics, for example, if there is only 1 possible value then 
only the unit needs to be scanned to determine the value. 
The current model always looks at a cell to determine its 
value if one exists. A change that we are currently 
implementing to interact more with memory by trying to 
recall a cell’s value instead of looking at it.  
   The next steps in the model development will be to 
improve the match of model performance to human 
performance in terms of time and error rates and to solve the 
puzzle when 6 or 8 boxes are covered. Since the task is very 
visual, the number of eye movements and time to move 
visual attention are crucial to model performance. Analysis 
of eye data collected during the empirical study will be used 
to improve the design of the model. 
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Putting New Wine into Old Bottles: 
On the role of markers, instances and utilities in the Iowa Gambling Task 

 
 

Danilo Fum (fum@units.it) 
 Antonio Napoli  

University of Trieste 
Trieste, Italy, I-34127 

 
 
While the Iowa Gambling Task has been traditionally considered as the main experimental testbed for the Somatic 
Markers Hypothesis put forward by Antonio Damasio and coworkers, it can be included among a set of experimental 
paradigms—comprising, for instance, probability matching, n-bandits, and dynamic choice tasks—which require a 
series of iterative decisions, and in which the only (or the most important) information available to the decision maker is 
constituted by the outcome of previous selections.  
 
Two main kinds of explanation have been provided for the experimental findings obtained with these tasks: the first one 
relying on the retrieval of previous outcomes from memory to drive new decisions, the second one based on the 
progressive learning of the utilities of different choice options. 
 
In the paper we present the results of three experiments carried out with the Iowa Gambling Task which clearly 
highlight the critical role played by the frequency of contingent events (e.g., losses in the case in which each selection is 
always associated with a gain) in comparison with alternative factors such as the dichotomy between immediate 
outcome and long term results privileged by the proponents of the Somatic Markers Hypothesis. 
 
In the first experiment—which adopted the classic IGT scenario in which each choice gave always rise to a win, while 
losses were contingent to the different selections—variations in the expected value of possible options did not influence 
the behavior of participants who were, on the contrary, extremely responsive to the frequency of losses associated with 
each choice. Similar results were obtained in the second experiment in which each selection was invariably associated 
with a loss, while wins were the contingent event.  
 
A procedural model, relying essentially on the new ACT-R utility learning mechanism, was capable of explaining these 
findings.  The model made also some interesting and unexpected predictions in the case in which the frequency of the 
contingent event was  kept constant. According to the model, with low-frequency events the participants should be 
unable to discriminate among the expected value of the different options while they should be able to concentrate their 
selections on the most profitable ones in case the high-frequency  contingent events. These predictions were confirmed 
in the third experiment.  
 
The relevance of this work for the Somatic Markers Hypothesis, on one hand, and for the instance vs. productions issue, 
on the other, is discussed, and some speculation about the neurobiological and the neuropsychological ramifications of 
the proposed mechanism are made.  
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Using ACT-R for Rapid Prototyping and Evaluation of In-Vehicle Interfaces 
 

Dario D. Salvucci  (salvucci@cs.drexel.edu) 
Department of Computer Science, Drexel University 

3141 Chestnut St., Philadelphia, PA 19104, USA 
 
 

Driver distraction from in-vehicle secondary tasks has 
become a great concern for researchers and citizens alike.  
While the community has traditionally used experimental 
testing (in driving simulators or on real roads) to evaluate 
the distraction potential of new interfaces and tasks, such 
testing is typically very time-consuming and very 
expensive.  Thus, there is much to gain from a system that 
can provide predictions of distraction potential — good 
engineering approximations that can guide design and 
development of in-vehicle interfaces. 

In this talk I will discuss a recent major redevelopment 
of Distract-R (Salvucci et al., 2005), a system that allows 
designers to rapidly prototype and evaluate new in-vehicle 
interfaces.  The core engine of the system relies on a 
rigorous cognitive model of driver behavior (Salvucci, 
2006) implemented in the ACT-R cognitive architecture 
(Anderson et al., 2004).  When integrated with other models 
of secondary-task behavior, the combined model can 
generate predictions of driver performance and distraction 
(see Salvucci, 2001; Salvucci, 2007).  Distract-R also 
utilizes Threaded Cognition theory (Salvucci & Taatgen, 
2008) to predict multitasking in the interleaved execution of 
the primary and secondary tasks. 

Distract-R allows a designer to prototype basic 
interfaces, demonstrate possible tasks on these interfaces, 
specify relevant driver characteristics and driving scenarios, 
and finally simulate, visualize, and analyze the resulting 
behavior as generated by the cognitive model.  To date we 
have applied the system to several modeling studies to 
explore the space of possible interfaces and to validate 
various aspects of the system.  The paper includes three 
modeling studies that demonstrate the system’s ability to 
account for various aspects of driver performance for 
several types of in-vehicle interfaces. 
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Towards a Tool for Predicting Goal-directed Exploratory Behavior 
 

Leonghwee Teo        Bonnie E. John 
Human-Computer Interaction Institute 

Carnegie Mellon University 
Pittsburgh PA 15213 USA 

{teo, bej}@cs.cmu.edu
 

MOTIVATION 
 
MESA (Miller and Remington, 2004), ACWW (Blackmon, 
Kitajima and Polson, 2005) and Bloodhound (Chi, et al., 
2003) predict user search through webpages. While their 
predictions correlated with human data, none of them capture 
or consider the spatial positions of links on a webpage in their 
predictions. However, the positions of links may matter 
because a link not seen and evaluated is not likely to be 
chosen, while competing links seen before the correct link 
might be chosen instead. Choosing incorrect links can greatly 
increase the number of interaction steps and time spent 
exploring the wrong branches in a large and complex website. 
To investigate this, we reanalyzed the data from ACWW 
Experiment 2 and found that participants indeed were more 
likely to choose the correct link if it appeared in the left 
column of the webpage than if it appeared in the right column, 
suggesting a predominant left-to-right visual scan pattern by 
those participants. Unfortunately, MESA, ACWW and 
Bloodhound would have predicted no difference. 
 

SOLUTION APPROACH 
 
More accurate predictions can inform designers if a user-
interface (UI) design might help or hinder successful 
exploration. Towards this end, we are developing CogTool-
Explorer and used it to model ACWW Experiment 2 (Teo and 
John, 2008). Using the ACT-R architecture (Anderson and 
Lebiere, 1998), CogTool-Explorer employs a process model, 
SNIF-ACT 2.0 (Fu and Pirolli, 2007), to evaluate links one 
step at a time. The model evaluates the semantic relatedness of 
a link to the goal, then decides to either satisfice and choose 
the best link read so far on the webpage, or continue to look at 
and read another link. Because the model may satisfice and 
not evaluate all links on a webpage before making a choice, 
the order in which links are evaluated affects its choices. 
CogTool-Explorer uses ACT-R’s vision system and a visual 
search strategy adapted from the Minimal Model of Visual 
Search (Halverson and Hornof, 2007). The strategy starts in 
the upper-left corner and proceeds to look at the link closest to 
the model’s current point of visual attention without 
replacement. For visual search to be meaningful, CogTool-
Explorer uses a spatially accurate model of the UI (on-screen 
position, dimension and text label of every link on the 
webpage) created with CogTool (John, Prevas, Salvucci and 
Koedinger, 2004). CogTool converts this representation into 
an ACT-R device model, with which the process model can 
interact. Given the device model, CogTool-Explorer moves its 
visual attention to a link, encodes the text label, and evaluates 
its semantic relatedness to the goal. When the model decides 

to satisfice, it looks back at the best link, moves a virtual 
mouse pointer over it and clicks on it. Each run of the model 
can be different because of noise, thus, the path of the model 
through the webpages on each run is analogous to predicting 
the exploration choices of a single human trial. 
 

RESULTS 
 
We compared human data on 22 tasks in ACWW Expt. 2 to 
predictions by CogTool-Explorer and ACWW, a publically 
accessible tool. We set CogTool-Explorer to use the same 
semantic relatedness scores as ACWW, and fitted a parameter 
k, the model’s “readiness” to satisfice, to human data. Figure 1 
shows CogTool-Explorer’s predictions aligned with human 
data, while ACWW predicted no significant difference. This 
more accurate prediction is a direct consequent of using a 
satisficing process model with a visual search strategy on a 
spatially accurate device model in concert. 
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Figure 1. Mean clicks on webpage to click on correct link 
over 22 search tasks, by target column (Std. Err. shown) 

15TH ANNUAL ACT-R WORKSHOP 48



Building an SGOMS model (Sociotechnical GOMS) using ACT-R: 
Issues with Cognitive Modelling and Macro Cognition 

 
 

Robert L. West (robert_west@carleton.ca) 
Department of Psychology 

Carleton University 
British Columbia, Canada 

 
 
Macro cognition is an area of study concerned with understanding higher level, complex, real world human 
cognition and behaviour. People involved with macro cognition refer to cognitive psychology and other 
experimentally based approaches as micro cognition. Cognitive modelling architectures, such as ACT-R, 
are based on findings from micro cognition but are increasingly being used to model higher level, complex, 
real world behaviours. Therefore, cognitive architectures can be viewed as scaling micro cognition up to 
the level of macro cognition. West and Nagy (2007) have agued that specific theories about how micro 
cognition scales up are important. To this end they proposed a system called SGOMS (Sociotechnical 
GOMS), which is a theory about how the mechanisms involved in GOMS modelling get scaled up to deal 
with complex, social/team orientated behaviours. In this presentation I will discuss how modelling SGOMS 
using ACT-R provides theoretical constraints and leverage. Some comparisons to studying macro cognition 
in the absence of a cognitive model may be made. 
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ACT-R’s Answers to Six Questions about Visual Routines 

Scott Douglass (scott.douglass@mesa.afmc.af.mil) 

Air Force Research Laboratory, 6030 S. Kent St., Mesa, AZ  85212  USA 

 

 

Motivation 

Each ACT-R model that uses the vision module to 

identify visual locations and move attention, tells a 

story about how central cognition interacts with a task 

environment through attention. ACT-R models that use 

the vision module to interact with a task can: (a) encode 

the entire visual context into a representation and then 

never revisit the world; or (b) encode aspects of the 

visual context “on demand” and remain situated in the 

world. On the one hand, models that attempt to 

comprehensively encode and represent the visual 

context must answer the question “How can capacity 

limits and the impact of sudden context changes be 

avoided?” On the other hand, models that take an 

incremental approach to information acquisition must 

repeatedly answer a different challenging question; 

“What determines the destination of the next attention 

shift?” 

 An ACT-R model that incrementally encodes 

aspects of the visual context as it completes a task states 

what determines the destination of each attention shift 

in a single task.  A framework in ACT-R that generally 

explained how task-relevant aspects of the environment 

are encoded “on demand” would be preferable.  The 

presentation will describe such a framework. 

Approach 

According to Bajcsy (1988), vision is not passive and 

static; instead it is dynamic, probing, exploratory, and 

guided by the interleaving of visual processing and 

context assessment. Bajcsy proposed that rather than 

trying to represent the entire visual field using a 

complete amodal representation scheme, vision allows 

the environment to be its own representation. Rather 

than representing the world before cognition proceeds, 

the visual system encodes parts of the visual field as 

cognition proceeds.  Active vision is the process 

through which the visual system selectively encodes 

and represents aspects of the world as they are required 

by visual and central cognitive processes. On-going 

activities and current goals define the situational 

demands that frame intelligent visual information 

seeking during active vision. 

 In order to avoid computational complexity, the 

visual system employs composable primitive operations 

during visual recognition (Ullman, 1983). These 

elemental operations are sequenced into visual routines. 

Researchers attempting to model active vision (Ballard 

& Rao, 1995; Hayhoe, 2000; Rao & Ballard, 1995; 

Sprague, Ballard, & Robinson, in press) using visual 

routines have addressed only subsets of six critical 

questions that guide the application of a visual routines 

framework: 

 

1. How are visual routines represented? 

2. What are the primitive visual routines underlying 

active vision? 

3. How are macro-behaviors composed and learned? 

4. How are visual routines and macro-behaviors 

arbitrated? 

5. How are visual routines and macro-behaviors 

selected and executed? 

6. What integrates behavior during active vision? 

 The presentation will show that an active vision 

framework in ACT-R can explain the incremental use 

of attention in various tasks and contexts while 

answering all six questions. The active vision 

framework is interesting because it: (a) illustrates how 

the major components of ACT-R combine to enable 

active vision; (b) describes a type of visual learning 

based on dynamic pattern matching, composition, and 

proceduralization; and (c) suggests how top-down and 

bottom-up processes contribute to dynamic, probing, 

exploratory, and goal-driven active visual cognition. 

 

The views expressed in this paper are those of the 

author and do not reflect the official policy or position 

of the Department of Defense or the U.S. Government. 
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Modeling eyemovement patterns in the Flight Management Task: combining 
bottomup and topdown vision 

Niels Taatgen and Daniel Dickison 

In the discussion of our model of the Flight Management Task (Taatgen, Huss, 
Dickison & Anderson, in press), we argue that task control is largely bottom‐up, that 
is, the decision of the next step to take is prompted by what is perceived in the 
environment, and not so much by internal planning. The shortcoming of that model 
is that perception is grossly oversimplified: the state of the display is summarized in 
a single attribute‐value pair. In our new model, we have mended this short‐coming, 
and have it gather information from the display using ACT‐R's perceptual system. 
Gathering information is partially a bottom‐up process: task‐independent 
production rules roam the display and process information on it. Consistent with 
theories of visual attention like Rensink (2007), this process retains very little 
information, but it does retain a map of "where things are". A supplemental, more 
top‐down, visual process can use this map to find information it needs. This 
combination produces model behavior in which information on the display is 
attended exactly when it is needed, making it unnecessary to build an internal 
representation of the world. 

We use this model to explain the data from an eye‐movement experiment we have 
done with the FMS task. The eye‐movement data show that subjects indeed employ 
a "just‐in‐time" method of finding information, and the model is accurate in fitting 
the data. The model is implemented in ACT‐R/Lisa, an extension (under 
construction) of ACT‐R that makes it easier to model learning from instructions. The 
visual strategy from the FMS model will also be built into ACT‐R/Lisa, making it easy 
to reuse. 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Statistical learning and anticipatory start-point selection 
 

Matthew M. Walsh (mmw187@andrew.cmu.edu) 
 John Anderson (ja@cmu.edu) 

Department of Psychology 
Carnegie Mellon University 
Pittsburgh, PA 15213 USA 

 
Many theories seek to explain skill acquisition. One class of theories ascribes practice-related 

speedup to quantitative changes in task efficiency. These theories propose mechanisms like production 
compilation (Newell & Rosenbloom, 1981) and production strengthening (Anderson, 1982). A second class 
of theories attributes skill acquisition to qualitative changes in solution-method selection (Logan, 1998). 
While both classes of theories account for higher-level learning in complex tasks, researchers have paid 
less attention to changes in lower-level, perceptual-motor performance. 
 
 To explore this issue, we conducted an experiment using a modified version of Freidman’s classic 
probability learning task (1964). In our experiment, participants placed a mouse cursor between two circles 
presented on a computer monitor. After they positioned the cursor, one circle turned green. Participants 
were required to move to and click in the green circle as quickly as possible. Within each experimental 
block, each circle was programmed to turn green at a fixed probability. Between blocks, these fixed 
probabilities changed. If participants are sensitive to the fixed probabilities, we reasoned that they would 
select the cursor starting point that enabled the most rapid movement to the anticipated target. This 
prediction was met. From selected start points, the relative proximity to each circle equaled the probability 
of that circle serving as the target. 
 
 To better understand participants’ performance, we have developed competing ACT-R models. 
Our first model utilizes ACT-R’s utility learning mechanism. After each trial, a reward determined by 
movement completion time propagates to the earlier productions associated with the selected cursor starting 
point. Our second model incorporates an additional declarative component in which the base-level 
activations of different target probabilities reflect trial history. 
 
 In sum, our behavioral results show that people anticipate events, and that they take preparatory 
actions to facilitate forthcoming movements. As seen in our modeling, this pattern of decisions is accounted 
for by a mixture of utility and base-level learning. 
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Processes influencing visual search efficiency in conjunctive search 
A rational analysis approach 

 
Clayton T. Stanley and Michael D. Byrne 

Department of Psychology, Rice University 
Houston, TX 

 
When deploying the eyes, how does the human visual system decide where to look next? Although extensive 

progress has been made towards an answer, current visual search theories are as much unified as they are unique, arguing 
solutions based heavily on neurodynamical research (Deco & Rolls, 2004), low-level spatial frequency filtering (Itti & 
Koch, 2000; Rao, Zelinsky, Hayhoe, & Ballard, 2002), or combinations of top-down and bottom-up attentional processes 
(Wolfe, 1994; Logan, 1996). Additionally, ACT-R currently employs only a minimal model to determine where visual 
attention should move, which doesn’t handle bottom-up salience nor err on conjunctive searches. Although numerous 
and varied visual search theories do exist, each is capable of predicting various psychological phenomena present in 
visual search tasks. Therefore it should at least be helpful to outfit ACT-R with a more sophisticated visual search model, 
even if some attributes of that model are currently being challenged. Byrne (2006) developed a theory of visual salience 
computation based heavily on rational analysis of the visual system and provided the capability of implementing the 
model in ACT-R. However, the model has not yet been rigorously tested and verified.  

We therefore tested Byrne’s visual salience computation theory on a conjunctive visual search task similar to 
that studied by Shen, Reingold, and Pomplun (2003). Participants were able to search across both color and orientation 
of a rectangular object, and visual search efficiency was therefore dependent on the relative frequency of the two types of 
distractors. After calibrating, the ACT-R model successfully reproduced this distractor ratio effect, correlating strongly 
with participant data. 

Calibrating the ACT-R model to fit participant’s data required a stronger weighting across the color than 
orientation dimension for bottom-up activation, as well as giving top-down activation only for color. Implementing 
Byrne’s visual salience theory in ACT-R and modeling this task thus allowed one to argue specific attentional processes 
and weightings involved that caused the observed reaction times. Utilizing this approach, the results found by Shen et al. 
(2003) can be directly compared and linked to the results found here, and relationships explained by a simple 
manipulation of these parameters. 
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Processes influencing visual
 search efficiency in
 conjunctive search 

Clayton T. Stanley &
 Michael D. Byrne

Department of Psychology
Rice University
Houston, TX 77005
clayton.stanley@rice.edu
byrne@rice.edu
http://chil.rice.edu

A rational analysis approach 

5 

Problem 

  When deploying the eyes, how does the human visual
 system decide where to look next?

  Since its inception, the ACT-R visual system hasnʼt
 really addressed these issues
  Currently doesnʼt handle bottom-up salience nor err on

 conjunctive searches

  Here is a first attempt to address such concerns

7 

Salience Computation 

noise 

€ 

Li = log2
1

pi(vk )
γ k + log2

1
pi(vs)

+ w jS ji + ε∑
k=1

#attr( i)

∑

bottom-up salience top-down spatial
 guidance  

top-down value
 guidance 

Salience of feature i in the visual icon 

bottom-up
 weightings 

8 

Methods 

  16 subjects
  4 possible rectangular targets

  (Red, Green) color
  (Horizontal, Vertical) orientation

  2 target conditions
  (Present, Absent)

  21 manipulated cells
  Alters relative frequency of the two types of conjunctive distractors as

 well as number of disjoint distractors
  3 repetitions of each configuration
  504 shuffled trials per run
  Number of objects

  36 for target absent condition; 1 additional when present (target doesnʼt
 replace an object)

9 
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Methods 

Search trial ex. a 

Target Present (GV) 
Distract RV 15 
Distract GH 9 
Disjoint Distract RH 12  

11 

Methods 

  Hyphens represent cells that were not tested. Numbers within a cell
 indicate the number of disjoint distractors placed on the screen

# same orientation distractors

3 9 15 21 27 33

# 
sa

m
e 

co
lo

r 
di

st
ra

ct
or

s

3 30 (d) 24 18 12 (e) 6 0
9 24 (c) 18 12 (a) 6 0 -
15 18 (b) 12 6 0 - -
21 12 6 0 - - -
27 6 0 - - - -
33 0 - - - - -

16 

Results 

Hit responses    Correct rejection responses

17 

Discussion 

  Average miss & false alarm rate was .06 & .013 respectively

  Asymmetrical curves for hit & correct rejection responses
  Two components

  First, the shape of the curves
➤  Strong quadratic component of trend for hit responses
➤  Almost asymptotic for correct rejections

  Next, the ʻsquishinessʼ of the curves
➤  Evidence for strong serial search component in hit responses
➤  Evidence non-existent for correct rejections

  Interpretation
  Difficult looking only at these data without a strong

 understanding of the underlying processes involved

18 
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ACT-R Model 

  Target rectangle encoded and placed in goal buffer

  +visual-location> requests cause model to find object with highest
 activation
  Includes a slot only for target color
  If object activation is greater than *salience-thresh*, chunk is placed

 in buffer; else nothing is returned

  If nothing is returned, model concludes that target is absent
  Analogous to a memory retrieval failure

  If an object is returned and it is the target object, model concludes
 that target is present; else the model keeps looking

  If an object has been looked at, the object wonʼt be looked at                
 again

19 

ACT-R Model Results 

Hit responses    Correct rejection responses

20 

Model Fit: Hits 

Participant data    ACT-R data

€ 

R2(19) = .74 MAD = 245ms

21 

Model Fit: Correct Rejections 

Participant data    ACT-R data

€ 

R2(19) = .70 MAD = 367ms

22 

15TH ANNUAL ACT-R WORKSHOP 62



5 

Model Fit: r Scatter 

Hit responses    Correct rejection responses
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Model Fit: Incorrect Responses 

  Miss responses
  Salience threshold calibrated to match miss rate 
  Therefore consistent miss rate for ACT-R (.07) and

 participant (.06) data

  False alarms
  Small (but non-zero) for participants (.013)
  Not modeled with ACT-R currently

24 

Discussion: Asymmetrical Shape 

  Subjects utilizing color primarily to guide their search
  High bottom-up activation percentage for color relative to

 orientation
  Top-down guidance only for color
  High ratio of top-down/bottom-up activation
  However, a bit of bottom-up activation for orientation still

 necessary to produce the strong quadratic present in the
 hit responses

25 

Discussion: Asymmetrical ‘Squishiness’ 

  Hit responses
  Disjoint distractors are not often attended (if ever);

 however, their presence acts to ʻshadowʼ conjunctive
 distractors relative to the target

  Causes more accurate target pinpointing when a high
 number of disjoint distractors are displayed

  Works alongside serial search effects to separate level
 curves

26 
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Discussion: Asymmetrical ‘Squishiness’ 

  Correct rejections
  Subjects concluding ʻtarget absentʼ by an analogous

 memory retrieval failure for the vision system
  Disjoint distractors again not often attended; however,

 their presence acts to increase information content for
 conjunctive distractors

  Assuming a constant threshold, may cause a higher
 proportion of conjunctive distractors searched before
 concluding ʻtarget absentʼ

  Works against serial search effects to overlap level curves
  Overlapping may also be influenced by a strong tendency to

 search for color

27 

Discussion: Future Predictions 

  Modified experiment: remove disjoint distractors

  Predictions using previous hypotheses
  Hit responses

  Less efficient search overall
  Level curves closer together (i.e., more overlap)

  Correct rejections
  Curious about the interaction between salience threshold

 and task
  If threshold unaltered, search time should decrease (more

 prominently where larger numbers of disjoint distractors
 resided)

28 

Closing Remarks 

  Strengths of model
  Good correlations with participant data
  Produces asymmetrical results for hit/cr conditions

 present in data
  Interpretation of parameters are enlightening and seem

 plausible for the task

  Weaknesses
  Search times still a bit long even after decreasing ʻvisual

-attention-latencyʼ to 25ms
  Areas where longer search times exist in ACT-R model

 are not exchanged with more accurate responses (i.e.,
 miss rate higher than participant data in these areas)

29 

Closing Remarks 

  Model predictions
  Although disjoint distractors are not highly salient, their

 presence may actually improve search efficiency for the
 task by causing more accurate target pinpointing when
 the target is present

  When the target is absent, disjoint distractors increase the
 information content of conjunctive distractors, affecting
 the average time elapsed before terminating the search

  Next experiment aimed to challenge these predictions

  Code for the salience computations which works with
 the new vision module is now available @            
 [insert URL]

30 
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Large-Scale Computing Resources and ACT-R Modeling 
 

Organizer: Kevin Gluck  
Presenters:  Sue Kase (skase@ist.psu.edu)1 

Glenn Gunzelmann (glenn.gunzelmann@mesa.afmc.af.mil)2 
Kevin Gluck (kevin.gluck@mesa.afmc.af.mil)2 

Wayne Gray (grayw@rpi.edu)3 
Brad Best (bjbest@adcogsys.com)4 

1Penn State; 2Air Force Research Laboratory; 3Rensselaer Polytechnic Institute; 4Adaptive Cognitive Systems 
 

HPC + PGA + ACT-R = perfect fits (lacking validation?) 
Sue E. Kase, Frank E. Ritter, and Michael Schoelles 

Fitting a cognitive model to human data is a stochastic 
global optimization problem. The fitness function of a 
parallel genetic algorithm (PGA) executed a lisp image file 
of ACT-R 6.0 and a model of a serial subtraction task to 
‘optimize’ the model to multiple levels of human data 
(overall average, subject groups, individual subjects). 
Running on a high performance cluster at the National 
Center for Supercomputing Applications, the PGA searched 
a 3-D bounded parameter space finding nearly perfect fits in 
all cases. Each optimization found, not one, but several 
different nearly perfect fitting ACT-R parameters sets 
scattered across the ACT-R parameter space. These results 
raised concerns that this powerful optimization technique 
may work a little too well. For example, the highest 
performing subject reported using an entirely different 
problem-solving strategy than the model, nevertheless, the 
PGA expediently found six different exceptionally-fitting 
ACT-R parameters sets to match the human data. One is left 
to wonder which is worse: using ‘manual’ optimization and 
not knowing what fits you missed; or finding all the best fits 
possible but not knowing which are valid.  
 
Enabling Scientific Progress Through the Use of Large 

Scale Computing Resources 
Glenn Gunzelmann 

An important issue to consider in adopting a new 
methodology is how it will facilitate achieving the research 
goals. By enabling faster parameter space explorations that 
are both larger and more detailed, large scale computing 
resources have the ability to open research opportunities that 
were previously intractable. For example, we have been able 
to conduct a detailed analysis of individual differences in 
sustained attention performance across 88 hrs of total sleep 
deprivation, which involved variations in both the model's 
implementation and parameters. Hand tuning multiple 
model variants to fit each of 1716 experimental sessions of 
data, or running a sufficiently large parameter space on a 
small number of machines, would have stretched the 
timeline to many months. Using large scale computing 
resources, the evaluation was completed within a couple of 
weeks, including running the space and fitting the data. The 
larger goal of the research is to find parameter values to 
produce fits across multiple tasks for individuals on a 
session-by-session basis, as they experience several days of 
sleep deprivation. This includes simultaneously fitting data 

across tasks, as well as expanding the set of parameters that 
may be manipulated as the theory is extended to other 
cognitive capacities. Without large scale computing 
resources, this goal would be unapproachable. 
 

The MindModeling Meta-Computing Infrastructure 
Kevin Gluck, Jack Harris 

We will describe our MindModeling system 
(http://www.mindmodeling.org), which integrates local, 
volunteer, and high performance computing resources into a 
meta-computing software infrastructure for computationally 
demanding cognitive modeling research. The presentation 
will include a description of some of the challenges and 
interests that motivated creation of the system, its current 
implementation, and its ongoing development. The take-
away message is that access to large-scale computational 
resources has been useful for us and may be useful for 
others. To as great an extent as possible, we would like to 
make this enabling infrastructure available to our colleagues 
and collaborators in the cognitive science community, and 
especially those who are doing ACT-R modeling. We look 
forward to discussing whether and how the MindModeling 
system can be useful for you. 
 

MindModeling@Rensselaer 
Chris Sims, Wayne Gray 

We have used the MindModeling system to perform a 
parameter search for the reinforcement learning model 
reported in Gray, Sims, Fu, and Schoelles (2006). The 
published parameters were selected the usual way: intuition, 
prior experience, and a limited search of the parameter 
space. For the new search we tried to fit the model on 
400,000 parameter combinations. I will talk briefly about 
our experience doing this with the MindModeling software, 
about what we learned about parameter fitting, and about 
the issues that having 400,000 fits to your data raises. 
 

Adaptive Model Exploration Algorithms 
Brad Best 

The combinatorics and inherent computational load 
associated with exploration and understanding of the details 
and limits of performance spaces in computational cognitive 
models, such as those implemented in ACT-R, can quickly 
overwhelm any computing resource, no matter how large.   
Thus, there is a significant challenge in both selecting an 
appropriate granularity for exploring parameter spaces, and 
for managing the combinatorial explosion that results from 
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considering these larger cognitive modeling parameter 
spaces.  The path to more efficient development and 
validation of cognitive models that are orders of magnitude 
larger than those developed today must include approaches 
that reduce sampling load through intelligent search of 
parameter spaces. At Adaptive Cognitive Systems we are 
working with AFRL on the development, comparison, and 
extension of adaptive model exploration algorithms.  In 
particular, we are exploring methods for improving the 
efficiency of HPC cognitive modeling work through three 
main paths: 1) the application of Adaptive Mesh Refinement 
(AMR) techniques as a method for broadly sampling a wide 
range of model behavior while minimizing resource usage, 
2) the generation of mathematical models describing model 
behavior across parameter variations, including exploration 
of variations in sampling and in the efficacy of different 
mathematical representations as a means of understanding 
model and architecture dynamics (e.g., regression models, 
cubic splines), and 3) the packaging of interacting 

parameters into higher-order constructs to simplify both the 
search of parameter space and the explanations of model 
behavior in that space as well as to reduce the overall size of 
the search space.  Taken as a whole, these methods together 
support the carefully focused application of available 
computational resources. 
 
 
 
Disclaimer and Acknowledgments: The views expressed in 
this paper are those of the authors and do not reflect the 
official policy or position of the Department of Defense or 
the U.S. Government. The research conducted at the Air 
Force Research Laboratory and at Adaptive Cognitive 
Systems was sponsored by AFRL’s Warfighter Readiness 
Research Division and by grant 07HE01COR from the Air 
Force Office of Scientific Research.  
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The development of Lisp bindings for the D-bus interprocess 
communication system 

 
Marc Destefano (destem@rpi.edu) 

Department of Cognitive Science 
Rensselaer Polytechnic Institute 

Troy, NY 12180 USA 
 
This presentation will discuss the development of Lisp bindings for the D-Bus Interprocess Communication 
System, as well as the use of D-Bus in interfacing ACT-R with external simulations.  
 

Given the real-time demands of certain task environments, it is important to have an extremely fast 
way to have ACT-R and external simulations communicate with each other – simulations need to send data 
representing the current state of the world to ACT-R’s visicon (via the device module), and ACT-R needs 
to send data representing the actions of its manual module to the simulation's event manager. The idea of 
sending “raw” data over UDP or TCP/IP is undesirable because the platform-agnostic nature of both ACT-
R and many simulation engines (e.g., Pygame, Delta3D) demand a standard method of serializing and 
deserializing data transmitted over a socket, and it would then be necessary to write a custom encoder and 
decoder for every language incorporated within the system. Our solution is D-Bus, a lightweight and super-
fast message bus system specifically designed for inter-process communication (IPC). D-Bus is used 
extensively within the Linux operating system, and thus has been widely tested for many years, proving its 
robustness and reliability. D-Bus, following a template provided by the application developer, encodes and 
decodes data into XML behind the scenes, and this data can be transmitted to any application that attaches 
itself to the communication bus, whether it is local or over a network.  
 
 Unfortunately, despite D-Bus having bindings for almost every programming language in use 
today, it does not specifically have bindings for Lisp. Efforts are now almost complete to write these 
necessary bindings, allowing Lisp to join the large collection of programming languages that D-Bus 
supports. This will be a highly rewarding effort, for once the bindings are complete, ACT-R will be able to 
communicate rapidly with any application to which the researcher has source code (in essentially any 
language), and in some cases, when the research only has access to an application’s scripting language. By 
interfacing with ACT-R’s device module, this opens a whole new world of external software devices with 
which cognitive models can interact, including 3D virtual environments. 
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Modeling Long-Distance Dependencies in 
Double R Language 

 
Jerry T. Ball (jerry.ball@mesa.afmc.af.mil)  

Air Force Research Laboratory 
 

 
Long-distance dependencies are the sine qua non of modern linguistic theorizing (cf. Chomsky, 1981, Culicover & 
Jackendoff, 2005; O’Grady, 2005). An empirically valid computational model of language comprehension must be 
capable of modeling long-distance dependencies as a prerequisite to determination of meaning. Common forms of 
long-distance dependency include: 

• Binding of Anaphors, Pronouns and R(eferring)-Expressions (e.g. “Johni kicked himselfi”, “Johni kicked 
himj” (i not =  j), “*Johni kicked Johni”) 

• Subject and object control constructions (e.g. “Hei promised me ti to go”, “He persuaded mei ti to go”)  
• ‘Raising’ constructions (e.g. “Hei seems ti to be happy”, “The balli was kicked ti”) 
• Relative clauses (e.g. “The mani whoi ti kicked the ball”) 
• Wh-questions (e.g. “Whati did he kick ti”) 

In the presentation, I will discuss the modeling of long-distance dependencies within the context of an ACT-R 
model of language comprehension—Double R Model (Referential and Relational Model)—which is intended to be 
at once functional, empirically valid and cognitively plausible (Ball, Heiberg & Silber, 2007).  

Besides striving for empirical validity from the perspective of linguistic data, the model adheres to well-established 
psycholinguistic constraints on language processing (cf. Crocker, 1999; Gibson & Pearlmuttter, 2000; Lewis, 2000), 
including: 

• A “mildly” deterministic, serial processing mechanism (selection and integration) operating over a 
parallel, probabilistic spreading-activation substrate (activation) 

• Interactive and non-autonomous processing (no distinctly syntactic representations exist) 
• Incremental processing with immediate determination of meaning – word by word 
• No algorithmic backtracking or lookahead – a mechanism of context accommodation is used instead (a 

mechanism of reanalysis when accommodation fails is yet to be implemented) 
• Forward chaining only (no backward chaining of productions) 
• Declarative and explicit linguistic representations generated via implicit execution of productions 
• Model must operate in real-time on Marr’s algorithmic level (serial and parallel processing are relevant) as 

implemented in the ACT-R cognitive architecture 

I will discuss the processing of linguistic expressions containing long-distance dependencies within the context of 
the above psycholinguistic constraints. 

References 
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Abstract 

Speakers use referring expressions to 
identify an object in the environment. To 
generate a referring expression, features 
of the intended referent have to be se-
lected that distinguish the object from the 
other potential referents. Current ac-
counts of referring expressions consider a 
number of factors that influence the 
choice of features but ignore the influ-
ences of the task environment. In particu-
lar, they do not address how these influ-
ences change the generation of referring 
expressions over an extended period of 
time. We present results of how colour 
terms are used to describe landmarks in a 
task oriented dialogue (a route communi-
cation task) and describe a computational 
cognitive model of the observed adapta-
tions over time. 

1 Introduction 

Much attention in recent computational as well 
as psychological research on language has been 
given to the linguistic problem of the use and 
generation of referring expressions. Referring 
expressions are linguistic expressions that iden-
tify either a referent entity in the real world or a 
discourse entity in the form of an antecedent. 
Referring expressions serve the purpose of dis-
tinguishing the target or referent from the set of 
other possible referents in the given context, 
called the distractor set. For example, in the set 
of objects in Figure 1, the black cup and the 
small, black cup would both succeed in distin-
guishing the cup at the lower left (the referent) 
from the other two objects (the distractor set). 

A speaker wanting to pick out that small, 
black, cup at the lower left of the array could use 

any of the attributes in the expressions just given. 
Computational approaches to generating refer-
ring expressions often produce expressions that, 
if possible, uniquely and minimally select the 
target object. But such algorithms are computa-
tionally costly and may not be helpful in model-
ling human behaviour: People (1) produce non-
minimal expressions, which contain redundant 
information (e.g., Pechmann 1989) and (2) inter-
pret such expressions more easily (e.g., Paraboni, 
van Deemter and Masthoff 2007). 

 

 
 
Figure 1: A simple domain of reference: for 

each object, the other are distractors 
 
A prominent account of how human-like, non-

minimal referring expression can be generated is 
the algorithm by Dale and Reiter (1995), which 
by now has many extensions (see van der Sluis 
(2005) for a recent overview). This algorithm 
incrementally tests whether using an attribute in 
a referring expression will rule out distractor ob-
jects. The attributes are tested according to a 
preference list that is fixed beforehand. For the 
domain used in Figure 1, for example, this pref-
erence list could be <type, colour, size>. Identi-
fying the object to the right would then produce 
the non-minimal expression large, white cup by 
first adding the type attribute (which has a spe-
cial status and is always added), then by adding 
white (because it removes the object in the lower 
left from the distractor set), finally by adding 
large (because it removes the object in the top 
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left). Non-minimal expressions arise simply be-
cause a selected attribute is never de-selected, 
even if a subsequently selected attribute makes it 
redundant. 

While these approaches deal with which of the 
available possibilities to describe the target ob-
ject is chosen, they do not account for the adapta-
tions that a speaker makes over time to the de-
mands of the current task environment. The 
computational as well as the psycholinguistic 
paradigms typically lack history: On each trial a 
participant (or algorithm) is presented with a pic-
ture like Figure 1 and instructed to produce a 
suitably distinguishing expression. The trial ter-
minates without feedback and is followed by 
others, presenting different objects and distin-
guishing features. How the fourth target is dis-
tinguished from its distractors might actually 
owe something to the participant’s experience 
with the first three, and our work attempts to dis-
cover and model such effects of experience. 

We examine referring expressions in an unre-
stricted, task-oriented dialogue in which the in-
terlocutors get natural feedback on failures of 
reference and refer to many different objects. We 
use a variant of the HCRC Map Task (Anderson 
et al. 1991) in which a player who can see the 
route on a schematic map describes it to a fellow 
player who must reproduce it. Each map is popu-
lated with cartoon landmarks, distinguished by 
several different features. We have shown that 
the use of features changes across first mentions 
as players pursue their task (Guhe and Bard 
2008). In the present paper we ask how and why 
the changes take place. Colour is a perceptually 
salient property, usually one of the first tested in 
the incremental Dale and Reiter type algorithms. 
In our experiment, however, we set unreliability 
against salience: Colour is an unreliable distin-
guisher. In contrast, each map allows for use of a 
reliable attribute, too, (shape, number, kind or 
pattern). Thus, our participants need to use the 
adaptive attributes but waste time and can cause 
misunderstandings using the unreliable one. 

In this paper, we report how the use of colour 
terms changes over the course of the experiment 
and present a simple computational cognitive 
model of this change. More precisely, we de-
scribe how the utility of the colour feature influ-
ences the Instruction Giver’s choice of whether 
to use colour in introductory referring expres-
sions. The model offers an explanation of this 
change in terms of Anderson’s rational analysis 
(Anderson 1990; Anderson and Schooler 1991). 
Rational analysis is the core mechanism in ACT-

R’s utility-based production selection (Anderson 
2007) and is a variant of utility learning mecha-
nisms found in reinforcement learning or the 
delta rule (Sutton and Barto 1998). In brief, ra-
tional analysis says that human memory reflects 
the frequency of events in the environment, mak-
ing more frequent experiences easier to retrieve 
and corresponding behaviours more likely to be 
used. By using rational analysis our model goes 
beyond existing accounts of use and generation 
of referring expressions in that it reveals the en-
vironmental influences on these processes. 

2 Comparison to existing research 

The problem of whether the use of features 
changes with the demands of the task environ-
ment has scarcely been addressed in the litera-
ture. Although Brennan and Clark’s (1996) con-
ceptual pacts address changes in referring ex-
pressions, these changes are about how speakers 
refer to objects after they have been introduced. 
However, our questions here address the overall 
use of features in referring expressions over the 
course of many interactions. To exclude effects 
of conceptual pacts we are only analysing the use 
of introductory (first) mentions of landmarks. 

Garrod and Doherty (1994) describe how a 
community of speakers establishes a sub-
language in referring to entities. We are con-
cerned with the internal structure of the referring 
expressions themselves and propose a utility-
based explanation instead of one based on prece-
dence and salience. 

There is some evidence that extra-linguistic 
factors play a role in generating referring expres-
sions. For example, Arnold and Griffin (2007) 
show that the presence of a second character in-
fluences the choice of whether to use a pronoun 
or the character’s name for references following 
the introductory mention. This is true even if the 
characters differ in gender, so that the name does 
not disambiguate any more than the pronoun. 
Arnold and Griffin argue that the reasons for this 
behaviour lie in the speakers’ cognitive load 
when they generate the referring expression. 

This is part of another strand of findings in 
which the cooperative view on dialogue (e.g. 
Clark 1996) is changed towards a speaker-
oriented view (e.g. Bard et al. 2000). In this 
view, the speaker makes the general assumption 
that what he/she knows is shared knowledge. 
Only if problems arise in the dialogue, e.g. by 
explicit feedback from the listener, might the 
speaker adapt to the listener’s needs. In fact, 
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even if overspecified referring expressions (Dale 
and Reiter 1995; Paraboni, van Deemter and 
Masthoff 2007; Pechmann 1989) help the listener 
to identify the target object, the speaker also 
profits in terms of a generation process of greatly 
reduced complexity. Since both – speaker and 
listener – benefit from using such referring ex-
pressions, the communicative strategy cannot be 
attributed uniquely to concerns for the listener’s 
needs. In our task, however, the colour feature is 
counterproductive in the majority of cases, be-
cause it does not match between the two maps. 
So the speaker’s assumption about the usefulness 
of the salient feature colour are mistaken. 

Another related line of research is the use of 
machine learning techniques to extract the way 
attributes are selected for modified versions of 
the Dale and Reiter algorithm (Jordan and 
Walker 2005). Although these algorithms already 
incorporate psychological findings, e.g., concep-
tual pacts, they only provide global adaptations 
to properties of linguistic corpora and do not ac-
count for changes over time and for adaptations 
to the properties of the task environment. 

3 Experiment 

3.1 Task 

The experiment is a modified Map Task (Ander-
son et al. 1991). The Map Task is an unscripted 
route-communication task in which an Instruc-
tion Giver and an Instruction Follower each have 
a map of the same fictional location. The Giver’s 
map contains a route that is missing on the Fol-
lower’s map. The dyad’s goal is to recreate the 
Giver’s route on the Follower’s map. 

The dialogue partners use the landmarks on 
the maps to navigate from START (shared) to 
FINISH (only on the Instruction Giver’s map). 

3.2 Materials, procedure, data collection 

Materials. Some landmarks differ between the 
two maps. In our experiment they can differ by: 

 
1. Being absent on one of the maps or present 

on both; 
2. Mismatching in a feature between the two 

maps (most notably colour); 
3. Being affected by ‘ink damage’ that obscures 

the colour of some landmarks on the Instruc-
tion Follower’s map. 

 
There are four attributes which also distinguish 
landmarks. Each serves for two different kinds of 
landmarks: 

 
1. Number (bugs, trees), 
2. Pattern (fish, cars), 
3. Kind (birds, houses/buildings), 
4. Shape (aliens, traffic signs). 
 
Three crossed independent variables determine 
the nature of Giver–Follower map pairs: 

 
1. Homogeneity: whether the landmarks on a 

map are of just one kind (single) or of differ-
ent kinds (mixed). 

2. Orderliness: whether the ink blot on the In-
struction Follower’s map obscures a con-
tiguous stretch of the route (orderly) or a 
non-contiguous stretch (disorderly). The 
number of obscured landmarks is constant. 

3. Animacy: whether the landmarks on a map 
are animate or inanimate (thus, on the mixed 
maps there are only landmarks from the 4 in-
animate or the 4 animate kinds of land-
marks). 

 
The maps in Figure 2 are a pair of Giver and Fol-
lower maps for the disorderly, mixed tree condi-
tion. Thus, the maps contain mainly trees but 
also other inanimate objects (mixed), and the 
Follower’s map shows multiple, non-contiguous 
ink blots (disorderly). 

 
Procedure. Participants are told that the maps 
are ‘of the same location but drawn by different 
explorers’. They thus know that the maps can 
differ but not where or how. They are instructed 
to recreate the route on the Follower’s map as 
accurately as possible. 

Each dyad did 2 simple training maps and then 
completed a set of 8 maps, one for each kind of 
landmark. The maps were counterbalanced with 
respect to the experimental conditions. After the 
fourth map, the role of Instruction Giver and In-
struction Follower were exchanged. 

To reduce the variability of words and con-
cepts used in the unrestricted dialogues, each 
participant was prompted textually to provide 
standard type names for a few landmarks that 
would occur on the following map. 

 
Setup and data collection. Participants sat in 
front of individual computers, facing each other, 
but separated by a visual barrier. 

This research is part of a larger multimodal 
project. The communication was recorded using 
5 camcorders. The Giver was eye tracked using a 
remote eye tracker. Speech was recorded using a 

15TH ANNUAL ACT-R WORKSHOP 73



Marantz PMD670 recorder whereby Giver and 
Follower were recorded on two separate channels 
using two AKG C420 headset microphones. The 
speech was transcribed manually. The routes 
drawn by the Follower were recorded by the 
computer. 

As the participants were in the same room, 
they could hear each other’s speech. They could 
also see each other in the left half of their moni-
tor, which showed the dialogue partner’s upper 
torso video stream. The right half of the monitor 
showed the map. 

 
Participants. In exchange for course credit, 64 
undergraduates of the University of Memphis 
participated in pairs. In 4 dyads the participants 
knew each other previously. 

3.3 Analysis and results 

The recorded dialogues were coded for referring 
expressions. We present results for the first men-
tions of landmarks by the Instruction Giver. In-
troductory mentions should be both maximally 
independent of one another (as repeated men-
tions reflect precedence in naming a given ob-
ject) and maximally detailed (as reductions in 
form characterise anaphora). Mentions of colour 
in landmark introductions were calculated as a 
proportion of opportunities 

 
1. Over the course of single dialogues (by quar-

tiles),  
2. Across successive maps (1–8) and  
3. Between those where the Instruction Giver 

lacked or already had experience as Instruc-
tion Follower. 

 
The changes in the ratio of colour term use is 
depicted in Figure 3. 

 

 
 
Figure 3: Change of the use of colour terms over 
quartiles of the eight maps 

      
 
Figure 2: A pair of example maps; Instruction Giver left, Instruction Follower right 
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The use of colour terms significantly de-
creased over an average dialogue (effect of quar-
tile within experience (2) x map encountered as 
Instruction Giver (4) x quartile (4) ANOVA on 
the arcsine transformed proportion of colour 
terms: F1(2, 54.8) = 15.57, p < 0.001). Although 
there was no significant reduction across dia-
logues with the same Instruction Giver, the Giv-
ers used significantly fewer colour terms when 
they had served earlier as Follower (0.267 colour 
terms on average in the first four maps vs. 0.175 
in the second four). This is a significant effect of 
experience (F1(1, 28) = 7.90, p < 0.01). 

Note that the orderliness of the ink blots on the 
Instruction Follower’s maps did not have a sig-
nificant effect. In contrast to colour, distinguish-
ing features (number, kind, shape, pattern) are 
significantly more common in the maps where 
they are critical (used in more than 80%) and 
significantly increase within a dialogue. Thus, 
the decrease and low overall use of colour terms 
is not due to a general decrease in use of feature 
terms. There is also no effect of prior experience 
as Giver for useful features. The detailed results 
are presented in Guhe and Bard (2008). 

3.4 Discussion 

The participants adapted their use of colour to its 
low utility in the given task environment. The 
adaptation was distributed between speaker and 
listener. The use of colour terms does not fall 
significantly over the 4 dialogues a participant 
has the role of Instruction Giver, but there is a 
significant drop when the participants exchange 
roles: experience trying to match colour terms to 
grey-scale objects as Instruction Follower dis-
courages to mention colour as Instruction Giver. 
Any listener-centric effect is outweighed or 
fuelled by a speaker-centric appreciation of util-
ity. 

4 Utility and task environment 

4.1 Utility and selection probability 

This is not the place to delve into the depths of 
the ACT-R theory, see Anderson (2007) for the 
most recent account. For the model described 
below it is only relevant that in ACT-R proce-
dural knowledge (such as to decide whether to 
use colour or not) is encoded as production rules, 
or productions for short. A production is basi-
cally an if–then rule: if a certain set of conditions 
are given then execute a specified action. 

In ACT-R, each production has a utility value. 
The utility is an estimate of how likely the use of 

the production results in achieving the current 
goal (here: successfully describing the landmark 
to the interlocutor). 

Productions’ utilities are important in the 
cases in which more than one production is ap-
plicable for a given set of conditions. Then, the 
utilities serve to compute the probabilities with 
which a production is selected. This selection 
probability is computed as: 
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with: 
Pi: selection probability for production i 
Ui: utility of production i 
s: noise in the utilities (defaults: s = 1) 
j: set of all applicable productions (including i) 
 
Utility values are learnt over time. After a pro-
duction has been used, its utility is updated de-
pending on whether it was successful according 
to the following equation: 
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with: 
Ui: utility of production i 
n: number of applications of the production 
α: learning rate 
R: reward 

 
If the production is applied successfully, the util-
ity is updated with a positive reward, if it is un-
successful, it receives a negative reward. 

Anderson (2007, p 161) points out that this is 
basically the Rescorla-Wagner learning rule 
(Rescorla and Wagner 1972) or the delta rule by 
Widrow and Hoff (1960). So there is nothing 
special ‘ACT-R-ish’ about this rule; it is a gen-
eral learning rule. 

4.2 Structure of the task environment 

In the maps about half of the landmarks on the 
Instruction Follower’s map are obscured by ink 
blots, and, therefore, don’t have colour. Addi-
tionally, some of the route critical landmarks 
mismatch in colour. Overall this means that us-
ing colour to describe a landmark is successful in 
only about 40% of cases. By comparison, using 
the distinguishing feature of a map is successful 
in about 92% of cases. 
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5 Model 

5.1 Introduction 

The following analyses compare the model’s per-
formance to the introduction of the first 33 land-
marks of each map by the Instruction Giver. The 
33rd landmark is still mentioned in 206 of the 
possible 256 cases (32 dyads with 8 maps each). 
The 34th landmark is introduced only 186 times. 

There are three main patterns in the data. 
Firstly, map 1 behaves differently than the other 
maps in that the number of colour terms shows a 
pronounced drop from 0.6 to 0.25 (taken from 
the means of the first and last three values). Sec-
ondly, maps 2 to 4 each show a decrease of col-
our rate from 0.3 to 0.2. Thirdly, in maps 5 to 8 – 
after the role change – the colour rate drops in 
each map from 0.2 to 0.15. (This lower colour 
rate is the basis for the effect of role change.) 

Thus, between maps the colour rate is going 
up again. Explanations may be that the longer-
term utility of colour (learnt over a lifetime) or 
the textual prompting between dialogues exert 
some influence. The fact that the colour rate in 
maps 5 to 8 starts at the same rate as it ends in 
maps 2 to 4 may be due to the utility learning 
during the time as Instruction Follower. But a 
more detailed model is needed to explain this. 

5.2 The model 

The model is not a fully implemented ACT-R 
model, but just uses the two equations for updat-
ing production utility and probability of produc-
tion selection introduced above.  The model con-
tains two competing ‘productions’ one for using 
colour, one for not using colour. Because the In-
struction Giver always has colour available to 
describe a landmark, the model assumes that 
both productions are applicable for each land-
mark. Thus, the model is similar to the ACT-R 
model for an experiment by Friedman et al. 
(1964), described by Anderson (2007, p. 165–
169; in this experiment participants have to pre-
dict which one of two lights will be lit.) Using 
the other features would be modelled as analo-
gous sets of productions. 

For each decision, the model selects one of the 
productions according to their utilities and corre-
sponding selection probabilities at that time. Af-
ter the decision has been made, the usefulness of 
colour is determined according to the structure of 
the task environment (thus, using colour is suc-
cessful in 40% of cases) and the utility of the 
selected production is updated accordingly. For a 

successful application the production receives a 
reward of R = 14; if it is unsuccessful it receives 
a reward of R = 0 (cf. Anderson 2007, p. 162). 

The results reported in the remainder of this 
section were obtained by 500 runs of the model. 
However, just 32 runs – matching the number of 
dyads in the experiment – suffice to get signifi-
cant results; more runs of the model just produce 
a smoother curve. 

5.3 Map 1 

For the first map the model starts with the fol-
lowing estimated utilities: 
 
Ucolour(1) = 5.5 
Uno-colour(1) = 5 
 
These values mean that the colour-production 
has a probability of being selected of 0.622, 
which is close enough to the mean of the first 
three values of 0.594. (Using Ucolour(1) = 5.4 
would give an initial probability of 0.599, but 
one can be too fussy.) 

The final average utilities are: 
 

Ucolour(33) = 4.6 
Uno-colour(33) = 7.7 

 
Choosing these initial utilities gives an excellent 
fit to the data, see Figure 4. A regression using 
the model as predictor for the data shows a sig-
nificant correlation (β1 = 0.90, p < 0.001) that 
accounts for 72% of the variance (R2 = 72%, 
F(1, 31) = 79.5, p < 0.001). 

However, the initial values are not that impor-
tant, and the model matches the data significantly 
for a wide range of start values, as long as Ucol-

our(1) > Uno-colour(1) and the values are not close to 
the extremes of 0 and 14. The same holds for the 
following simulations. 

5.4 Maps 2 to 4 

For maps 2 to 4 (see Figure 5) the initial utilities 
were set to: 

 
Ucolour(1) = 5.5 
Uno-colour(1) = 6.5 

 
resulting in final average utilities of: 

 
Ucolour(33) = 4.5 
Uno-colour(33) = 7.5 
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The regression shows that 
the model accounts for 
66% of the variance (R2 = 
66.3%, F(1, 31) = 61.0, 
p < 0.001) with β1 = 2.44 
(p < 0.001). 

5.5 Maps 5 to 8 

Finally, for maps 5 to 8 
(see Figure 6) the initial 
utilities were set to: 
 
Ucolour(1) = 3 
Uno-colour(1) = 4 

 
resulting in the final aver-
age utilities 
 
Ucolour(33) = 3.3 
Uno-colour(33) = 7.7 
 
The model accounts for 
52.7% of the variance 
(R2 = 52.7%, F(1, 31) = 
34.6, p < 0.001) with 
β1 = 0.84 (p < 0.001). 

6 Conclusions 

There are two main con-
clusions from the research 
presented here. Firstly, the 
dialogue partners indeed 
adapt their naming behav-
iour to the task environ-
ment. More specifically, 
they adapt to the fact that 
colour is an unreliable 
distinguisher for the land-
marks on the maps. (This 
is amplified by the fact 
that the participants do 
not make a substantial 
effort to identify the parts 
of the maps that are ob-
scured by ink, which 
shows in the absence of 
an orderliness effect.) 

Secondly, the simple 
computational cognitive 
model accounts for this 
change. In particular, the 
model shows that the 
change in behaviour is 
indeed an adaptation to the structure of the task 

environment, because the rate of the probabilities 
and the changes in the probabilities with which 

 
 
Figure 4: Comparison of data and model for the first 33 landmarks in 
map 1. 
 

 
 

Figure 5: Data and model for maps 2 to 4. 
 

 
 

Figure 6: Data and model for maps 5 to 8. 
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colour is used as a descriptor is a direct result of 
the fact that colour can be successfully used for 
about 40% of the landmarks on the maps. Thus, 
rational analysis (the fact that memory reflects 
the probabilities encountered in the environment) 
explains the observed phenomenon. 

Although – after the fact – it may not be too 
surprising that rational analysis explains the ob-
served phenomenon, the result is more far-
reaching, because the influences of the task envi-
ronment on naming behaviour (the generation of 
referring expressions) has not yet been reported. 

7 Future work 

Our future research will address a number of di-
rect follow-up issues. Firstly, the model will be 
extended to account for the changes in the men-
tions of the distinguishing features (number, pat-
tern, kind, shape). Secondly, after a more de-
tailed analysis of the data we will extend the 
model to account for individual adaptation pat-
terns in the sense that the model can account for 
groups of dyads showing similar dialogue histo-
ries. For this, we will model the landmark intro-
ductions made by the Instruction Follower as 
well. This model serves as starting point for a 
comprehensive ACT-R model of how referring 
expressions (including repeated mentioned of 
landmarks) are generated in the given task. 
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Structural priming in language production emerging from 
learning in an ACT-R model 

For each clause, the model initially selects a head lexeme with a lexical form and a syntactic frame. It then realizes each 
argument. Lexical forms spread activation to syntactic categorial types, e.g., the verb form “offered” will spread activation to 
“ditransitive (NP NP)” and “ditransitive (NP PP)”. Here, spreading activation results in short-term priming, while base-level 
learning causes long-term adaptation. In the fully incremental (and most efficient) case, the processor can integrate each word 
with the preceding context, i.e. the full structure of the clause produced so far. This context is not retained in detail, but only 
described by a categorial type, reflecting the subcategorization frame of the current phrase. The current implementation of the 
model can generate sentences like “The policeman gave a flower to the girl”, or “The cop gave the woman a rose”. (Since a 
lexical form is retrieved before the syntactic node, the model predicts that syntactic priming cannot affect semantic choice.)  

Our production model explains structural priming on the basis of two well-established ACT-R mechanisms: base-level 
learning and spreading activation. Base-level learning applies to syntactic rules and explains long-term adaptation, while 
spreading activation from lexemes to syntactic types explains short-term priming through the retention of semantic 
information in a buffer after a sentence has been processed.  

The psycholinguistic literature has identified two syntactic adaptation effects in language production: rapidly decaying 
short-term priming and long-lasting adaptation (see Ferreira & Bock 2006 for an overview). Evidence for both effects 
comes not only from experimental data but also from naturally occurring speech in dialogue corpora (e.g., Reitter et al. 
2006). To explain the two types of adaptation, we present an incremental language production model in ACT-R that 
uses a wide-coverage, lexicalized syntactic theory (Combinatory Categorial Grammar (CCG), Steedman 2000) and 
models priming as a facilitation of lexical access.  

David Reitter
1,2

 , Frank Keller
2
 and Johanna D. 

Moore
2
 

Simulations show that the model exhibits both priming and long-term adaptation in the form of increased relative 
accessibility, which leads to faster retrieval and a preference for the primed structure. We account for the following 
phenomena:  
• Long-term adaptation as learning explains cumulativity of priming (prepositional-object with “give”, effect of number 
of primes on repetition log-odds: b = 0.095, p < 0.001, long-term adaptation)  (cf. Jaeger & Snider 2007).  
• Rare constructions prime more. Simulations show that after the presentation of Zipf-distributed rules, ACT-R’s 
base-level learning produces an activation pattern and an interaction with frequency equivalent to those found for short-term 
priming in corpora (effect of the rule’s log-frequency on activation decay, b = 0.0026, p < 0.001).  
• Lexical boost is due to spreading activation from retained lexemes to syntactic nodes in memory. (Not accounted for 
by Chang et al. 2006.)  
• Short-livedness of lexical boost (Hartsuiker et al., in press): lexemes can only spread activation while still in a buffer.  
• The lexical / semantic cause of short-term priming can potentially explain why short-term priming appears to be 
stronger in task-oriented dialogue, where semantic processing is needed,  compared to spontaneous conversation (Reitter et al. 
2006).  

1 
Department of Psychology, Carnegie Mellon University 

2 
School of Informatics, University of Edinburgh 
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Overview

• Motivation for the Human Behavior 
Architecture (HBA)

• The component technologies and 
approaches

• Current state of the software integration

– The new integrated development environment

• Outstanding issues

• What we stand to gain

3

Motivation for the HBA project

• Human performance modeling comes in 
many shapes and sizes

– Different questions, different needs, different 

theories, different resolutions, different tools, 

different M&S communities etc.

• Different needn’t mean exclusive

• In fact, differences highlight opportunities 
for complementary approaches

4

A Case in Point

• Task network models (e.g., Imprint, Micro Saint)

– A proven and intuitive approach to understanding 
human performance through hierarchical 
decomposition of tasks

– Widely regarded as lacking cognitive fidelity

• Hybrid productions systems as cognitive models 

(e.g., ACT-R)

– Provide principled and detailed predictions of human 
cognitive performance

– Seen by many as hard to build and understand

5

A Case in Point

• A good fit:

– Take advantage of the 

flexible abstractions and 
the natural representation 

of a task network model to 
ease the development and 

inspection of a production 
system

– Add cognitive fidelity to the 
task network model 

(“another layer of 
decomposition”)

• Hence, the HBA

6

Component Technologies—Task 
Network Modeling Tools

• Intuitive, user friendly development environment

• Direct support for hierarchical task/function 

decomposition

– But *not* limited to such representations!

– Modeler fixes the level of abstraction, not the tool

• Standard practice reduces human performance 

to SME specifications and fixed decision types 
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7

Component Technologies—The 
ACT-R Cognitive Architecture

• A theory of cognition implemented as a hybrid 
production system
– Symbolic knowledge representation

– Underlying sub-symbolic calculi to represent 
statistical nature of cognition

• Principled representation of cognition
– Not everything goes

• Ever growing body of validation studies across a 
wide range of tasks and phenomena

• It’s rocket science

8

Common Aspects of the 
Two Approaches

• Intuitions common to both task 
network models and ACT-R (and 
other production systems)

– Finite states (tasks or buffer contents)

– Discrete transitions (between tasks and 
serially executing productions)

– It’s all human performance

9

HBA: A Unified C# Integration

• Human Behavior Architecture

– Task Network: Micro Saint Sharp

– Cognitive Architecture: ACT-R Sharp

• Unified Integration

– reduces development time

– removes need for communication software

– instead forcing agreement of representation, 

allows multiple levels of abstraction in same 

environment
10

Constraints on the Integration

• ACT-R is an evolving architecture, time and money are 
always limited

• Chose to implement aspects of ACT-R according to 
the following criteria:

– Stability: mechanisms that have been in the system since its 
inception and have stood the test of time;

– Demonstrated utility: mechanisms that are regularly used by 
the community to account for the data; and 

– Anticipated utility: mechanisms that we anticipated would be 
needed for the kinds of tasks that might be modeled in HBA

• What’s missing: Production learning, partial matching 
and associative learning

11

ACT-R Capabilities in ACT-R Sharp

• Manual Module

• Auditory Module

• Visual Module
– Visual finsts, buffer stuffing

• Declarative Module
– Chunk learning, base-level learning, 

spreading activation

• Procedural Module
– Reinforcement-based learning of utility

12

ACT-R Sharp Validation

• Procedural Module
– Unit 1: count.lisp, addition.lisp, semantic.lisp, tutor-

model-solution.lisp

• Visual & Motor Modules
– Unit 2: demo2.lisp

• Visual & Auditory Modules
– Unit 3: sperling.lisp

• Declarative Module
– Unit 4: paired.lisp (chunk activation, base-level 

learning)
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13

Modes of Interaction

• Task network as task environment; ACT-R 
Sharp as agent

14

Modes of Interaction

• Task network as agent; ACT-R Sharp as a non-

interactive model of an agent’s task/s

15

Modes of Interaction

• Task network as agent; ACT-R Sharp as an 
interactive model of an agent’s task/s

16

Modes of Interaction

• Task network and ACT-R Sharp as independent, 
interacting agents

17

The Integrated Development 
Environment

18

The Integrated Development 
Environment
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19

Building the Cognitive Network

20

Building the Cognitive Network

21

Outstanding Issues

• Running code, regression testing in-house 
usability assessments…all good

• Still, a “culture gap” to bridge between TN 
and cognitive modelers

• How far can we push mixed 
representations?

– Unanalyzed cognitive tasks

– Cognitive control at the task level

22

What We Stand to Gain

• Modeling is hard, expensive and time 
consuming

– Better tools are needed

• Modeling is modeling

– Differences in degree need not be taken as 

difference in kind

• A concrete framework in which to push 
principle into practice
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We describe a bottom‐up model that uses ACT‐R/E to integrate visual and auditory information to 
perform conversation  tracking  in a dynamic environment  (Trafton, Bugajska, Fransen, & Ratwani, 
2008). In our system, multiple conversationalists talk to each other and our model (embodied on the 
robot) “follows” (no understanding) the conversation, looking from person to person as they speak. 
The model takes the aural spatial  information of the speaker (e.g., where the person is heard) and 
correlates it with the visual spatial information (e.g., where the person is seen) based on the stimuli 
proximity, and directs its visual attention (and its gaze) to the speaker. If a different person attempts 
to  interrupt  or  backchannels,  the model  “ignores”  the  other  speaker.  However,  once  the  original 
speaker  is  quiet  for  approximately  500ms  (Bull  &  Aylett,  1998),  the  model  switches  its  visual 
attention  to  the  new  speaker.  This  simple model was  tested  on  a  previously  collected  data  set  of 
conversation  between  4  speakers  (Vertegaal,  et  al.,  2001)  and  matches  the  empirical  data 
reasonably well without even addressing such important issues of visual participant monitoring or 
contextual responses.   

ACTR/E:    E for Embodied 
J. Gregory Trafton, Magdalena Bugajska, William Kennedy, Anthony Harrison, Benjamin Fransen, and 

Raj Ratwani 
Corresponding Author: {greg.trafton@nrl.navy.mil}   

ACT‐R/E  (for Embodied)  (Kennedy, Bugajska, Adams,  Schultz, & Trafton, 2008; Trafton, Bugajska, 
Fransen,  &  Ratwani,  2008)  ventures  beyond  traditional  computer  displays  and  mouse/keyboard 
manipulation to establish embodied presence on a mobile robot by first and foremost extending the 
representation of the visual and aural modules to enable 3D object and sound localization. We also 
extended  ACT‐R’s  capabilities  to  incorporate  a  locomotion  faculty  (the  “moval”  module)  and  a 
spatial reasoning capability (the “spatial” module).   
Our robot, an iRobot B21r, is a human‐scale, zero‐turn‐radius robotic platform best suited for use in 
indoor  environments.  The  robot  is  equipped with  an  array  of  sensors  and  effectors  including  an 
animated  face  (Parke & Waters, 1996; Simmons et  al.,  2003) displayed on a  robot‐mounted LCD  , 
which allow it to perceive and interact with the environment. The raw sensors’ input are processed 
by the low‐level robotic software and translated into feature‐based representation used by ACT‐R/E 
modules as it becomes available. Our visual module is interfaced with the person‐tracking (Fransen, 
et  al.,  2007)  and  color‐blob  detection  software  (Bruce,  Balch,  &  Veloso,  2000)  based  on  an 
omni‐directional  camera.  Our  auditory  module  interacts  with  sound  localization  software 
(Martinson & Brock, 2007) based on a 4‐microphone array. Our spatial module has access to a 2D 
“cognitive map”  (Kennedy,  et  al.,  2007)  or  an  egocentric  version  of  spatial  cognition  (Harrison & 
Schunn, 2003). Requests to moval module in the form of relative or absolute motion‐commands are 
passed onto our motion  control  subsystem which  is  integrated  into  our mobility  system  (Schultz, 
Adams, & Yamauchi, 1999). Similarly, speech module requests are forwarded to speech generation 
system.  In  addition,  the  change  in  the  visual  attention  is  indicated  by  turning  to  face  the  desired 
direction. 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William G. Kennedy, Magdalena D. Bugajska, Anthony M. Harrison, and J. Gregory 
Trafton  

[bill.kennedy; magda.bugajska; anthony.harrison; greg.trafton]@nrl.navy.mil) 
Naval Research Laboratory  

 

A general “like-me” mental simulation capability is already available within the basic ACT-R system. It is 
the running of a separate cognitive model (the “simulation”) with a specified subset of the originating or 
“host” cognitive model. The simulation starts with a specific subset of the declarative and procedural 
memories and an initial goal state. The simulation runs this model and provides a new declarative fact via the 
“imaginal” buffer accessible by the host model. The specification of which declarative memory and 
productions of the host model to use allows the system to consider hypothetical and counterfactual situations.  

From imitation behavior to interpersonal communication, successful strategies in humans clearly require 
consideration of others’ knowledge, abilities, goals, and even feelings. The ability to infer that information 
and use it to simulate the behavior of others is referred to as having a Theory of Mind. Among several 
explanations of this capability is a simulation of the other based on the host, i.e., a “like-me” simulation 
(Meltzoff, 2005).   

Simulation within ACT-R as a Theory of Mind  

We have developed cognitive models using “like-me” simulations of perspective taking (left-right 
handedness determinations), teamwork (predicting the teammate’s decision), and social behavior 
(dominant-submissive behavior of chimpanzees). We will discuss the teamwork model, the simulation, the 
results, and matching of simulations and human/chimpanzee data.  

References  

Meltzoff, A. N. (2005). Imitation and Other Minds: The "Like Me" Hypothesis. In S.  
Hurley & N. Chater (Eds.), Perspectives on Imitation: From Neuroscience to  
Social Science (Vol. 2, pp. 55-77). Cambridge, MA: MIT Press.  
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Examining the role of embodiment on performance has provided many insights into the underlying 
cognition across various low-level tasks (e.g. Fu & Gray, 2004; Salvucci & Gray, 2004). We have been 
looking at the embodied affordances of higher-level cognition, specifically theory-of-mind (Premack & 
Woodruff, 1978), within a common task as implemented on our robotics platforms (ACT-R/E).  

The task examined was a chimpanzee food monopolization scenario introduced by Hare, et al (2000) and 
further refined by Brauer, Call & Tomasello (2007). The task pit dominant and subordinate chimpanzees 
against each other in the retrieval of one or two pieces of food in a shared space containing two buckets. The 
pieces of food were placed either on top of a bucket (visible) or behind the bucket such that only the 
subordinate could see it (hidden, from the dominant). The positions of the buckets were varied between two 
experiments. The key finding by Brauer, et al. (2007) was that in low risk situations, the subordinates 
frequently retrieved the food with no preference for the hidden pieces. However, when the risk was greater 
(i.e. food was closer to the dominant), subordinates approach the food less frequently but show a clear 
preference for the hidden pieces, suggesting that they were aware of what the dominant could see.  

The use of primate data might seem odd, but it had a number of features that were quite appealing. First, this 
task has produced significant debate within the animal social cognition community regarding the ability of 
chimpanzees to understand what conspecifics can see (e.g. Hare et al., 2000; Karin-Darcy & Povinelli, 
2002) and recent results suggest that it is the structure of the environment that influences the chimp’s 
strategy use (Brauer, et al., 2007). Second, the task is fundamentally embodied requiring us to push the 
boundaries of our robot systems and ACT-R itself. Finally, the task lends itself to multiple solution 
strategies that are all intimately related to the theory-of-mind construct; specifically mental simulation 
(Meltzoff, 2005), perspective-taking (Flavell, et al., 1981), and gaze-following (Butterworth, 1991).  

Three different models of the subordinate chimp were developed and refined in simulation before being 
deployed and evaluated on the robot. The first used ACT-R’s model-within-model functionality to allow the 
subordinate to simulate where the dominant would search for food. The second used egocentric 
transformations of the perceived scene (Harrison, in prep) to adopt the perspective of the dominant and used 
that information to guess dominant’s intent. The final model used perceptual knowledge of the dominant’s 
head orientation and a modified visual search to perform gaze-following with approximate occlusion 
detection to infer the dominant’s attentional focus.  

The models highlight weaknesses in the current empirical methodology and point towards simple 
improvements that could help isolate what skills the chimpanzees are actually able to employ. In depth 
examination of the models’ behaviors illustrate the different affordances of the strategies and provide insight 
into how and when the skills might be used in traditional theory-of-mind tasks.  

Exploring TheoryofMind Components within Embodied 
Robotics   

Anthony M. Harrison, William G. Kennedy, Benjamin Fransen, and J. Gregory 
Trafton ({anthony.harrison;bill.kennedy;ben.fransen;greg.trafton}@nrl.navy.mil) 

Naval Research Laboratory 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ACT-R on a Robot: Considerations and Extensions 
 

Eric Avery 
Troy Kelley (tkelley@arl.army.mil) 

Army Research Laboratory 
 
 At the Army Research Laboratory (ARL), we have developed a robotic system based on ACT-R, 
which includes both symbolic and sub-symbolic representation of knowledge.  The system is called the 
Symbolic and Sub-symbolic Robotic Intelligence Control System (SS-RICS).   
 
 In recent years there has been a growing interest in using cognitive architectures for the control of 
robots (Avery, Kelley and Davani, 2006).  While this seems to be a useful approach for robotic control, 
several considerations need to be taken into account before researchers attempt to use a cognitive 
architecture for robotic control.     
 
 The problem space used by ACT-R is primarily focused on working memory (WM) elements.  
Declarative memories, which are developed by the modeler, interact with procedural knowledge, in order to 
solve a specific problem.  This is useful for researching and studying human decision making for a specific 
problem space, but not for robotic control, where many other aspects of memory need to be represented 
(i.e. Spatial Memory (SM), Iconic Memory (IM), Short Term Memory (STM) and Long Term Memory 
(LTM)).   Instead of using one memory decay rate and a single retrieval threshold as defined by ACT-R for 
memories, we have found that within SS-RICS we needed to use different decay rates for SM, IM, STM, 
WM and LTM.   
 
 Additionally, it is unrealistic to assume that a modeler can develop all of declarative memory, so 
we have used ConceptNet (Liu and Singh, 2004) within SS-RICS to help alleviate the burden of memory 
development.  This gives SS-RICS declarative memories to start with and use without the need to be 
developed by a modeler.   
 
 Also, it is unrealistic to assume the modeler will develop every production needed by a robotic 
system, so within SS-RICS we use a production system syntax (Verb, Noun, Adverb) which helps with 
production generation.  Once this is used, other productions can be generated from this base production 
using machine learning techniques of substitution. 
 
 In order to use a symbolic cognitive architecture on a robotic system a developer must realize that 
cognitive architectures are intended to simulate human behavior not control a robot.  We have used ACT-R 
as inspiration for working memory but in order to develop SS-RICS we have made additional changes for 
production generation, declarative memory development and memory decay rates. 
 

References 
 

Avery, E., Kelley, T. D., Davani, D.  (2006). Using Cognitive Architectures to Improve Robot 
Control: Integrating Production Systems, Semantic Networks, and Sub-Symbolic Processing. In 
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THANK YOU FOR JOINING US...
PLEASE TRAVEL SAFELY

HTTP://ACT-R.PSY.CMU.EDU

P: 412.268.9883
F: 412.268.2844

CARNEGIE MELLON UNIVERSITY
DEPARTMENT OF PSYCHOLOGY
PITTSBURGH, PA 15213

ACT-R RESEARCH GROUP

SUPPORTED BY GRANT N00014-03-1-0115 FROM THE OFFICE
OF NAVAL RESEARCH
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