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Friday  
  
7:45 Continental breakfast  
8:15 Welcome  
  
8:30 Five talks (20 minutes each)  
  
John Anderson, A new utility learning mechanism 5 
Perception  
Glenn Gunzelmann, Representing Human Spatial Competence in ACT-R 10 
William Kennedy & Greg Trafton, Representing and Reasoning about Space 11 
Greg Trafton, Raj Ratwani & Len Breslow, A Color Perceptual Process 

Theory: Letting ACT-R see Colors. 
15 

Mike Byrne, An ACT-R Timing Module based on the Attentional Gate Model 16 
  
10:10 Break  
  
10:30 Five talks  
Communication and Learning from Instructions  
Mike Matessa, Four levels of Communication, Error, and Recovery in ACT-R 22 
Angela Brunstein, Learning Algebra by Exploration  28 
Memory  
Leendert van Maanen & Hedderik van Rijn, Memory Structures as User 

Models 
33 

Jong Kim, Frank Ritter & Richard Koubek, Learning and Forgetting in ACT-R. 37 
Jon Fincham & Greg Siegle, Modeling mechanisms that differentiate healthy 

and depressed individuals: The Paced Auditory Serial Attention Task 
 

  
12:10 Lunch  
  
1:30-5:30 David Noelle, Leabra tutorial and discussion (with 3:30-4:00 break)  
  
6:30-10:00 Party at the Pittsburgh Centre for the Arts, 6300 Fifth Avenue, 

Pittsburgh. 
 

  
Saturday  
  
7:45 Continental breakfast  
8:30 Five talks  
  
Multi-tasking and Control  
Duncan Brumby & Dario Salvucci, Exploring Human Multitasking Strategies 

from a Cognitive Constraints Approach 
41 

Dario Salvucci & Niels Taatgen, An Integrated Approach to Multitasking in 
ACT-R 

47 
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Andrea Stocco & John Anderson, The Neural Correlates of Control States in 
Algebra Problem Solving 

48 

Erik Altmann & Greg Trafton, Modeling the Timecourse of Recovery from 
Task Interruption 

50 

Jared Danker, The Roles of Prefrontal and Posterior Parietal Cortices in 
Algebra Problem Solving: A Case of Using Cognitive Modeling to 
Inform Neuroimaging Data  

52 

  
10:10 Break  
  
10:30 Five talks  
  
Individual differences  
Niels Taatgen, Ion Juvina, Seth Herd & David Jilk, A Hybrid Model of 

Attentional Blink 
54 

Daniel Hasumi-Dickison and Niels Taatgen, Individual differences in the 
Abstract Decision Making Task. 

60 

Ion Juvina, Niels A. Taatgen, & Daniel Hasumi-Dickison, The Role of Top-
Down Control in Working Memory Performance: Implications for Multi-
Tasking 

66 

  
Modeling/Architectural issues/Tools  
Robert St. Amant, Sean McBride & Frank Ritter, An AI Planning Perspective 

on Abstraction in ACT-R Modeling 
72 

Christian Lebiere, Constraints and Complexity of Information Retrieval 77 
  
12:10 Lunch  
  
1:30 Five talks  
  
John Anderson, Dan Bothell, Christian Lebiere & Niels Taatgen, the BICA 

project 
 

  
Model validation  
Glenn Gunzelmann & Kevin Gluck, Model Validation and High Performance 

Computing 
83 

Hedderik van Rijn, Complex model validation by multi-level modeling 84 
Terrence Stewart  & Robert West, ACT-R versus not-ACT-R: Demonstrating 

Cross-domain Validity 
90 

Simon Li & Richard Young, ACT-R ALMOST provides a formula for 
predicting the rate of post-completion error 

91 

  
3:10 Break  
  
3:40 Future of ACT-R  
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Sunday  
  
7:45 Continental breakfast  
8:30 Five talks  
  
Reasoning/problem solving  
Adrian Banks, The Influence of Belief on Relational Reasoning: An ACT-R 

Model 
96 

  
Complex tasks  
Michael Schoelles, Wayne D. Gray, Vladislav Veksler, Stephane Gamard, and 

Alex Grintsvayg, Cognitive Modeling of Web Search 
98 

Eric Raufaste, ATC in ACT-R, a model of Conflict Detection between Planes 102 
Shawn Nicholson, Michael Byrne & Michael Fotta, Modifying ACT-R for 

Visual Search of Complex Displays 
108 

Shawn Nicholson, Michael Fotta, Rober St. Amant & Michael Byrne, SegMan 
and HEMA-SI 

114 

  
10:10 Break  
  
10:30 Five talks  
  
Emotion  
Frank Ritter, Sue Kase, Michael Schoelles, Jeanette Bennett & Laura Cousino 

Klein, Cognitive Aspects of Serial Subtraction 
120 

Robert West, Terrence Stewart & Bruno Emond, Modeling Emotion in ACT-R 126 
Danilo Fum, Expected values and loss frequencies: A new view on the choice 

process in the Iowa Gambling Task 
127 

  
Visual perception and Search  
Troy Kelley, Visual Search 133 
Mike Byrne, A Theory of Visual Salience Computation in ACT-R 139 
  
12:10 End  
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Representing Human Spatial Competence in ACT-R 
 

Glenn Gunzelmann (glenn.gunzelmann@mesa.afmc.af.mil) 
Air Force Research Laboratory 

 6030 South Kent Street; Mesa, AZ  85212 USA 
 
 

Introduction 
Spatial cognition is a topic that has been explored using a 
variety of methodologies over the course of the last 60 years 
or more in psychological research. These studies have 
uncovered many phenomena relating to human (and animal) 
performance in spatial tasks. What has not emerged, 
however, is a unified account of the representations and 
mechanisms that enable human spatial competence across a 
variety of domains and diverse tasks. This is the goal 
pursued in this research. 

The Theory 
This account of human spatial competence is being 
developed within the context of the ACT-R cognitive 
architecture (Anderson et al., 2004). The proposal consists 
of adding a module to the existing architecture to perform 
spatial transformations, estimations, and computations. In 
addition, several buffers are proposed to augment the 
representation of spatial location in vision to be more 

consistent with the neuropsychological literature and to 
provide the functionality needed for ACT-R to operate in 
complex, 3-D spatial environments. Lastly, mechanisms are 
added to support mental imagery. The functional abilities 
that are proposed, as well as the anatomical locations in the 
brain to which they are ascribed, are supported by existing 
empirical, theoretical, and neuropsychological research. 

The proposal as a whole integrates with the existing ACT-
R architecture to create a system that inherits the existing 
benefits of ACT-R, while adding a theoretically and 
neuropsychologically motivated account of human spatial 
competence that extends the reach of ACT-R into new areas 
of research. A new architectural diagram, based upon the 
ideas described here is illustrated in Figure 1, including 
references to proposed brain areas as functional locations 
for each component.  

Conclusion 
The account of human spatial competence presented here is 
broad, but is detailed enough to provide the foundation for 
computational accounts of a variety of cognitive phenomena 

involving spatial information 
processing. As the 
implementation of these 
mechanisms progresses, they 
will be validated against all 
available sources to ensure 
that they accurately capture 
the dynamics of spatial 
cognition in humans. 
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Figure 1. Schematic illustration of the current ACT-R architecture, with proposed additions 
included. Structures identified in green represent existing components of the architecture. Other 
colors represent proposed additions. The environment is indicated in black. 
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Representing and Reasoning about Space 
 

William G. Kennedy and J. Gregory Trafton 
Naval Research Laboratory 

2006 ACT-R Workshop 
 
 
How best to represent and reason about space for a mobile robot is an open question.  To 
extend our previous work in reasoning about space, specifically the hide & seek work 
(Trafton, et al, 2006), our next step is to develop a mobile robot that can covertly 
approach another robot or person.  To do that, we need a good spatial representation that 
is useful for the cognition associated with the concepts of hiding and approaching.  We 
also need to model the behavior of the other robot or person to build a form of situation 
awareness that supports determining when the robot can covertly approach. 
 
We have a successful history with robots developing evidence grids based on existing 
sensors (Schultz and Adams 1998; Skubic, et al, 2004; Trafton, et al, 2006).  We now 
want to focus on the more cognitive aspects involved rather than re-opening hardware 
issues.  Therefore, we need to build on the evidence grids generated by our robot. 
 
Our previous work in hide & seek did not really have a cognitive spatial module.  It relied 
on the robot to implement spatial commands, such as “hide behind the box” with the 
location of “behind the box” being implemented by the robot’s hardware.  The focus was 
modeling the learning of how to play the hiding side of the game and then using that 
knowledge in seeking.  To address covertly approaching another agent, we need to do 
more detailed spatial reasoning at the cognitive level. 
 
We are exploring how far we can get with a simple, metric-preserving, spatial 
representation supporting a cognitive model.  We will describe the spatial representation 
and the cognitive functions it provides and our approach to acquiring the cognitive skills 
to covertly approach another robot or person. 
 
We have a working demo. 
 
References: 
 
Trafton, J.G., Schultz, A.C., Perznowski, D., Bugajska, M.D., Adams, William, 

Cassimatis, N.L., Brock, D.P. (2006)  Children and Robots Learning to Play Hide 
and Seek. In Proceedings of the 2006 ACM Conference on Human-Robot 
Interaction, Salt Lake City, Utah.  ACM Press: New York. 

Skubic, M., Perzanowski, D., Blizard, S., Schultz, A., Adams, W., Bugajska, M., and 
Brock, D. (2004) Spatial Language for Human-Robot Dialogs, IEEE Transactions 
on Systems, Man, and Cybernetics, 34(2), 154-167. 

Schultz, A. and Adams, W. (1998) Continuous localization using evidence grids. In 
Proceedings of the 1998 IEEE International Conference on Robotics and 
Automation, IEEE Press: Leven, Belgium, 2833-2939. 
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Bill Kennedy and Greg Trafton
Naval Research Lab

Representing and
Reasoning about Space

StealthBot

2 2

Previous Work
Hide & Seek
• Created a mobile robot that can play

“hide and seek”
• Vision & navigation handled by robot

platform
• Learned the effectiveness of hiding

places based on feedback
• Successfully paralleled learning of

the game by a 3½ year old child
(Trafton, et al, 2006)

• Limited spatial reasoning, e.g.,
“behind” concept implemented by
the robot

3 3

StealthBot
Goal:  to create a mobile robot that can covertly 

approach another agent (person or robot) in a 
variety of situations (e.g., autonomously, as part 
of a team, in different environments, etc.)

Extends previous research:
– Builds on NRL work in perspective-taking (Hiatt, 2004;

Trafton, et al 2005)
– Adds spatial reasoning (considering Scott Douglass’s work)
– Awaiting cognitive vision system
– Adds cognitive modeling of target, specifically its movement

and sensor capabilities and use
– Learns effectiveness of hiding places based on spatial

reasoning and experience
– Where to hide based on cognitive model of target

4 4

Covert Approach

Target

StealthBot

Look
around

Look
around

5 5

      Robot platform provides

• Vision:
– Moving target recognition

– Stationary object recognition

– Scene metrics

•  Voice, NL, and gesture recognition

•  Generated voice output

•  Navigation, collision avoidance
    (Schultz and Adams 1998; Skubic ,et al 2004)

6 6

           T

           B                 W      W

           S

Representations

Robot sensors: metrics, but ugly!

Symbolic: pretty, but useful? Cognitive map: useful

Visual: beautiful, interpretation?
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7 7

     Spatial Representation
• Robot provides:

– Object locations
– Object characteristics (size, height, etc.)

• StealthBot (ACT-R) software:
– Builds/updates a cognitive map
– Builds linear models of target movement
– Inserts chunks into declarative memory for

• Updated target location
• Change in linear model

8 8

• Map provides relation to closest object
eg:    relation: north-of
         ref-object: wall34

• Provides distances (3 ranges) to determine
closest object to target & to StealthBot

• Can ‘mentally’ walk map to evaluate visibility

      Using the Cognitive Map

 N
W       E

S

9 9

• Basically working in a 2D world

• Hard constraints from robot’s metrics

• Ego-centric referencing by robot difficult

• Ego-centric buffer not in ACT-R (yet)

• Appropriate balance between cognitive
plausibility and AI functionality for us

       Cognitive Map Plausibility

10 10

• Kalman Filters not used to allow reasoning

• Target movement modeled in 3 levels:
tactics, strategies, missions

• Lowest level implemented in Lisp

• Higher levels implement in ACT-R

    Modeling Target Motion

11 11

• Tactic: a linear model:

• Strategy: series of tactics:

• Mission: purpose of strategy:

    Modeling Target Motion

“transit area”

12 12

• Tactic: a linear model:

• Strategy: series of tactics:

• Mission: purpose of strategy:

    Modeling Target Motion

“patrol”
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13 13

Spatial Reasoning

• Productions to “covertly approach”
based on:
– Target’s location
– Target model (tactic, strategy, mission)
– Objects’ locations & characteristics
– Hidden? fnc(target location, objects, sensor)
– Closer to target?
– Path from here to there hidden?

14 14

Summary
• Cognitive Level (ACT-R)

– Functions: deciding where & when to move
– Objects: hiding places, target’s strategies & mission
– Tools: ACT-R productions

• Symbolic Level (Lisp associated with ACT-R)
– Functions: translation between cognitive & sensor levels
– Objects: object characteristics & models of

movement/sensors
– Tools: cognitive map

• Sensor Level (C++/hardware dependent)
– Functions:  sensing environment & robot navigation
– Objects: sonar readings, voice output, scene metrics
– Tools: Evidence grids, Kalman filters

15 15

                               Mission 1
 a         target trace
  b  c      
        N
                                       wall34
 W     box3   E 

        S

                                                    hedge70                                          c
                                       b                                   a         StealthBot trace

  StealthBot World           

Experimental Display

16 16
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A color perceptual process theory:  Letting ACT-R see colors 
Greg Trafton (NRL) 

Raj Ratwani (GMU/NRL) 
Len Breslow (NRL) 

 
Color is a core component of our visual system, yet many cognitive theories do not 
handle colors well, even though good color theories and spaces exist (e.g., the CIE* color 
spaces). ACT-R is able to see colors, but it 'perceives' a blue R (R) as: 
 
TEXT0-0 
  ISA TEXT 
  SCREEN-POS  LOC1-0 
  VALUE  "R" 
  STATUS  NIL 
  COLOR  BLUE 
  HEIGHT  13 
  WIDTH  9 
 
For ACT-R (and all other cognitive architectures), color is represented propositionally.  
This approach works fine when all that is needed is the actual color (e.g., you remember 
seeing the R as blue).  However, this approach does not work well when the perception of 
color is important.  For example, ACT-R has problems deciding whether a color is lighter 
or darker than another, finding patterns within stimuli that are color-coded, etc. 
 
Color perception is also critical for perceiving graphs and visualizations (e.g., a 
meteorological display).  Complex visualizations frequently use color to represent 
quantitative data (see figure below). 

  
 
I will present some experimental data and a new color buffer (part of the vision module) 
that is able to perceptually see colors.  The new color buffer is able to determine whether 
two colors are the same. The new color buffer is also able to determine which of two 
colors are lighter (or darker). 
 
The color buffer is able to account for several empirical effects with relatively few free 
parameters. 
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Michael D. Byrne

Department of Psychology

Rice University

Houston, TX

byrne@acm.org

http://chil.rice.edu/

An ACT-R Timing Module Based 

on the Attentional Gate Model

Overview

Why another temporal module?

• Review of current temporal module

• Time perception phenomena

! Timing multiple intervals

! Underestimation and load effects

The Attentional Gate Model

An ACT-R implementation

Issues and future work

2
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Review of Taatgen Temporal Module 
(TTM) 

Module contains a counter which starts at zero and “ticks” 

every so often, with ticks being spaced further apart the 

longer the interval

• Timing short intervals more accurate than long intervals

Productions can read off the current value of the counter, 

which is noted in a chunk in the temporal buffer

• Conversion to desired interval typically done via retrieval

! For example, what was the counter when I last experienced the 

desired amount of time?

• Interference possible as time-reading productions compete 

with other productions when busy

Counter can be reset when needed

3

First Issue: Timing Multiple Intervals

In modeling a complex task with many time-sensitive 

components, timing of multiple overlapping intervals 

appears necessary

4

time

interval 1

interval 2

interval 1

interval 2

Non-uniform tick size makes this very difficult, 

particularly if SOAs are not constant

ACT-R Workshop proceedings 2006 17



Second Issue: Underestimation and 
Load Effects

One of the primary findings in the temporal literature is that 

people systematically underestimate intervals under most 

conditions

• In fact, proportion of true interval has been taken as the 

dependent measure of choice for numerous meta-analyses

! For most experiments, it’s < 1.0

Most powerful independent variable: cognitive load

• More load during interval yields greater underestimation

• Suggests timing is attention- or resource-demanding

Problematic for TTM: only load at the end of the interval can 

interfere and produce underestimation

Some other smaller issues as well

5

Alternate Account

My conundrum: TTM is great, but not quite what I want, and 

yet I have no desire to re-invent the wheel here

My solution? See if there’s a nice, ACT-R compatible model 

out there and “borrow” it (cf. EPIC!ACT-R/PM)

• Grad student in another lab in my department fortunately 

doing her dissertation on a related topic, pointed me to her 

candidate for “best account so far”

The Attentional Gate Model (AGM) of Block and Zakay (Block 

& Zakay 1996; Zakay & Block, 1997)

• Block and Zakay are two of the more well-known names in 

the temporal domain

• And the AGM turns out to be somewhat similar to the TTM

6
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AGM vs. Taatgen Temporal Module

7

Arousal Time
Start 

Signal

Pacemaker Gate Switch
Cognitive 
Counter

Working 
Memory

Reference 
Memory

Attention Events

Cognitive 
Comparison

To
Retrospective

Model

Shorter
(Wait)

Equal
(Respond)

AGM vs. Taatgen Temporal Module

Pacemaker

• AGM pacemaker uses a fixed mean pulse rate (termed ") 

rather than an increasing one

! Handle overlapping intervals by subtraction (messy)

• Also noisy (logistic, s parameter termed "s)

! Note: timing of long intervals still less accurate than short (noise 

summation yields increased variance as time passes)

Attentional Gate

• Attention can either be devoted to time (which opens the 

“gate,” allowing pulses to be counted), or to other tasks

• In ACT-R terms, this means a production has to fire to 

increment the counter

• Means pulses can be missed, producing underestimates

8
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AGM Module Operations

Start the pacemaker with this on RHS:

! ! +temporal>

    !! isa! start 

Inquire about the presence of a new pulse via LHS:

! ! ?temporal>

! !    new-pulse! yes 

Increment the counter via RHS 

! ! +temporal>

! !    count!! increment

Read off the counter with LHS:

! !  =temporal>

! !     isa! ! counter

! !     count!! =c

9

Example Productions

(p start

   =goal>

     isa! ! time-goal

     done!! start

==>

  +temporal>

     isa! ! start

  =goal>

     done!! nil

)

(p count

   =goal>

     isa! ! time-goal

     done!! nil

   ?temporal>

     new-pulse! yes

   =temporal>

     isa! ! counter

==>

   +temporal>

     count! ! increment

)

10

(p retrieve

   =goal>

     isa!! time-goal

     done! ! nil

   =temporal>

     isa!! counter

     count! =c

   ?retrieval>

     state! free

==>

   +retrieval>

     isa!! time-mem

<    count! =c

)

(p stop

   =goal>

     isa! ! time-goal

     done!! nil

   =retrieval>

     isa! ! time-mem

 ==>

   +temporal>

     isa! ! stop

   =goal>

     done!t

)
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Issues and Future Work

Not yet entirely clear what parameters (pulse rate and noise) 

are generally most appropriate

• Need more models which use the system!

The two temporal modules make slightly different 

predictions, someone should do the experiments:

•  Heavy vs. light cognitive load during interval, but not at the 

ends of the interval

! AGM predicts increased underestimation, TTM predicts no effect 

• Multiple embedded/overlapping time intervals (varying SOA 

critical)

! AGM says doable but hard, TTM says nearly 

impossible (I think)

11

References

Block, R. A., & Zakay, D. (1996). Models of psychological time revisited. In H. Helfrich (Ed.), Time and 

mind (pp. 171–195). Kirkland, WA: Hogrefe & Huber.

Block, R. A., & Zakay, D. (1997). Prospective and retrospective duration judgments: A meta-analytic 

review. Psychonomic Bulletin & Review, 4(2), 184–197.

Taatgen, N. A., Anderson, J. R., Dicksion, D., & van!Rijn, H. (2005). Time interval estimation: Internal 

clock or attentional mechanism? In Proceedings of the Twenty-Seventh Annual Meeting of the 

Cognitive Science Society (pp. 2122–2127). Mahwah, NJ: Erlbaum.

Taatgen, N. A., van!Rijn, H., & Anderson, J. R. (2004). Time perception: Beyond simple interval 

estimation. In C. D. Schunn, M. C. Lovett, C. Lebiere & P. Munro (Eds.), Proceedings of the Sixth 

International Conference on Cognitive Modeling (pp. 296–301). Mahwah, NJ: Erlbaum.

Zakay, D., & Block, R. A. (1997). Temporal cognition. Current Directions in Psychological Science, 6(1), 

12–16.

12

ACT-R Workshop proceedings 2006 21



1

Four levels of communication, 
errors, and recovery in ACT-R

Mike Matessa
Alion Science & Technology

Moving ACT-R out of the desktop

• ACT-R bot in a complex environment
• Communication is more than just talking

– Attention direction
– Object placement

• Communication has internal & external parts
– Internal levels of processing
– External feedback from partner for all levels

• Understanding communication allows              
error prediction and error recovery
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ACT-R levels of processing

ACT-R level
1. Attention
2. Identification
3. Retrieval
4. Action

Module request Example
1. Visual location movement loc.
2. Visual object moving guide
3. Declarative chunk   instr. to follow
4. Motor action            move wheels

Levels of processing comparison

ACT-R level
1. Attention
2. Identification
3. Retrieval
4. Action

Clark (1996) level
1. Attention
2. Identification
3. Understanding
4. Negotiation
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Clark levels of processing

Clark level
1. Attention
2. Identification
3. Understanding
4. Negotiation

Sender
Execute
Present
Signal
Propose

Receiver
Attend
Identify
Recognize
Consider

Evidence of completion:
Sender needs evidence from Receiver in order to complete level

Downward evidence:
Evidence of higher number is evidence of all lower

Clark levels of processing

Clark level
1. Attention
2. Identification
3. Understanding
4. Negotiation

Example: “I’ll be right there”
1. Attend to voice
2. Identify English expression
3. Recognize meaning: delay
4. Consider accepting delay
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4

Clark errors

Example: “I’ll be right there”
1. Attend to voice
2. Identify English expression
3. Recognize meaning: delay
4. Consider accepting delay

Possible error
1. Can’t hear at all
2. “Have a white chair”
3. Right there = 5 sec
4. Can’t wait

ACT-R errors

ACT-R level
1. Attention
2. Identification
3. Retrieval
4. Action

Possible error
1. No visual location returned
2. No visual object returned
3. No chunk returned
4. Motor module error
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ACT-R recovery

ACT-R level
1. Attention
2. Identification
3. Retrieval
4. Action

Possible recovery request to partner
1. “I can’t find what I’m looking for”
2. “I don’t know what that is”
3. “I forget what I’m supposed to do”
4. “I can’t move”

Evidence of completion:
Sender needs evidence from Receiver in order to complete level

Downward evidence:
Evidence of higher number is evidence of all lower

ACT-R recovery

ACT-R level
1. Attention
2. Identification
3. Retrieval
4. Action

Possible recovery action by partner 
1. Make sure obj. in range of sensor
2. Adjust orientation for easier ID
3. Prompt bot with instruction
4. Change environment to allow action

26 ACT-R Workshop proceedings 2006



6

Conclusions

• Putting ACT-R in complex environments 
requires a richer representation of 
communication than passing symbols

• Levels of processing in ACT-R can be 
used as a rich representation

• Levels can be used to predict 
communication errors 

• Levels can be used as feedback to partner 
to recover from errors  

Other uses for the four levels

• Understanding task complexity
– Attention: number of distractors in environment
– Identification: number of object categories
– Retrieval: number of task instructions
– Action: number of obstacles to action
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Learning algebra 
A unique human cognitive achievement is to master tasks 
and situations it was originally not designed for (Anderson, 
in preparation). One of these artificial tasks concerns 
learning algebra. Almost all of us master it even though this 
ability is not directly vitally important to us. 

One way to learn algebra is to use the algebra tutor 
(XXX). For adult learners, the challenge here is more to 
learn how to interact with the interface than the underlying 
algebra. First, interacting with the tutor requires performing 
intermediate steps most experts skip. Second, the tutor 
demands a rigid order of steps and operations. Third, not all 
relations in the display can be mapped directly to algebraic 
relations. In our actual study, in worst case it took 
participants 177 steps in addition to 21 required steps for 
evaluating a diagram when exploring the algebra tutor. On 
average, it took them 14 in addition to 25 required steps to 
solve the diagrams presented.  

Nevertheless, all of our 40 participants were able to solve 
all 175 linear algebra problems presented by the tutor even 
given only minimal instruction. Reasons for this cognitive 
masterpiece could be, first the low degrees of freedom that 
make it easier to detect the structure behind the reactions of 
the tutor when interacting. Second, the four plus steps were 
always the same for all kinds of operations in the tutor. 
Third, the tutor always provides a feedback after 
interactions: Either the display changes after successful 
interaction, an error message pops up, or the tutor doesn’t 
react at all. Forth, participants could use their mathematical 
pre knowledge for deducting hypotheses on how the tutor 
works. So participants with minimal instruction needed in 
best case no steps in addition to required steps at all when 
exploring how the tutor works. 

What humans do 
One example of this cognitive achievement is the very 

first diagram presented corresponding to (5+7)*8. This 
display consists of a (5+7) box feeding into a (x*8) box 
which feeds into an empty resulting box. For solving this 
problem, participants had to select the (5+7) box, to press 
the Evaluate button, to click the green box that pops up for 
taking in the result and to enter the result. Thereafter, they 
had to repeat the same steps for evaluating (12*8). Finally, 
they had to press the next-problem button for getting the 
following task. 
What participants do in this situation is typically to 
immediately calculate (5+7) and try to enter the result 

somehow. For reaching this goal they systematically try to 
type in the result without or after clicking involved boxes 
and buttons. More generally, behavior of participants seems 
to be triggered by eye-catching operations they know how to 
perform instead of global strategies how to clean up the 
display in a most efficient manner. Therefore, they seem to 
be guided by their mathematic expectations and later on by 
their experiences on how the tutor works when interacting 
with the interface. For the (5+7) case, participants typically 
first try to enter 12 without selecting any boxes. The tutor 
doesn’t react to this action. So they try as next to select the 
(x*8) box and to type in the result. That is because this is 
the box where the result of evaluation has to be entered. 
Again the tutor does not react. Alternatively, participants try 
to select the (x*8) box and to click the Evaluate button. This 
time the tutor answers ‘Evaluate can’t be done with the 
selected box.’ Therefore participants select as next either 
both, the (5+7) and (x*8) boxes, or only the (5+7) box 
followed by clicking the Evaluate button. Mostly 
participants now click the popping up green box for entering 
the result ‘12’. Otherwise they systematically try out what to 
enter guided by the ‘Your answer is incorrect,’ feedback of 
the tutor. 

What the model could do 
There are 3 kinds of implications for teaching the algebra 

model how to perform this task. First, in principle the model 
would be able to calculate eye-catching operations by cued 
retrieval. It could also scan the display for promising 
operations when deciding what to do next.  

Second, what the model can’t provide in the moment is to 
order goals and acquired knowledge hierarchically as 
participants do. They describe that for evaluating, they 
search for a box to be evaluated… In addition, the actual 
version of model does not map its algebraic pre knowledge 
to tutor states when discovering how to perform. 
Third and even harder to achieve, is to let the model act by 
its expectations how the tutor should behave, systematically 
and not per random try out what to do next, and repeat 
operations for memorizing order of steps associated. Getting 
the algebra model there would mean to make it much more 
similar to that winning human design of mastering situations 
it was originally not designed for.   

Acknowledgement 
This project is partly founded by the Alexander von 
Humboldt Foundation.  
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Human cognition as a winning
design: Learning algebra by

exploration

Angela Brunstein & John R. Anderson
Carnegie Mellon University

A winning design

• designed to learn tasks we
are not designed for:
Learning algebra (Anderson,
2007)

• Algebra: artificial, but almost
all can master it

• Algebra tutor: hard &
complex - handling the tutor,
not the algebra behind

Learning how to handle the tutor

• Why hard to perform?
– Required steps experts

skip
– Strictly determined order

of operations
– At least 4 steps per

operation
– Not completely matching

to doing algebra
– Worst cases: 21 + 177

steps for x+3 = 8 (M = 14)

Learning how to handle the tutor

• Why feasible?
– Strictly determined order

of operations
– Stereotypic order of steps

per operation
– Direct feedback

(exception:
miscalculating)

– Math pre knowledge
(arithmetic, maybe
algebra)

Performance: Learning by exploration Performance: Learning by exploration
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Steps 1st problem: evaluate (13) Steps 2nd problem: evaluate (13)

Steps 1st problem: evaluate (29) Steps 1st problem: evaluate (29)

Steps 2nd problem: evaluate (29)
Steps 1st problem: invert (9)
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Steps 2nd problem: invert (9) Steps 1st problem: invert (13)

Steps 1st problem:
 invert (13)

Steps 1st problem: invert (13)

Steps 2nd problem: invert (13) Learning by exploration

• Transfer arithmetic
knowledge /
expectations

• Create tutor knowledge
based on expectations

• Transfer tutor knowledge
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…and the model?

• What it could do…
– Cued retrieval: “Stroop” like calculating
– Searching the display for finding what to do

next
• What it cannot in the moment…

– Hierarchical structure of goals
– Mapping math knowledge to tutor functions

…and the model?

• Out of reach in the moment…
– Acting by expectations
– Systematically try what to do next
– Repeat for learning
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Introduction 
The role of information increases. Both for individuals as 
for society as a whole, handling information has become a 
tremendously important aspect of daily live. 
Simultaneously, the amount of available information 
increases as well. Given this current information overload 
(Brusilovsky & Tasso, 2004), research into personalization 
and recommender systems seems necessary. Applications 
that limit the amount of information presented to a user by 
selecting only relevant information would be extremely 
useful. 

Relevant information could be filtered by creating a 
personal profile of a user, and subsequently selecting 
information that fits the constraints of that profile. We refer 
to such a profile as a user model (Brusilovsky & Tasso, 
2004). The user model could be explicitly created by 
presenting a user with a questionnaire on her interests, and 
using the answers to the questionnaire as a model of that 
user’s interests. A drawback of this approach is that it takes 
time for a questionnaire to be completed, and the user is 
thus presented with even more information than before. In 
addition, in many situations users find it hard to explicate 
their interests, or their interests may change over time, 
making it hard to infer their interest using a questionnaire. 
Therefore, implicit inference of user interests should be 
applied, for instance using eye movements (Van Maanen et 
al., 2006) or mouse clicks (Claypool et al., 2001).  
 
ACT-R’s declarative memory structure might prove useful 
for maintaining these personal profiles. ACT-R proposes 
that chunks in declarative memory are characterized by 
activation, a quantity that reflects how likely it is that a 
chunk will be needed in the immediate future (Anderson & 
Schooler, 1991). The level of activation depends on the 
history of usage of a chunk (base-level activation), and a 
component reflecting the influence of the current context 
on a chunk’s activation (spreading activation, Anderson & 
Lebiere, 1998). The spreading activation component is a 
weighed sum of the activation of associated chunks, with 
the weights being the strengths of association. The chunks 
in ACT-R’s declarative memory module form a semantic 
network structure, in which the edges represent spreading 
activation between chunks. 

The strengths of association can be determined by 
looking at the frequency of co-occurrences of chunks. If 
two words frequently co-occur, the presence of one word 
can be regarded as a predictor for the presence of the other 
word. However, if a word co-occurs with many different 
words (such as for instance determiners), than the 
predictive value of that word is less (Posterior Strength 
Equation, Anderson & Lebiere, 1998). 
 
These strengths of association may also reflect individual 
interests. As an example, consider the case of a sports fan 
reading the newspaper: For her, reading a newspaper will 
usually involve reading the sports section. Therefore, 
chunks representing sports related notions and chunks 
representing the newspaper co-occur more frequently for a 
sports fan than for a non-sports fan. In ACT-R, a higher 
strength of association would thus be created between 
newspaper chunks and sports related chunks for sports fans 
than for non-sports fans. 

Image Recommender System 
This feature of ACT-R’s associative strength learning 
mechanism can be exploited to create personalized 
applications. Searching images on the internet is a typical 
domain in which personalization is useful, because image 
search based on one key word generally results in very 
diverse search results. For instance, searching for the key 
word apple results in images of fruit and images of 
computers, and searching for the key word mouse results in 
images of rodents or images of computer equipment. Using 
ACT-R’s declarative memory structure, we have developed 
a recommender system that expands search queries for 
image search. The Image Recommender System functions 
as follows. 

The user can issue a query to an online image search 
engine (we used Yahoo! Search SDK), which returns a 
series of images. By clicking on an image, the user can 
indicate interest in that particular image. Each time the user 
indicates interest in an image, the website that contains the 
image is parsed, and the words are harvested. The 
assumption is that the words on the websites visited by a 
user represent not only the content of the websites, but are 
also indicative of the content of the images on these 
websites.  
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Because the user only (or at least generally) visits 
websites that are of interest to her, the words on these 
websites also reflect her interests. Spreading activation 
between these words is calculated using the Posterior 
Strength Equation. To reduce the computational load, high-
frequent words in the semantic network are excluded. 
These words will probably not influence the 
recommendations that the system will give, because they 
likely co-occur with many other words, resulting in low 
spreading activation. The words that are excluded are for 
instance determiners or pronouns. Also to reduce the 
computational load, only the ten most frequent words on a 
webpage plus the search query are used to calculate 
strengths of activation, because, low frequent words on a 
webpage are less indicative of the contents of a webpage 
than higher frequent words. Again, these words would have 
low spreading activation. It should be noted that there is no 
principled reason for these implementation choices, but are 
only intended to make the size of the semantic network 
incorporated in the Image Recommender System feasible. 

Every new query triggers a retrieval from declarative 
memory and provides an opportunity to train the strengths 
of association. The query is stored as a goal chunk, which, 
being in the focus of attention, spreads activation towards 
all associated chunks. Given the individualized strengths of 
association, different chunks might be retrieved for 
individual users: The chunk with the highest activation will 
be retrieved, which differs for individual users. The 
retrieved chunk is the chunk that is the most associated 
with the goal chunk (search query). That is, the word 
represented by that chunk occurred most frequently in the 
context of the query key word. Since the frequency of co-
occurrence is determined by the mouse clicking behavior of 
the user, the retrieved chunk also represents the most likely 

notion of interest for the current user in the current context. 
The retrieved chunk is used to expand the search query. In 
another application, it could be involved in some other 
personalized task component 
 
The Image Recommender System was tested in two 
experiments. In the first experiment, we performed a series 
of searches and counted the number of relevant hits, with 
and without expanding the query. We performed searches 
for images of 38 European countries, and selected images 
from a specific category. In one condition, we only selected 
images that depicted natural scenes, whereas in a second 
condition, we only selected images that depicted cities. 
Semantic networks were formed based on these selections, 
and afterwards we searched for the same 38 European 
country names, but this time with expanding the query 
using the Image Recommender System. Searches were 
performed with queries that were expanded with one of the 
two most associated items. We did the same experiment 
with image searches for 14 pop band names, and selected 
images representing stage acts of these bands and album 
covers, respectively. We found that in all categories 
recommending a related key word based on the declarative 
memory user model increased the number of relevant 
images, as is depicted in Figure 1. 

In the second experiment, we searched for the same 
word using two different semantic networks. We used the 
Nature and Cities networks for this test. Figure 2 shows the 
image results for the search query picture. As can be seen, 
the recommender system based on the Nature semantic 
network gives different results than the recommender 
system based on the Cities network. The Nature 
recommender system suggested the terms Lofoten, an 
archipelago near the Norwegian coast, and Reine, a small 
fishing village on one of the Lofoten islands. The Cities 
recommender system suggested Nicosia and Nuernberg, 
two European cities. Similar results were obtained for the 
key words view, photo, country, and time. 

Because during the training of the semantic networks 
European countries were used as queries, it is not surprising 
that all recommended terms relate to Europe. However, 
because of the specific choices made when training the 
Nature and Cities semantic networks, the Image 
Recommender System, expands new queries differently for 
the users modeled by these declarative memory structures.  

Discussion 
An issue in our tests is the relatively small size of the 
declarative memories. Because the initial period in which 
the network of associations was trained was relatively 
short, the network size never exceeded 8,000 unique entries 
and no more than 30,000 words were parsed. Therefore, the 
system has not reached a stable configuration in which 
always appropriate recommendations can be made. It could 
be that some words are strongly associated, because at the 
web sites visited these words co-occur, although these web 
sites are not representative of the normal contexts of these 

Figure 1. Proportion of relevant images 
returned by the standard search engine 

(Without Association) and returned by the 
Image Recommender System (With 

Association), for four different image 
categories and two different query sets. 
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words. In those cases, inappropriate recommendations will 
be made. 

In addition, because of the limited network size, some 
words that are highly frequent will not be eliminated, but 
instead will be used for expanding the query. We expect 
that these issues will resolve if a larger training period is 
allowed. 
 
In the Image Recommender System we developed, we only 
relied on strength of association for recommending 
possibly interesting chunks. The strengths of association 
can be regarded as reflecting the user’s long-term interests, 
because the strengths of association only change slowly. 
The short-term interests of a user might be incorporated by 
including the base-level activation into the equation. If a 
chunk is recently attended, for instance because the word 

represented by that chunk has recently been used in a 
search query, the base-level activation of that chunk has 
been increased. An increased base-level activation means 
that the likelihood of being retrieved has also been 
increased. In this enhanced Image Recommender System, 
retrieval of the chunk will depend on the strengths of 
association – based on the long-term interests of the user – 
and on the base-level activation – reflecting the short-term 
interests of the user.  

Conclusion 
A dynamically updated declarative memory structure, 
consisting of a semantic network of chunks connected by 
strengths of association, might serve as a model of interest 
of an individual user. This model subsequently can be used 

Figure 2. Image search for the key word picture using the Nature semantic network (top) and the Cities 
semantic network (bottom). The recommender system that uses the Nature network expands the query with the 
key words Lofoten and Reine, and mainly finds images with natural scenes. The recommender system that uses 
the Cities network expands the query with the key words Nuernberg and Nicosia, finding images of buildings. 
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to limit the amount of information presented to a user to a 
relevant subset. A typical domain of application is (of 
course) web search, but all situations that involve high 
information load (Brusilovsky & Tasso, 2004) might 
benefit from applying ACT-R’s declarative memory 
principles to personalization research. 
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Simulation & Training Study:
Learning and Forgetting in ACT-R

Jong W. Kim, Frank E. Ritter & Richard J. Koubek
The Pennsylvania State University

University Park, PA

2005 ACT-R Summer School

Building the model

Thesis topic proposed
Model of learning & forgetting

07/21/06 2006 ACT-R Workshop 2

Training Issues

In Homeland Security: Counter-terrorism Training Drill
In the Washington Post report (Johnson, 2003)
Tested the readiness of the first responders under simulated explosions
of dirty bombs in Seattle and the release of B/A in Chicago
The first large scale training drill in USA for 5-day
8,500 people included from federal, state, and local agencies
Expenditure: 16 million dollars
How long will these lessons be retained?  How can they be retained?

In Advanced Manufacturing Environments
Humans still remain as an important element (Mital, 1995).
Workers need to acquire various levels of knowledge and skills (Mital,
1997).
Task complexity affects the variance of individual learning and
forgetting rates (Nembhard & Osothsilp, 2002).
A worker’s knowledge structure of plastic intrusion machine operations

Training can manipulate the knowledge structure and performance (Koubek,
Clarkston, & Calvez, 1994).

07/21/06 2006 ACT-R Workshop 3

Knowledge and Skills are Degraded by
“Disuse” or “Infrequent Use”

Performance can be degraded by
Infrequent use
Disuse
Psychological factors: stress, time-critical situations

Example: Cardiopulmonary Resuscitation (CPR) Task
Non-medical trainees may need to do the task in a space flight mission
(Ramos et al., 1995).
CPR skill retention study (McKenna & Glendon, 1985)

120 occupational first responders
Six months after training, less than a quarter of them were skillful.

Skill decay will be the cause of human performance decrements !

07/21/06 2006 ACT-R Workshop 4

Issues

Role of Training
Preparedness & Readiness

We need qualified human performance with expeditious responses,
minimized cost of training, making skills more robust against decay

Using Knowledge & Skills
Disuse or infrequent use of knowledge and skills can aggravate human
performance.
There is a great interest in mission-critical domains to minimize the
decay of expert skills after a period of disuse (Chong, 2004).
Forgetting: a general human characteristic.

Different Decay Performance of Knowledge and Skills in a Task
Perceptual-motor task: riding a bicycle - generally rarely forgotten
Procedural task: CPR task - susceptible to decay

An ordered sequence of steps to achieve a goal
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Research Objectives and Approaches

The Objectives
Investigate training performance and proficiency based on the cognitive
modeling of procedural skill decay
Explore a training paradigm that might mitigate skill decay

Approach
Implement a computational cognitive model of learning and forgetting
in the ACT-R cognitive architecture
Propose the mechanism of skill decay for modeling
Explore mitigating factors against skill decay based on the model
Instantiate strategic training research program to mitigate skill decay

07/21/06 2006 ACT-R Workshop 6

The ESEGMAN

ESEGMAN?
Emacs SubstratE: Gate toward MAN-made world
A substrate interfacing an ACT-R model with a man-made task
environment to explore office work

Limitation of the Architecture
A cognitive model’s restriction
to access real task
environments
How to embody a model to
interact with tasks?

The ESEGMAN Roles
It functions as a hand and eye of the ACT-R model
Eye: to get information on the Dismal window and to pass it back to the
model
Hand: to pass decisions and actions from the model to the Dismal (a set
of key presses or mouse clicks) window

07/21/06 2006 ACT-R Workshop 7

Dismal: Spreadsheet Tasks

Dismal - gather and analyze behavioral data in spreadsheet based on
Emacs editor (Ritter & Wood, 2005)
In this study

Two spreadsheet tasks were generated for the target tasks that the
model and the human will perform

Two Reasons of Using Dismal Spreadsheet
Spreadsheet tasks

The attributes of procedural and cognition demanding skills
Measure learning and forgetting effects on procedural skills
Novel spreadsheet, so can measure learning and forgetting

Running under Emacs editor
ACT-R model with ESEGMAN runs under Emacs.
Humans can directly perform the same tasks under Emacs.
Human behaviors will be recorded by RUI, Recording User Input (Kukreja et
al., in press)

07/21/06 2006 ACT-R Workshop 8

ACT-R Forgetting Model

Two basic parts
A set of declarative representations:

Using menu bar (File>Open)
Using command keys (C-x C-f)

A set of domain-general production rules
Attend the Dismal spreadsheet screen
Press sequences of keys, Move mouse, and Click mouse button
Change goals
Repeat certain actions

Learning: production compilation
Forgetting mechanism need to be newly proposed and added to
extend the current ACT-R architecture
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Can ACT-R Forget?

ACT-R forgetting model of Japanese-English paired-associate tasks
(Pavlik & Anderson, 2005; Pavlik, in press)
Based on the activation mechanism

Chunk retrieval performance from DM
An item in DM receives an increment of strength when it is practiced.
The increment decays as a power function of time.

Limitation
This model only focused on the retrieval performance of declarative
knowledge
It does not address procedural skill decay.

07/21/06 2006 ACT-R Workshop 10

Skills Decay in ACT-R

As a rule learning mechanism, chunking is used to model
learning phenomena but not the decay of skill.

Soar

The architecture’s performance is limited to declarative
knowledge learning and forgetting.

ACT-R

It doesn’t provide a rule learning mechanism. This
indicates that the architecture is not able to model
procedural skill learning.

EPIC

CapabilityArchitecture

SOURCE: Chong, R. S. (2004). Architectural explorations for modeling procedural skill decay. Paper
presented at the The Sixth International Conference on Cognitive Modeling, Pittsburg, PA., USA.

Chong (2004) argued that…
The existing set of mechanisms from several architectures (EPIC, ACT-R,
and Soar) cannot afford modeling of procedural skill decay.
Thus, it is necessary to extend the current architecture to address
forgetting phenomena.

07/21/06 2006 ACT-R Workshop 11

Proposal: Mechanism of Skill Decay

Learning New Productions: “Production compilation”
Collapsing two productions into a single one
A process of putting declaratively stored knowledge into a procedural
form

“Production degradation?”
After the process of production compilation, what should happen to the
model to represent skill decay
Need to model procedural skill degradation

07/21/06 2006 ACT-R Workshop 12

Toward Modeling Procedural Skill Decay

If the condition of a rule
is not satisfied by the
declarative elements,

Then, the rule will not
match and fire.

A cue

Skill decay can be represented by the inability to retrieve
or match a rule cue due to insufficient declarative cues in
the context of architectural mechanisms.

! 

"

Chong (2004): “skill decay” in ACT-R architecture can be realized by
the consideration of knowledge availability in production rules.

This study will propose procedural skill decay mechanism for ACT-R:
Cue unavailability can be the architectural representation of forgetting
phenomena that is observed in human behavior.
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Directions

Complete the ESEGMAN system
View Dismal buffer
Grab and deliver visual information in Dismal buffer to the model
Deliver a string to Dismal from the model

ACT-R performance
Modeling of skill decay
Type numbers and string

“press-key” command appropriate to model two key presses in Emacs
  (e.g., C-x C-f)

Run experiments and gather human performance data

07/21/06 2006 ACT-R Workshop 14
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Introduction
When people conduct multiple tasks in tandem, they often 
interleave the various operators of each task. Just how these 
basic cognitive, perceptual and motor processes are ordered 
generally affords a range of possible multitasking strategies. 
We briefly outline how a cognitive constraint approach can 
potentially be used to explicitly explore a range of 
multitasking strategies, within the theorized constraints that 
operate on the human cognitive architecture. The power of 
this approach lies in the task description language, which 
allows higher-level task performance to be constrained by 
information requirements and resource demands of lower-
level tasks. In general, this approach could provide an a 
priori method for identifying possible multitasking 
strategies.

Consider while you are driving in your car, it is 
sometimes not too difficult to direct your attention away 
from the road, in order to complete a secondary task, such as 
dialing a number on a cell phone. In this example, there are 
obvious tensions between the two tasks; suspending 
attention from the primary task of driving for too long a 
time period might result in a collision, but completing the 
secondary task in a rapid and timely manner is probably also 
important. We briefly outline how an approach called 
Cognitive Constraint Modeling (CCM: Howes et al.,  2004), 
can be used in a multitasking context to identify the optimal 
points at which to interleave a primary task, such as driving, 
in order to complete a secondary task, such as dialing a 
number on a cell phone. 

One of the aims of the cognitive modeling community is 
to provide an account of human performance on complex 
real-world tasks. Cognitive architectures (e.g., ACT-R: 
Anderson et al.,  2004) allow models to be developed within 
a unified framework that integrate assumptions about the 
time course and information processing constraints that 
operate on the human system. 

For multitasking scenarios, like that described above, 
most previous models have tended to rely on a customized 
executive, which strategically controls the interleaving of 
the various task operators (see Salvucci,  2005, pp. 458-460). 
In response, Salvucci (2005) has proposed a general 
executive for controlling multitasking in the ACT-R 
cognitive architecture.  The general executive assumes that 
control between two or more primary tasks is passed 
through a queuing mechanism. The queuing mechanism 
allows for the interleaving of the various operators that 
make up each primary tasks. In other words, the 
multitasking general executive provides a domain 
independent mechanism for integrating separate ACT-R task 
models.

Salvucci (2005) has applied the multitasking general 
executive to the problem of integrating the control and 
monitoring required for driving, with the completion of 
secondary in-car tasks, such as dialing a cell phone number. 
The model was able to account for the increase in dialing 
time required while driving compared to baseline, and also 
the degraded steering that resulted from the introduction of 
the secondary dialing task. The multitasking general 
executive accounted for these results by assuming that a 
central cognitive bottleneck operates to limit performance, 
and that cognitive control must be sequentially ceded 
between the two tasks. 

However, a limitation of this approach is that the modeler 
has to make additional assumptions regarding the possible 
range of points in a task that control could be ceded. In other 
words, the precise operators in a task, at which control can 
be temporarily given up to a secondary task,  must be 
specified by the modeler.  This is a problem because 
performing one or more complex tasks in tandem affords the 
cognitive architecture a range of possible strategies with 
which to order the basic cognitive,  perceptual and motor 
processes required for each task. Here, we briefly outline 
how an alternative approach, called CCM (Howes et al., 
2004), might be used explicitly explore a range of possible 
strategies for multitasking.

Cognitive Constraint Modeling
The CCM (Howes et al., 2004) approach provides a 

framework for directly reasoning about the optimal bounds 
on skilled behavior, given the constraints imposed by the 
task environment, by strategic knowledge, and by the 
cognitive architecture. The CCM approach relies on a task 
description language, called Information-Requirements 
Grammar (IRG). IRG is motivated by the theory that higher-
level task performance is constrained by the information 
requirements and resource demands that operate on lower-
level task processes (see, Howes et al.,  2005). Predictions in 
CCM are then made using a Prolog-based tool,  called 
CORE, which expands the task description specified in the 
IRG to determine an optimal schedule of the start times for 
each low-level process. Previously, this approach has been 
used to account for dual task performance limitations in the 
psychological refractory period (PRP) paradigm (Howes et 
al.,  2004), and more recently has been scaled up to account 
for more complex tasks (Eng et al.,  2006; Howes et al., 
2005).

In a multitasking context, this approach allows 
parallelism between task operators to be easily defined. This 
is because IRG does not limit the task description to a 
sequence of operators, but instead allows resource 
constraints on lower-level cognitive, perceptual and motor
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processes to determine the sequential orderings of operators. 
Our explorations of human multitasking performance within 
a CCM framework is still very much in the early stages of 
development. Here we present a brief description of some 
preliminary findings. 

Preliminary Results
As a starting point,  we reimplemented a model trace from 

Salvucci’s (2005) ACT-R model of driver distraction. As 
summarized above,  this model used a general executive to 
switch between a primary task (driving) and secondary task 
(dialing). Figure 1a shows a behavior graph from an IRG 
description that replicated the original model. In particular, 
the points at which the ACT-R model could switch between 
tasks was explicitly represented in the IRG task description. 
Therefore, this behavior graph is identical to that produced 
from an ACT-R simulation. 

In contrast, Figure 1b removed the explicit task switching 
points in the IRG and allowed CORE to find a strategy that 
was consistent with the constraints imposed by the ACT-R 
cognitive architecture.  A greedy scheduling algorithm was 
used. Comparison of the two outputs suggest that a 
multitasking strategy could be specified that 1) did more 
road checks while dialing a cell phone number (7 vs. 5), and 
2) could complete the dialing task in less time (3 s vs. 4 s). 
This difference was partly because the CORE generated 
schedule exploited slack in the cognitive processor (i.e., the 
delay between production rule firing) to initiate a new road 
check, while the dialing task was waiting on the motor 
processor to execute a key press.

Discussion
We have shown that a CCM approach can potentially be 

used to directly reason about the space of multitasking 
strategies afforded within the theorized constraints that 
operate on the human cognitive architecture. We were able 
to replicate  a previous multitasking model (Salvucci, 2005) 
by explicitly representing the hypothesized points that 
control between tasks could be ceded within an IRG task 
description (Howes et al., 2005). We were also able to use 
CORE to find a minimal schedule (using a greedy 
algorithm) that was consistent with the constraints imposed 
by the ACT-R cognitive architecture and task description. 
Moreover, this work demonstrates the power of IRG as a 
task language for describing how the constraints on lower-

level cognitive, perceptual and motor processes can 
determine the sequential orderings of operators, even in the 
complex case of human multitasking. 

Our eventual goal is to identify sets of possible optimal 
and/or satisficing multitasking schedules. In particular, 
given the process constraints specified in the ACT-R 
cognitive architecture, we are interested in identifying a task 
switching strategy that optimizes the payoff between time 
taken to complete the dialing task and the quality of driver 
control. In order to specify this payoff function we need to 
be able to more precisely formalize the quality of driver 
monitoring, and also the down stream effects of moving 
attention to a secondary task. 
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A. Replication

B. Generated

Figure 1. Behavior graphs for dialing a cell phone (dark grey bars) while monitoring a driving task (light grey bars), which 
(a) replicates Salvucci’s (2005) task switching schedule and (b) a greedy schedule generated by CORE that was also 
consistent with the constraints imposed by the ACT-R cognitive architecture. 
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An Integrated Approach to Multitasking in ACT-R 

Dario D. Salvucci (salvucci@cs.drexel.edu) 
Department of Computer Science, Drexel University 

3141 Chestnut St., Philadelphia, PA 19104, USA 

Niels A. Taatgen (taatgen@cmu.edu) 
Department of Psychology, Carnegie Mellon University 

5000 Forbes Ave., Pittsburgh, PA 15213, USA 
 

 

Human multitasking arises in many real-world situations, 
from mundane everyday tasks to the most complex, 
demanding  work environments.  Cognitive models 
developed within the framework of cognitive architectures 
have accounted for multitasking in small-scale (e.g., PRP) 
tasks and also, to some extent, in complex real-world tasks.  
However, these models have generally utilized specific 
multitasking mechanisms to manage component subtasks in 
their particular domains; as such, these models have 
“customized executives” (Kieras et al., 2000) that are fine-
tuned for the particular task.  Other modeling efforts have 
focused on more general characteristics of domain-
independent multitasking for integration of smaller task 
models into larger multitasking models (see Kieras et al., 
2000, for a discussion).  For example, Salvucci (2005) has 
described a general executive for the ACT-R architecture 
(Anderson et al., 2004), and Taatgen (2005) has explored a 
general way in which this architecture can account for 
multiple concurrent tasks. 
 Our current efforts aim to explore how to integrate the 
variety of multitasking models and modeling approaches in 
ACT-R under a single integrated framework.  To this end, 
we have been studying how a simple mechanism can 
generalize across domains from typical laboratory tasks 
(e.g., PRP and the “Wickens” tracking task) to complex 
real-world domains.  In particular, we have been exploring a 
novel approach that allows for constraint-bounded cognition 
along with additional constraints through use of ACT-R’s 
non-cognitive (e.g., perceptual and motor) modules.  In our 
talk we will describe our new approach and provide a brief 
overview of the models, their integration with a new 
temporal module (Taatgen et al., 2005), and their fits to 
empirical studies of driver behavior (Salvucci, 2001, 2006; 
Salvucci, Taatgen, & Kushleyeva, 2006). 
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The Neural Correlates of Control States in Algebra Problem Solving 

Andrea Stocco & John R. Anderson 
Carnegie Mellon University 

 
Algebra is a complex human activity that requires coordination of several cognitive 
abilities, including visual processing (for parsing the equation), declarative memory (for 
storing and retrieving arithmetic knowledge), and visual imagery (for updating and 
manipulating intermediate and partial representations of the equation). It is also a 
convenient experimental task, since the solution path can be perfectly characterized, and 
participants are extensively trained in solving algebraic problems with the same algorithm, 
repeating the same sequence of problem-solving steps. 

We took advantage of this paradigm, as well as previous results with algebraic tasks 
(Anderson, 2005; Qin et al., 2004), to look for the neural correlates of control states in 
ACT-R. Control states are those slot values in the goal chunk that hold a distinctive 
hallmark for the current state. They allow us to distinguish the current state from similar 
buffer configurations, allowing the correct sequence of productions to fire. Together with 
procedural knowledge, they constitute the main components of top-down control in ACT-
R.  

In our experiment, participants were required to solve a set of 128 equations.  In each 
of them, the unknown could be unwound in two steps, which consisted of first adding (or 
subtracting) the same quantity to both sides, and then multiplying (or dividing) both sides 
by the proper factor. Participants had to correctly indicate these two steps by pressing the 
corresponding finger in a data glove, and eventually choosing the result from a list of four 
alternatives.  The equations were divided into four categories, obtained by varying two 
dimensions: whether the equations were Updated or not, and whether they contained 
Numbers or Parameters. In the Update condition, the software computed the intermediate 
state and displayed it on the screen.  Under these conditions, participants did not have to 
perform mental manipulations of the equation, and the amount of control was limited to the 
basic choice of the computational steps to carry on.  On the contrary, in the No Update 
condition, the application did not update the equation on the screen, and participants had to 
mentally calculate the intermediate states. This increased the number of intermediate 
problem states participants needed to hold, and, when the equations also contained 
numbers, it also required the retrieval of arithmetic facts. Crucially, the engagement of each 
new module should result in the requirement of new control states. Activity due to control 
states should steadily increase from the two No Update conditions to the Update 
Parameters, and finally reach a peak with the Update Numbers equations. 

The experiment was performed within a 3T MRI scanner, with a relaxation time set to 
1.5 seconds (FOV = 20cm, Flip Angle = 73º). A confirmatory analysis was conducted on 
our preliminary results, using eight predefined regions of interest (ROI) that have been 
previously mapped onto ACT-R buffers (e.g., Anderson, 2005). Five ROIs seemed to be 
differentially affected in the four task conditions. The Posterior Parietal area showed an 
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activation pattern that was consistent with the demands of the imaginal buffer, being 
significantly affected by the number of problem states required to solve an equation, but not 
by the amount of the retrievals. A region in the left Prefrontal Cortex, on the contrary, 
seemed to be affected by retrieval of arithmetic facts alone, as predicted by its previously 
assigned interpretation as the neural correlate of the retrieval buffer. Crucially, three 
regions (anterior cingulated cortex, fusiform gyrus, and caudate nucleus), exhibited 
activation patterns compatible with increased control requirements. One of these regions 
(the left fusiform gyrus) is a visual recognition area, and its activation probably reflects 
increased visual scanning of equations. The remaining two areas confirm their current 
interpretation as the goal buffer and the procedural module, and their involvement in top-
down control. 
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Modeling the timecourse of

recovery from interruption

Erik M. Altmann

Michigan State University

Greg Trafton

Naval Research Laboratory
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Resumption lag: Why the floor?

• Interventions

– Modest effects: Cue availability, warning

interval, red-arrow pointer, learning

– No effects: Notepads (structured on paper,

freeform online), cursor as pointer

• A ~2 sec lag over baseline remains

– Why this floor?

– Examine timecourse of recovery as source of

constraint
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Retrieving elements to the focus

Element 1

Element 2

Element 3

Element 1

Element 1

Element 1

Retrieving elements to the focus

Element 1

Element 2

Element 3

Element 1

Element 1

ACT-R Workshop proceedings 2006 51



Retrieving elements to the focus

Element 1

Element 3

Element 2

Element 1

Use this as activation in ACT-R latency model

Priming delivered to element p = 
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Primed-retrieval model:  

! 

RT ( p) = F exp 1" assoc
i"1

i=1

p

#[ ]

assoc

assoc2

Primed-retrieval model
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rmsd = .044

r2 = .997

Conclusions

• Role for expertise

– Affects assoc parameter

– Cross-task associations should speed recovery

• A mechanism of flow, situational awareness

– A full mental focus that primes the next action

– Implicit in priming constraint (Altmann & Trafton, 2002)
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The Roles of Prefrontal and Posterior Parietal Cortices in Algebra 
Problem Solving: 
A Case of Using Cognitive Modeling to Inform Neuroimaging Data 
 
 
Jared Danker 
 
Based on the assumptions of a unified cognitive architecture (ACT-
R), we predicted that increasing the retrieval demands of algebra 
problems would lead to increased activity in prefrontal cortex and 
increasing the transformational requirements of algebra problems 
would result in increased activity in posterior parietal cortex. We 
designed an algebra task that separated the normally correlated 
processes of transformation and retrieval and manipulated them 
independently. We found that manipulating either process lead to 
differential activity in both prefrontal and posterior parietal cortices, as 
well as several other regions. We propose two explanations for these 
results. The first is that these two regions do not subserve separate 
functions as is assumed by ACT-R. The second is that we did not 
successfully isolate the processes of transformation and retrieval. We 
rely on cognitive modeling to investigate these two options. 
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Individual differences in multi-tasking and Control 
A Hybrid model of Attentional Blink 
Niels Taatgen, Ion Juvina, Seth Herd & David Jilk 
Carnegie Mellon University, University of Colorado & eCortex 
 
The hypothesis: individuals differ in their ability to structure control 
The central hypothesis in this project is that individual differences in multi tasking can be 
explained by the way individuals construct their control structure of the task. More 
specifically, high-proficient individuals construct more elaborate control structures than 
low-proficient individuals. Finding the right control structure for a task is a matter of 
striking the right balance. One side of the balance has already been widely recognized: 
too little control leads to suboptimal task performance, basically corresponding to not 
properly carrying out the task. What is less well recognized is that on the other side of the 
balance too much control leads to inflexible and brittle behavior, which I have 
summarized with the term “Minimal Control Principle”. 
 
Dual-task timing and Abstract Decision Making 
The basis for this hypothesis was our work in early 2005 in which we compared 
individual performance on a multi-tasking paradigm that involved time estimation and 
responding to multiple visual stimuli (the dual-task timing task, DTT), and the Abstract 
Decision Task (ADM) developed by Joslyn and Hunt. In this experiment we found a very 
high correlation between the dual-tasking aspects of the DTT task and the score on the 
ADM task. Performance of individuals who performed best on the DTT task could be 
explained best by a model with a four-state control structure, while individuals that 
performed more poorly on the task were best explained by a three-state control structure. 
The extra control state enabled the high performers to do the time estimation aspect of the 
task without being interrupted by other aspects of the task. Although we developed some 
models that could in principle explain similar differences in the ADM task, these models 
could not be validated because the experimental software that we obtained from Susan 
Joslyn didn’t register sufficient details of task performance. 
 
New experiment with Attentional Blink and N-Back 
For a new experiment we conducted this year, we reimplemented the ADM task to enable 
more insight in the choices participants make. In addition to the new ADM task and the 
DTT task, we gave participants two additional tasks: the N-Back task, which is a working 
memory task with a high level of cognitive control, and a task to measure Attentional 
Blink. In the Attentional Blink task participants are presented with a rapid sequence of 20 
characters consisting of 18 digits and 2 letters. The task is to pick out the two letters and 
report them back. When the interval between the two letters is one or two digits, the 
second letter is often not perceived (more often than when the two letters are consecutive 
or when they are far apart). This is called the Attentional Blink effect. The reason to 
include Attentional Blink was that Martens has found that under distraction the blink 
effect disappears, indicating that more control leads to poorer performance. 
The experiment confirmed our expectations: ADM, DTT and N-Back correlated 
positively with each other, while Attentional Blink had a negative correlation with the 
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other three tasks. In other words, the participants that performed well on Attentional 
Blink performed poorly at all the other tasks. 
 
Modeling the individual differences 
For a better understanding of the individual differences we are currently finalizing the 
construction of cognitive models of all four tasks, one low-control model and one high-
control model. There are two models for the DTT task: high-control (4 states) where time 
estimation is “protected”, and low-control (3 states), where time estimation can be 
interrupted.  
For the ADM task we constructed a low-control (1 state) model that collects information 
and tests hypotheses, but without clearly structuring those two aspects of the task. This 
model turns out to fit the low-performing participants very well. We are currently 
envisioning two high-control versions, one is a two-state model that strategically switches 
between gathering information and testing hypotheses, and one model with potentially 
many control states that implements a full decision tree. 
For the N-Back task we have implemented a low-control, one-state model that on every 
stimulus tries to retrieve an earlier occurrence of that stimulus, and if it finds one tries to 
judge how long ago that was, and whether this corresponds to the current value of N. This 
strategy is low-effort, but quite inaccurate. A high-control strategy, which requires two 
control states, is to retrieve all symbols that were presented between the earlier 
occurrence and the current symbol and count them.  
For the Attentional Blink task the high-control model has two states, one for detecting 
targets among the distractors, and one for storing them. This means that the model can 
miss the second target while it stores the first target. The low-control model only has a 
single state, and will therefore not miss the second target, and exhibits no attentional 
blink. 

 
 
The table above shows all the participants in the experiment with a preliminary 
classification for each of the four tasks. If their behavior had a better fit with the high-
control model, it is classified as a 1 (grey), when it fits the low-control model better it is 
classified as a 0 (white). 15 out of 37 participants have either all 1’s or all 0’s, or 40.5%, 
which is much more than chance (which is 12.5%).  
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1

A Hybrid model of
Attentional Blink
Individual differences in multi-tasking
and Control

Niels Taatgen, Ion Juvina, Seth Herd & David Jilk
Carnegie Mellon University, University of Colorado &
eCortex

Cognitive Control

 Allows us to keep
track of what we
are doing

 Allows us to
handle multi-
tasking

 Allows us to deal
with switches in
the task

 Allows us to deal
with interruptions

Finding the proper control
structure is a balancing act

 Not enough control
• Suboptimal task performance

 Too much control
• Brittle behavior
• Cannot handle unexpected events
• Cannot cope with missing knowledge

Individual differences in
Control

Hypothesis: individuals differ
in their ability to find the optimal
amount of control

P
er

fo
rm

an
ce

control

Too little control:
Not able to fully
perform the task

Too much control:
Brittleness

Individual differences in
Control

P
er

fo
rm

an
ce

control

Good dual taskerBad dual tasker Good dual taskerBad dual tasker

P
er

fo
rm

an
ce

control

Experiment with four tasks

 For each task we will have a low and a
high control version

 Participants’ performance will be
matched against each of these models

 Expectation: if an individual’s behavior
on a task corresponds to the high control
model, it will also do so for other tasks
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2

The Tasks

 Dual-task Timing (we will only show
results)

 Attentional Blink (this talk)
 Abstract Decision Making (Daniel)
 N-Back (Ion)

Main

Left Box

Right Box

Time
Main

Left Box

Right Box

Time

Detect
Target

Store or
dismiss
Target

Potential target detected

Done storing
or dismissing

Detect, Store
or Dismiss

Target

Attentional
Blink

Dual-Task

Timing

More Control

√

√

X

X

N-Back
Perceive,

Retrieve repetition
Retrieve time

Perceive,
Retrieve 
repetition Retrieve 

counting cases
Count √X

ADM
ask feature

try bin

Ask
Features

Try
BinsX √

Attentional Blink

 Stream of 20 characters, task it to spot
targets (letters) in between distracters
(digits).

 There are either 0, 1, or 2 targets
 If there are 2 targets, there can be 0-8

distracters in between them
 Characters are presented 100 ms apart

Lag

 Lag 1:
• 49204039GF343432923

 Lag 3:
• 0230349023Y94D324294

 Lag 9:
• 9430R32305129K235209

Typical result

 Proportion
where second
target is
reported
correctly

ACT-R model: two states

Detect
Target

Store or
dismiss
Target

Potential target detected

Done storing
or dismissing

ACT-R Workshop proceedings 2006 57



3

2

perceive

Potential
target

A

perceive

3

perceive

8

perceive

B

perceive

Store
Target

8

perceive

Retrieve
potential

target

Potential
target

Retrieve
2

No
Retrieve
potential

target

No
Target

Potential
target

A

Retrieve
8

Retrieve
potential

target

Retrieve
A

Display

Visual

Production

Declarative

Imaginal

Lag 3 example

2

perceive

No
target

A B

perceive perceive

Retrieve
A

Store
Target

8

perceive

Potential
target

Retrieve
potential

target

A

Potential
target

Retrieve
B

Store
Target

Retrieve
potential

target

B

3 4

perceive perceive

Display

Visual

Production

Declarative

Imaginal

No
target

Lag 1 example

Individual differences:
non-blinkers

 Some individuals (8 out of 37 in our
experiment) have little or no blink

Blink vs. non-Blink model

Detect
Target

Store or
dismiss
Target

Potential target detected

Done storing
or dismissing

Detect, Store
or Dismiss

Target

2

perceive

Potential
target

A 3 8 B

perceive perceive perceive perceive

Retrieve
A

No
Target

Store
Target

8

perceive

Retrieve
2

No
Retrieve
potential

target

Potential
target

Retrieve
potential

target

A

No
target

Display

Visual

Production

Declarative

Imaginal

Lag 3 example for non-blinkers

Retrieve
B

Store
Target

Potential
target

Retrieve
potential

target

B

r=0.97

MSE=0.03

Blinker
Model

r ~ 0

MSE=0.04

Non-Blinker
Model
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4

A Hybrid (ACT-R/Leabra)
Model

 In the Lag 1 case, participants report the
two targets in the wrong order in 15% of
the cases. This is hard to explain within
ACT-R

2

perceive

A B

perceive perceive

8

perceive

3 4

perceive perceive

Replace visual module with
Neural Network

2

perceive

A B

perceive perceive

8

perceive

3 4

perceive perceive

Classic ACT-R:

Leabra/ACT-R:

Conclusions

 One vs. Two controls states can
characterize Blinkers vs. non-Blinkers

 One of two successful demonstrations of
an ACT-R/Leabra model

Main

Left Box

Right Box

Time
Main

Left Box

Right Box

Time

Detect
Target

Store or
dismiss
Target

Potential target detected

Done storing
or dismissing

Detect, Store
or Dismiss

Target

Attentional
Blink

Dual-Task

Timing

More Control

√

√

X

X

N-Back
Perceive,

Retrieve repetition
Retrieve time

Perceive,
Retrieve 
repetition Retrieve 

counting cases
Count √X

ADM
ask feature

try bin

Ask
Features

Try
BinsX √
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Individual differences in the

abstract decision making task

Daniel Dickison and Niels Taatgen

July 2006

Abstract Decision Making

(ADM)

• Developed by Joslyn and Hunt to
measure the capacity to make
decisions under time pressure

• Task is to classify objects into bins by
asking properties of the objects and
then assigning them

• There is time pressure because new
objects come in at a steady pace
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1

Small Red

Circles

2

Red Things

3

Medium 

Squares

Example Bin Preview

• Studied before each game

• Not visible during game, but can be

reviewed

Example Trial

• What would you like to do?

– Ask

• Which object?

– 8

• Shape, color or size?

– Color

• “Red”

Available objects: (8 9 10)
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Example Trial (continued)

• What would you like to do?

– Assign

• Which object?

– 8

• Which bin?

– 2

• “Correct!  2.2 points added.”

Available objects: (8 9 10)

Choose obj Ask or 

Assign?
Correct?

Assign

Wrong :-(

Correct :-)

Ask

Choose obj Bin

Retrieval

Correct?

Wrong :-(

Correct :-)

AssignAsk

Models Overview

Mismatch

Incomplete

Low Control

High Control

Ask or 

Assign?

62 ACT-R Workshop proceedings 2006



Common features

• “Working copy” of object stored in
=imaginal>

• Bins retrieved via spreading activation from
=imaginal>

• Text UI interaction via “pseudo” subgoal
– Type-word slot in goal contains string while typing

– Type-word is nil after typing, and feedback is
encoded in =visual>

• GUI is virtually identical for humans and
models

Low Control details

• (New) utility learning for “ask vs assign”

• Rewards proportional to points received

– More specific bins receive higher rewards

– Negative rewards prevents over-eagerness.

Choose obj Ask or 

Assign?
Correct?

Assign

Wrong :-(

Correct :-)

Ask
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High Control details

• More explicit control over when to ask vs

assign

• Declarative finsts used to narrow down bin

choices

Choose obj Bin

Retrieval

Correct?

Wrong :-(

Correct :-)

AssignAsk

Mismatch

Incomplete

Ask or 

Assign?

Evaluating Models
• ADM measures

– Score: measures overall performance

– Eagerness: Tendency to assign objects
prematurely (i.e. before sufficient info)

– Ambition: Tendency to ask extra questions in
order to get higher points

– Etc, etc, etc.

• Split subjects by score (high vs low control),
then evaluate fit of various measures

• Eventually, group subjects not by score but
by similarity to 1 of the 2 models
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High-control Model

In development

• Subjects get more

eager -- probably

getting lazy

• Model roughly fits

average score and

eagerness

• Model learns to be

less eager

• Experimenting with

parameters

– Reward magnitude

– Retrieval latency
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The Role of Top-Down Control in Working Memory Performance:  
Implications for Multi-Tasking 

 
Ion Juvina, Niels A. Taatgen, & Daniel Hasumi-Dickison 

Carnegie Mellon University 
 
To be presented at ACT-R Workshop, July 2006. 
 
1. Introduction   
 
Previous research in cognitive modeling has suggested that top-down control improves 
multitasking performance. Specifically, increasing the number of control states 
maintained by the procedural module in the goal buffer has been shown to increase 
performance of a cognitive model taking a Dual Task and Timing (DTT) test (Taatgen, 
2005). Based on this idea one could hypothesize that maintaining an elaborate control 
structure – referred hereto as top-down control – is one of the sources of individual 
differences in multitasking. 
  
A correlational study has been conducted to investigate individual differences in 
multitasking. An Abstract Decision Making (ADM) task (Joslyn & Hunt, 1998) has been 
used as a dependent measure of multitasking, given previous findings showing a high 
positive correlation between ADM and DTT (Taatgen, unpublished). ADM requires 
assigning objects to bins based on their features while handling interruptions and under 
time pressure. The N-back task (NB) has been used to measure Working Memory (WM) 
performance. NB requires judging whether an item matches the nth-item back (e.g., 1-
back, 2-back, 3-back) in a sequentially presented list of items. It challenges participants 
to maintain a changing stream of stimuli in working memory while comparing them with 
incoming stimuli. It has been speculated that the NB task places high demands on 
executive control processes (McElree, 2001). A Rapid Serial Visual Presentation task has 
been used to measure the Attentional Blink (AB) effect. AB is missing the second out of 
two targets presented rapidly (10 stimuli per second) in a stream of distractors. Limited 
cognitive resources are allocated to full processing of the first target, causing the second 
target to be missed (Martens, Wolters, & van Raamsdonk, 2002). These tasks have been 
performed by 37 subjects randomly selected from the subjects database of Carnegie 
Mellon University.  
 
A top-down control factor has been postulated to underlie performance in all these tasks. 
Structural equation modeling (SEM) has been used to structure and analyze the pattern of 
correlations in the empirical data. Subsequent cognitive modeling activities have been 
performed to analyze the computational implications of this postulate.  
 
2. Empirical results  
 
A global performance score has been computed for each task by adding points for correct 
answers and subtracting points for errors. An exception is the score of the AB effect, 
which has been calculated as the frequency of missing the second target when the first 
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target is correctly reported. Besides these global scores, detailed logs of individual 
actions of participants have been used in both analysis of empirical data and modeling.   
 
Figure 1 shows the best SEM fit to the data (Model Chi square = 0.49, Df = 2, P = 0.78, 
Goodness-of-fit index = 0.99, Adjusted goodness-of-fit index = 0.97). Numbers next to 
arrows are standardized structural coefficients. Besides the global performance scores, 
one of the measures of participants’ actions (Queries) was added in order to get an 
optimum number of indicators for the control factor. Queries recorded the number of 
questions participants asked about the features of the objects to be assigned. Note that 
there is no correlation between the number of questions asked in the ADM task and the 
global score on this task. While there is an optimum of questions one need to ask to get a 
high score, deviations from this optimum are sometimes beneficial and other times 
detrimental to the global performance on this task. For example, asking more questions 
could increase performance by allowing assignments to high scoring bins but can also 
decrease performance because it consumes time that can be used to make more 
assignments.  
 
The SEM model shows that a latent control variable can indeed be defined. This factor 
has been interpreted as follows: high control involves actively gathering information 
from the environment (Queries), maintaining active and operating on recently processed 
information (N-Back), and suppressing incoming stimuli that could interfere with full and 
accurate processing of the current item (Blink). Ultimately, this control factor is involved 
– via working memory performance – in performing complex multitasking activities 
(ADM).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. A SEM model showing correlates of and an underlying control factor involved 
in multitasking performance. Numbers next to arrows are standardized structural 
coefficients indicating the relative importance of each variable.  

Blink 

Control 

Queries 

NBack ADM 

.56 

.79 

.75 .59 

ACT-R Workshop proceedings 2006 67



3. Models  
 
ACT-R models of all tasks have been developed based on the principle previously used in 
modeling the DTT task: maintaining an elaborate control structure in the goal buffer is 
necessary to model high performance at multitasking.  
 
This talk will focus on presenting ACT-R models of the N-Back task. These models use 
the built-in assumptions of the ACT-R architecture (Anderson, Bothell, Byrne, Douglass, 
Lebiere, & Qin, 2004) and recent findings in the working memory research (Baddeley, 
2000; McElree, 2001; Akyurek & Hommel, 2005; Prabhakaran et al., 2000).   
 
Two different models were developed in order to account for individual differences in the 
amount of top-down control dedicated to execution of the N-Back task: low- and high-
control models. The low-control model uses previously acquired time estimation 
knowledge to decide whether the repeated item has occurred recently (lower ns in the N-
Back series) or after some delay (higher ns in the N-Back series). Due to the error 
proneness of time estimations (Taatgen, Anderson, Dickison, D., & van Rijn, 2005), this 
model performs relatively poor at the N-Back task, fitting the data of low-performance 
human participants.   
 
The high-control model uses a combination of two strategies: the buffer strategy and the 
counting strategy. The buffer strategy consists of maintaining a subsequence of presented 
items in the visual, aural, retrieval and imaginal buffers. This subsequence is updated by 
production rules that transfer information across buffers. The counting strategy uses a 
series of retrievals and the onsets of auditory events generated by sub-vocalizations of 
presented items to count back from the current item to the repeated one. Although this 
high-control model is also vulnerable to errors (e.g. chunk activation noise) its 
performance is relatively better at the N-Back task, fitting the data of high-performance 
human participants. 
 
4. Conclusion and discussion  
 
Results presented here (empirical data and simulations) suggest that top-down control is 
an important factor involved in working memory performance and multitasking. 
Achieving high performance at the N-Back task requires maintaining an elaborate control 
structure needed for coordination of retrievals (counting strategy) and transfers between 
buffers (buffer strategy).  
 
The counting strategy was inspired by recent research showing that only one item can be 
maintained in focal attention at a particular moment and retrieval operations are used to 
reconstruct the linear order of recent events (McElree, 2001).  
  
The buffer strategy was inspired by a new development of a classical theory of working 
memory (Baddeley, 2000) and fMRI research (Prabhakaran, Narayanan, Zhao, & 
Gabrieli, 2000) showing that temporary episodic information can be maintained in an 
efficient and accurate way by integrating current and recent information across different 
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modalities. This integrative function is localized in the prefrontal regions of the brain 
(Prabhakaran et al., 2000), also thought to be responsible of control functions. Tulving 
(cited in Baddeley, 2000) reports a case of a densely amnesic patient who was able to 
play a good game of bridge; the patient was not only able to keep track of the contract but 
also of which cards had been played. These findings and anecdotic evidence suggests that 
processing of current and recent information is more a matter of control and integration 
than a matter of storage. Such a conclusion is also supported by research analyzing the 
relationship between working memory and the AB effect. It has been shown that 
decreasing the storage capacity of working memory (by giving items to be held in 
memory during the RSVP task) has no influence on the AB effect (Akyurek & Hommel 
2005).  
 
Baddeley (2000) and Prabhakaran et al. (2000) postulate the existence of a dedicated 
brain structure – an episodic buffer – that allows for temporary retention of information 
integrated across modalities. There is evidence that more information and in more 
efficient way can be maintained by the human brain when information is stored in poly-
modal code than when it is stored in uni-modal code (Prabhakaran et al., 2000). We have 
used the goal buffer and the procedural module of the ACT-R architecture to simulate the 
control processes involved in maintaining availability of a changing sequence of items for 
current processing. Perhaps it is worth considering implementing a structural component 
dedicated to control and integration of information in the ACT-R architecture.   
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The Role of Top-Down Control in
Working Memory Performance:
Implications for Multi-Tasking

Ion Juvina, Niels A. Taatgen, & Daniel Hasumi-Dickison
Carnegie Mellon University

Background

 Akyurek & Hommel, 2005:
 Look ma: no STM effect on AB!
 STM effect on RSVP task but not on AB

 i.e.: no interaction between memory load and lag

 We, 2006:
 Correlation AB and N-Back only at lag 3!

 Thus: if no STM, then what?
 McElree, 2001: Executive control in N-Back.

Outline

 Top-down control defined empirically
 N-Back data
 Predictions
 N-Back models

 low control
 high control

 Models vs. data (to be presented at the workshop)
 Conclusions

Control defined empirically

 Control = .312*Blink + .148*N-Back + .849*QUERIES

Blink

Control

Queries

N-Back ADM

.56

.79

.75 .59

N-Back data N-Back data (cont’d)
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 2

N-Back data (cont’d) Predictions

 A low-control N-Back model (LCM) will fit the data of
(empirically defined) low-control subjects (LCS)

 A high-control N-Back model (HCM) will fit the data of
(empirically defined) high-control subjects (HCS)

Low-control model

 Associate a time stamp to each item
 Find repeated items in DM (not always)
 Find estimations of time distance in DM (not always)
 When estimation not found, react (or not) to repetition

 Learn to react rather than not react based on feedback (utility
learning)

 Learn new estimations from reactions
 Learn correct estimations from feedback to reactions

(declarative learning)

High-control model - “Buffers” strategy

 Keep as many items as possible in buffers
 The incoming item causes transfers across

buffers:
 From visual to aural
 From retrieval to imaginal

 Specific productions identify targets and foils
based on where items are (in which buffer)

High-control model - “Counting” strategy

 Find repeated item in DM
 Retrieve the items that have entered DM

between the repeated item and the current one
 Increment a counter with each retrieval
 Compare the final counter with the lag slot of

the goal
 Activation noise causes retrieval errors, thus

counting errors.

Conclusions

 Control defined
 In empirical terms: a factor underlying:

 High performance at N-Back
 High number of queries in ADM
 High blink effect in RSVP

 In ACT-R terms: number of control states in the goal buffer

 LCM fits LCS
 HCM fits HCS

ACT-R Workshop proceedings 2006 71



An AI Planning Perspective on Abstraction in ACT-R Modeling:
Toward an HLBR Language Manifesto

Robert St. Amant1 Sean P. McBride1 Frank E. Ritter2

(stamant@ncsu.edu, frank.ritter@psu.edu)
1 Department of Computer Science 2 School of Information Sciences and Technology
North Carolina State University The Pennsylvania State University

Raleigh, NC, 27695 University Park, PA 16802

Abstract

Researchers have again become interested in the trans-
lation of abstract specifications into the knowledge
structures of executable cognitive models. Our work
has adopted the Planning Domain Definition Language
(PDDL), as an abstraction language for the auto-
mated generation of cognitive models, in a process we
call search-based modeling. Our PDDL-based compiler,
though incomplete, is currently being used to explore
control issues in models for Towers of Hanoi problems.
In this exploration, we have run into unexpected con-
ceptual issues that we must address to move in the di-
rection of the broader goals of abstract model specifica-
tion. We discuss these issues: language simplicity versus
search complexity, usability versus architectural com-
plexity, and modularity versus veridicality, and suggest
directions for further research.

Introduction
Researchers have again become interested in the transla-
tion of abstract specifications into the knowledge struc-
tures of executable cognitive models [Ritter et al., 2006],
as part of an effort to develop high-level behav-
ior representation (HLBR) languages. We have de-
veloped a system called G2A [St. Amant et al., 2004,
St. Amant et al., 2006] that uses GOMS (specifically,
models based on GOMSL [Kieras, 1999]) as an ab-
straction for cognitive models in the ACT-R architec-
ture [Anderson et al., 2004]. G2A translates GOMSL
models into ACT-R models using standard compiler
techniques. GOMS has a number of desirable features
as an abstract language; in particular, it shares with
more detailed cognitive architectures many of the same
basic assumptions about cognitive structure and per-
formance (e.g. [Byrne, 2001, Kieras, 2002]). Nevertheless
we believe that other possibilities for abstraction are still
worth exploring.

In our recent work we have adopted PDDL, the Plan-
ning Domain Definition Language [Ghallab et al., 1998],
in place of GOMSL. As with the translation process in
G2A, ACT-R models are created by a search through the
space of mappings from the states and actions of a plan
to appropriate ACT-R constructs. Throughout this pa-
per we will refer to this approach as “search-based mod-
eling.” We chose a planning representation for practical
and theoretical reasons. From a theoretical perspective,
plans can be reasoned about more easily than ACT-R
models expressed as productions and declarative mem-
ory initializations. A planning representation of a prob-

lem and its solution can be used to answer questions
about models that would otherwise be difficult. From a
practical perspective, we believe that a planning system
may be able to reduce effort in modeling and to make
cognitive modeling more accessible to designers of inter-
active systems. PDDL is not a perfect candidate for an
abstract cognitive modeling language, but it allows us to
exploit the decades-long history of AI planning research
and system building.

This paper is divided into two parts. In the first,
we describe the translation of PDDL domain and prob-
lem specifications into ACT-R models. Our PDDL-based
compiler, though incomplete, is currently being used to
explore control issues in models for Towers of Hanoi
problems, a domain we use for illustration. In the second
part, we discuss conceptual issues that arise in applying
planning techniques to cognitive modeling.

ACT-R models and plans
ACT-R cognitive models and AI plans for specific do-
mains share a number of conceptual commonalities
in their knowledge structures. These include objects
(chunks) with substructures, actions (productions) with
conditions and effects, an initial state, and a goal state.
In both models and plans, the basic approach involves
representing what it is possible to do in some domain
(e.g., stacking blocks, moving disks between towers, tak-
ing actions in a software system) and what information is
gained through such interaction. Beyond this, however,
we find significant differences between the ACT-R archi-
tecture and classical AI planners in how they approach
problem solving.

Perhaps the most significant difference between AI
planning and cognitive modeling, as represented by
ACT-R, is in their treatment of control knowledge, in
particular control knowledge specific to a given domain.
Models are explanatory mechanisms for human cognitive
behavior, and thus internal decision-making is fair game
for representation. A planner, in contrast, can generally
be treated as a black box: it is given a problem and a set
of actions that reflect external environmental constraints
on their execution, and it produces a solution.1

We can see the difference clearly in an example. An

1It is possible to represent internal cognitive constraints
on problem solving in AI representations as well (e.g.,
[Howes and Payne, 2001, Howes et al., 2004]), but this is not
common in domain-independent AI planning.
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(define (domain hanoi)
(:requirements :strips)
(:predicates (clear ?x) (on ?x ?y) (smaller ?x ?y))

(:action move
:parameters (?disc ?from ?to)
:precondition (and (smaller ?to ?disc) (on ?disc ?from)

(clear ?disc) (clear ?to))
:effect (and (clear ?from) (on ?disc ?to)

(not (on ?disc ?from)) (not (clear ?to)))))

(define (problem hanoi4)
(:domain hanoi)
(:objects peg1 peg2 peg3 d1 d2 d3 d4)
(:init

(smaller peg1 d1) (smaller peg1 d2) (smaller peg1 d3) (smaller peg1 d4)
(smaller peg2 d1) (smaller peg2 d2) (smaller peg2 d3) (smaller peg2 d4)
(smaller peg3 d1) (smaller peg3 d2) (smaller peg3 d3) (smaller peg3 d4)
(smaller d2 d1) (smaller d3 d1) (smaller d3 d2) (smaller d4 d1)
(smaller d4 d2) (smaller d4 d3)
(clear peg2) (clear peg3) (clear d1)
(on d4 peg1) (on d3 d4) (on d2 d3) (on d1 d2))

(:goal (and (on d4 peg3) (on d3 d4) (on d2 d3) (on d1 d2))))

Figure 1: PDDL representation for Towers of Hanoi

ACT-R 4 model for the Towers of Hanoi2 contains
five chunk-types, 21 chunks, and four productions. Of
the four productions, two are used to modify disk lo-
cations (final-move and move) and two are used to
push new goals onto the goal stack3 (start-tower and
subgoal-blocker). The two productions that modify
the goal stack can be thought of as the primary algorithm
(given ACT-R 4’s computational machinery) for solving
the problem. They continually push goals onto the stack,
setting up future actions, until the move production fires,
and an effect can be seen in the environment.

Contrast this model with a planning specification of
the Towers of Hanoi problem,4 as shown in Figure 1.
There is a single action (move) that reflects only the
physical and logical constraints of the problem environ-
ment: disks must be moved one at a time; larger disks
cannot be placed on smaller disks; moving a disk “clears”
any disk on the tower immediately below it and creates
an “on” relationship with any disk already on the tower
it is moved to. No information is given about the order in
which actions must be carried out to solve the problem,
aside from these constraints.

If we were to translate this single PDDL move action
into an ACT-R production, the resulting model would

2http://act.psy.cmu.edu/models/towerruiz.model
3In ACT-R 6, goal stack manipulation is deprecated, but

the most direct translation of this model to ACT-R 6 still in-
volves managing goals in a comparable problem-solving strat-
egy [Leon Urbas, personal communication; Dan Bothell, per-
sonal communication].

4http://www.cs.washington.edu/homes/kautz/
minichallenge/dagstuhl-mini-challenge.ppt

not be able to solve the problem, because of the archi-
tectural differences between problem-solving approaches
as described above. Naively, we might view the plan ac-
tion as a template, to be filled in with different bindings
to objects and translated into separate ACT-R produc-
tions. This will result in 210 different productions (one
per 〈 from, disk, to 〉 combination), most of which will
never apply; even with all these productions, there is still
no explicit control knowledge to guide their execution—
this model will take a long time to learn the solution,
appears to lack much of the representation that people
have about the task, and will likely provide a poor match
to human performance.

It is possible to create a model from the problem spec-
ification if we add a solution generated by a planner, as
shown in Figure 2. Taking a similar approach to that of
G2A, we can generate ACT-R productions from these
steps, with appropriate variable bindings and sequential
execution constraints, to result in a model. Essentially
we generate a state machine, represented as ACT-R pro-
ductions, that encodes the necessary steps to solve the
problem, with a “state” slot in successive goal chunks to
maintain relevant state information.

While this approach proved effective in practice for
G2A, in terms of predictiveness of expert behavior that
could be represented with GOMS models for a rela-
tively simple task [St. Amant et al., 2004], it remains
conceptually unsatisfying: whatever explanatory power
that more conventional models have for problems such
as the Towers of Hanoi, in terms of internal problem-
solving strategies, has been lost. In our future work we
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00: (move d1 d2 peg2)
01: (move d2 d3 peg3)
02: (move d1 peg2 d2)
03: (move d3 d4 peg4)
04: (move d1 d2 d4)
05: (move d2 peg3 d3)
06: (move d1 d4 d2)
07: (move d4 peg1 peg3)
08: (move d1 d2 d4)
09: (move d2 d3 peg1)
10: (move d1 d4 d2)
11: (move d3 peg2 d4)
12: (move d1 d2 peg2)
13: (move d2 peg1 d3)
14: (move d1 peg2 d2)

Figure 2: PDDL solution for Towers of Hanoi

will explore mechanisms to “generalize” plans to may re-
produce internal strategies that may involve goal chunk
manipulations, but many other questions remain open.
We examine some of these issues in the next section.

Discussion
Our work with G2A and its PDDL-based successor is
part of a broader effort in the research community, one
that exploits (though perhaps only implicitly) an anal-
ogy:

An abstract modeling language is to the ACT-
R language as a high-level language is to assembly
language.

By “high-level language” we include knowledge-based
systems, planning languages, and the like, as well as
high-level programming languages. As suggested in the
introduction, while our preliminary work with PDDL
does not yet offer many examples of this approach to
cognitive modeling, we expect this situation to improve
in the future. We nevertheless use it as a representative
example of work in this area; for the purpose of discus-
sion, imagine that we are able to solve the immediate
issue discussed above: we are able to generate automat-
ically from planning specifications ACT-R models that
are largely indistinguishable from models built by hand,
with comparable knowledge structures and comparable
predictions about execution; the models may be easier
to create, to use, less buggy, and perhaps able to explain
themselves [Cohen et al., 2005]. Assessing the eventual
goals of a research direction can help us better under-
stand the pros and cons of pursuing it.

Opportunities
Many of the advantages of abstraction in cognitive mod-
eling have been identified by others [Ritter et al., 2006]:
abstract modeling languages may reduce effort in build-
ing models; they may make it possible to render higher-
level idioms in explicit, consistent form; they may make

cognitive modeling more accessible and thus more useful
to interface developers.

A few advantages of search-based modeling have
received less attention. PDDL is a planner- and
architecture-independent specification language, which
makes its planning constructs simple and explicit enough
to reason about. As a basis for model generation, this
offers the possibility of being able to answer questions
about the structure of a model, possibly even before it
is complete or directly executable. For example, Can a
given set of actions in principle reach a goal? While plan-
ning is intractable in general, if a planner is able to gen-
erate a solution, this provides useful information about
the ability of a model to solve the same problem. What
is the shortest path to a goal? Many planning algorithms
are defined such that they return the shortest plan possi-
ble (measured by the number of sequential steps), if one
exists. (There are similarities here to cognitive constraint
modeling [Howes et al., 2004].) Are there different ways
to reach a goal? This is a less common question in plan-
ning research, but it still has a straightforward answer;
a planning system can simply continue to search past
its first solution for further possibilities. These questions
treat a planning system as an analytical tool to improve
model quality, analogous to tools for analyzing program
properties. Even relatively abstract questions (concern-
ing, say, the size of the space of plans searched before
finding a solution) can give answers that are interest-
ing from a modeling perspective (the size of the search
space is related to the difficulty of a problem, given the
representation).

Another implication of search-based modeling is that
it should give modelers a better understanding of alter-
natives to their modeling decisions. In our work with
G2A, search proceeded toward a set of target predic-
tions provided either by an existing GOMSL model (e.g.,
the duration of a method) or by user data from a pi-
lot experiment. Hill-climbing, with search steps based on
alternative translations of GOMSL primitives to ACT-
R productions, eventually produced a locally optimal
model. We discovered that very similar predictions could
be produced by different models. Given the restrictions
on the structure of models that G2A was able to gen-
erate, these different models did not rely on signifi-
cantly different modeling assumptions, but as our tech-
niques improve, we believe this will change: an auto-
mated search should be able to generate models that
incorporate differently structured knowledge and differ-
ent problem-solving strategies.

Ideally, when an ACT-R model is presented, it should
be accompanied by a discussion of alternative modeling
decisions, if only to rule them out. By analogy, imagine
building a regression model of a relationship for which
there is incomplete knowledge about its functional form.
In the process of building the model, we’ll try different
variable transformations, examine patterns in the resid-
uals, check the significance of predictors, and so forth. In
the end, we’ll have accrued evidence that the final model
is better than plausible alternatives.

This approach is difficult to apply to cognitive mod-
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eling because we have fewer computational tools to an-
alyze our models, and in any case our models are less
amenable to conventional statistical diagnostics. Fur-
ther, the process itself of building models is difficult and
time-consuming. Nevertheless we believe that it would
be useful to be able to situate a given model in a space
of modeling decisions, to say, “For this novel task, prior
knowledge constrains a model to be of this form, and of
the model variations that have such a form, this model
provides the best predictions.” An automated search
through model space would be invaluable for this.

Tradeoffs
Because our research is in its early stages, it is appro-
priate to discuss the potential pitfalls of our general ap-
proach in terms of a set of design tradeoffs.

Language simplicity versus search complexity. A practi-
cal challenge in search-based modeling is deciding how
much abstraction is appropriate. In the classical plan-
ning approach we have taken, for example, varying ac-
tion duration and overlapping action execution are ab-
stracted away during planning. (This was also the case
in our G2A work.) While action durations can be rep-
resented in PDDL, the planners we have worked with
do not take advantage of this information; actions are
treated as atomic events that produce instantaneous
change in the environment. The missing durations of ac-
tions are filled in when a model is executed in the ACT-R
architecture. It would be reasonable to adapt temporal
planning techniques to our approach, but we proceed un-
der the assumption that the additional search complexity
will not be worth the tradeoff in model abstraction.

Alternatively, we can move in a different direction:
if we can represent existing ACT-R models of different
tasks in a planning framework, it is a relatively small
matter, from a theoretical planning perspective, to com-
bine the separate task representations and allow a plan-
ning algorithm to interleave them appropriately for the
purpose of model integration. This approach, done by
hand, has worked well in some cases. However, doing
this in general and across models by different authors
appears to be difficult. We may need to extend the ar-
chitecture, or modify how the knowledge is represented
to support interleaving of actions for task switching. One
question that arises is whether ACT-R models for exe-
cuting multiple tasks can be built without the need for
an executive, or (as with the function of a scheduler in an
operating system) some meta-level control is required, or
if a compiler is needed to create the knowledge so that
it can be used this way, or some combination of these
approaches.

It remains to be seen whether the planning represen-
tation we have chosen provides an appropriate level of
abstraction, in terms of the benefit to modelers as well as
the difficulty of managing search complexity. The next
trade-off we can note explores this directly.

Modeling conveniences versus architecture extensions.
As a software system, the ACT-R architecture naturally
has many useful facilities, from well-tailored data struc-
tures to access functions to parsing utilities. We were

tempted to take advantage of these facilities in build-
ing G2A, to translate GOMSL statements directly into
internal ACT-R data structures. We resisted this temp-
tation for good reason: the language of ACT-R acts as a
specification for what constitutes a model.

To illustrate this issue, consider a software engineer
building a large system. In a given module he might call
a library function to sort a list, knowing nothing more
than how to create the appropriate data structures for
its input and output parameters and that the library
function implements QuickSort. Many of the details are
handled by the system. In compilation, data structures
may be modified internally (e.g., in a Lisp system, a
static list might be compiled into an array, improving the
worst case performance of the algorithm); constant fold-
ing may eliminate some run-time computations; some
function calls may be open-coded or even compiled away.
In execution, a scheduler may swap out the process in
which the sort function is executing; a multi-processor
system (given a good compiler) may distribute the sort
over multiple processors.

Even if the software engineer were to find the machine
language version of his system incomprehensible, the sys-
tem remains well-specified, in principle, with respect to
a set of language-independent primitive operations and
control constructs. Time and space complexity analysis
can be carried out, for example, on a sort function inde-
pendent of its implementation language, through exam-
ination of iterations and comparisons.

The ACT-R language provides a comparable specifica-
tion level. Thus a G2A (or PDDL-based) search produces
a well-defined model, explicit in the ACT-R language. If
we had designed G2A to generate internal ACT-R data
structures, we would have run the risk of blurring the
boundary between the ACT-R architecture and G2A,
with models being implicit in our system’s output. Even-
tually it may be useful to think of add-on systems as ex-
tensions of the ACT-R architecture, but at the current
stage of our work this seems premature.

Modularity versus veridicality. The most difficult theo-
retical challenge for search-based modeling is establish-
ing the extent to which high-level descriptions can be
mapped to low-level models.

From a software engineering perspective, it is pos-
sible to build large software systems in part because
the problems they solve, as well as the systems them-
selves, are what Simon describes as nearly decompos-
able [Simon, 1996]. For programmers, decomposability
means that complex solutions can be broken down into
more easily handled parts. For programs, decomposabil-
ity entails limitations on inter-module complexity and
exchange of data.

While this is a common assumption in many models
of cognition, it is an unresolved question whether modu-
larity holds at different levels of abstraction for all cog-
nitive processes that we might like to model. For exam-
ple, Pylyshyn [?] argues that vision and cognition may
be separable. At many levels and for much of the time,
modular models (including ACT-R, particularly ACT-R
6) are modular, but there remain interactions between
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brain regions that may be important for some tasks and
some analyses.

We conclude by observing that abstraction and modu-
larity may bring benefits to model developers, but com-
piling abstract models will be more difficult than com-
piling conventional programs, because non-local inter-
actions between memory structures and implicit proce-
dures in models are not as well understood. We do not
just want models to run or to fit data, but to predict and
explain human performance.
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ACIP context
• Goal is to provide efficient real-time solutions to

computationally demanding “cognitive” problems
• Must consider time/quality/resource tradeoffs
• Competing approaches span spectrum: cognitive

architectures, machine learning bag-of-tools and
unitary solutions (e.g. network message passing)

• Intelligence analysis (evidence marshalling) and
UAV Mission Planning as domain examples

• Multi-level approach to cognitive architecture:
– ACT-R as micro-cognition (expert pattern-matching)
– Soar as macro/meta-cognition (inferencing, reasoning)
– Swarming as proto-cognition (similarity/assoc clustering)
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Design Motivation

• Reduce effective
complexity

• O(Prob) = α
O(Macro)+ β
O(Micro)+ γO(Proto)

• Quality/cost tradeoff

• Build a repertoire of
reduced complexity
solutions to hard
problems

• Generic tasks (GTs)
• Interface to AppLayer

Macro
Cost: O(e^N/fk)

Micro
Cost: O(N)

Proto
Cost: O(log(N))-O(N)

Hypotheses

Inference
Requests

Relevant
Inferences

Expertise
Inferences

Cognitive Layer

C3I1
Cognitive Levels

Applications

Distributed
Self-organization
(Based on
swarm algorithms)

Expertise-based
Reasoning
(Based on ACT-R)

Knowledge-based
Reasoning
(Based on Soar)

Controlled cost/quality tradeoff for complexity reduction

GT

2006 ACT-R Workshop

Generic Tasks (GT)
• Selected an ontology of
GTs

– Chosen to help solve a wide
range of problems

• Generic Tasks (GT)
– Provide generic problem

solving knowledge (PSK)
– May have multiple

implementations (methods)
with differing costs/qualities

PSK

GT

Meth Meth Meth

GT Meth GT GTMeth …

Assessment

Classification

Diagnosis

Monitoring

Prediction

Assignment

Design

Modeling

Planning

Scheduling

Plan
Recognition

Analytic

Synthetic

GT

Meth

Meth

Ontology of Chosen GTs
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Evidence Marshalling
• Evidence Marshaling: Sign of

Crescent (SoC) Problem
– Three near-simultaneous terrorist

acts being planned:
• A dirty-bomb explosion aboard a

ship in Boston harbor
• A large bomb explosion aboard

an Amtrak train (named
“Crescent”) in Atlanta

• A large bomb explosion inside
NYSE

• SoC problem is used to train
human analysts

– Learning to marshal dynamic,
incremental evidences (“trifles”)

– Evidences are scattered spatially
and temporally

– Problem includes distractors –
intelligence reports that have
nothing to do with the plot
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Investigation: Data Flows in C3I1

• Memory includes
data and models

• Memory is shared by
all base cognitions

• Memory is massive
• Memory is largely disconnected
• C3I1 uses both knowledge-based

& correlation-based methods to
posit new connections (white)
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Micro-Cognition Model

3. Inference

Abu al

Masri
Kanda-

har 1996

Youssef
al Hidj

Kabul 1998 Youssef
al Hidj

Al Qaeda Weapon
Trained

Youssef
al Hidj

Asso-
ciates Muslim

Clerics

Inference Instance

Abu al

Masri
Al Qaeda Weapon

Trained

Abu al

Masri
Asso-
ciates Muslim

Clerics

1. Priming

2. Matching

Strengths of Association

Similarities

Proto-Cognition inputs Macro-Cognition inputs

Micro-Cognition
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Supporting Evidence
• ACT-R has also been applied to a number of information

filtering and mapping problems in other domains including:
– Analogy (Salvucci & Anderson, 2001)

• Analogical mapping very similar to our inference structure
– Language Comprehension (Budiu & Anderson, 2001)

• Incremental building of linguistic representation has similar role for
interpretation (hypothesis) and spreading activation/similarities
(constraining possible interpretation)

– Information Foraging (Pirolli, Fu, Reeder & Card, 2002)
• Strengths of association used to pinpoint relevant information amid

large document clusters

• Similar use of spreading activation and similarity-based
matching mechanisms and control structure provides
supporting evidence for generic tasks
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Processes and Scaling Analysis
• Evidence Marshalling App (SoC):
Plan Recognition Model

• Proto provides top focus cluster
• Macro provides expert knowledge
• Quality of proto focus determines
efficiency of micro expertise access

• Optimal amount of macro expertise
depends on problem complexity

3. Inference

AM AF 95

YH SD 87 YH AQ TR

YH <-> MC

Inference
Instance

AM AQ TR

AM <-> MC

1. Priming

2. Matching

Strengths of Association

Similarities

Proto-Cognition inputs
Macro-Cognition inputs
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Mission Planning
• Micro-cognition’s role:

– Provide a sequential control structure for hierarchical planning
– Provide pattern matching-based primitives that improve planning

performance with experience by accumulating expertise
– Act as an integrating framework to structure the self-organizing

proto computations and focus the macro deliberative reasoning

Expertise-based pattern-matching:
• Basic trade-off between time

(compute) and space (match)
• Hardware implementation (FPGA)

yields constant-time complexity
• Improving efficiency of matching

yields at least 2 orders of
magnitude speedup

• Optimal performance ~60% of
time

• Within 2% of optimum in average

Best
Match
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Lessons from ACIP
• Convergence between the purely functional goal of ACIP

and the mixed biological-functional goal of BICA
– Human cognition provides guidance in exploration of design

space for efficient solutions (e.g. TSP)

• Multiple ways to optimize performance of architecture,
including meta-cognition, learning and control system

• More flexibility in managing & representing context:
– Automatic context management (working memory?)
– Storing of richer processing context (episodic memory?)
– Allow context to influence memory retrieval (2.0 vs 4.0 vs p*)

• Importance of addressing computational complexity
– Theoretical complexity analysis (cognitive operations / pbm size)
– Scaling of cognitive operations (DM/PM in FPGA/RAM)
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Using High Performance Computing 
The combinatorics associated with an exhaustive parameter 
space searches for computational cognitive models typically 
prevents it from happening, because the computational 
demands are overwhelming. Yet such parameter space 
searches can be important for two main reasons. Firstly, in 
many models parameter space searches are conducted to 
identify best-fitting values for manipulated parameters. 
However parameter space searches can also be important to 
explore the robustness and flexibility of the model, by 
characterizing the range of behaviors it can produce (e.g., 
Estes, 2002; Pitt, Kim, Navarro, & Myung, 2006). 

Our proposed solution to the challenge of accomplishing 
large-scale parameter-space searches for these kinds of 
analyses is to farm out parameter searches to the 
Aeronautical Systems Center’s Major Shared Resource 
Center for High Performance Computing (HPC), which is 
located at Wright-Patterson AFB, Ohio. That facility has 
2,048 processors running at 1.6 GHz, with 1GB of memory 
per processor and 100 Terabytes of data storage capacity. 
Over the last several months we have established a 
relationship with the HPC center and have begun exploring 
the use of this resource for testing and validating 
computational cognitive models. We have demonstrated the 
ability to execute a small model batch run on the HPC 
resources and we expect to complete some initial 
evaluations of the gain in efficiency from using the HPC 
processors before the ACT-R workshop begins. 

The presentation will focus on the efficiency gains that 
can be achieved and the technical requirements for realizing 
these gains in computational modeling applications. Our 
calculations based on preliminary results suggest we can 
expect approximately a two order of magnitude 
improvement in turnaround time utilizing a relatively 
modest proportion of the resources that are available. A 
parameter search that took 17 days on a single processor in 
our lab should be complete in less than four hours via HPC. 
With a more aggressive use of HPC resources and larger 
parameter spaces, the gains could be even greater. 

There are more challenging issues associated with 
improving the sophistication with which we are taking 
advantage of the HPC resources, however. For instance, 
small-scale, local parameter optimizations are often done 
with ACT-R models using gradient descent search 
algorithms that minimize deviations between model and 

human performance data. We would like to do that on a 
large scale, via distributed computing with the HPC. We 
also plan to use the HPC resources to continually validate 
new theoretical claims against previously used tasks and 
datasets, thereby objectively quantifying the cumulative 
progress we are making in our computational theories. This 
is rarely done in the computational cognitive modeling 
community, because there isn’t an infrastructure with 
sufficient computational resources and adequate automation 
to support it.  

Conclusion 
We have made a commitment to investing in developing an 
infrastructure to facilitate large-scale parameter-space 
explorations for validating and testing computational 
cognitive models. A technician at the HPC Center at 
WPAFB referred to this task as “embarrassingly parallel.” 
In other words, this kind of application is perfectly suited to 
being run more efficiently using HPC resources. 

Using the substantial resources available at facilities like 
the HPC center at Wright-Patterson AFB should allow us to 
answer the challenge of Pitt et al. (2006) and others to 
explore the full range of behaviors that a model can 
produce. This addresses the robustness of the model, by 
characterizing the qualitative (and quantitative) patterns of 
data a model is able to produce. Such resources can also 
speed the model fitting process, by allowing researchers to 
distribute the search through the parameter space among 
hundreds of processors. We look forward to solidifying the 
foundation we have developed thus far, and applying the 
capability to our model validation efforts. 
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ACTR versus notACTR: Demonstrating CrossDomain Validity

Terrence C. Stewart (terry@ccmlab.ca)
Robert L. West (robert_west@carleton.ca)
Institute of Cognitive Science, Carleton University

Ottawa, Ontario, Canada, K1S 5B6

Introduction
The goal of creating a cognitive architecture is to develop a 
single system that can account for results across all domains 
(Newell,   1990).     ACTR   is   currently   the   most   promising 
candidate in this direction, having been validated in a wide 
variety of situations. However, Many critics of ACTR (and 
computational   modeling   in   general)   believe   that,   with 
enough tweaking,  an ACTR model  could be produced for 
any experimental observation (see Roberts & Pashler, 2000). 
To some degree  this   is  can be  dealt  with  by having fixed 
parameter   settings   or   theories   about   when   the   parameter 
settings   vary   (Anderson   &   Lebiere,   1998).   However,   as 
argued more completely in (Stewart, 2006), another way to 
address this problem is to not only demonstrate that ACTR 
models fit various observations, but also  that other models 
do not. To do this, we need to be able to apply completely 
different architectures to the same situations as our ACTR 
models.   Furthermore, we should follow a similar approach 
for variations on ACTR itself. 

For   example,   to   show   that   the   PGC   learning   rule   is 
correct,   we   need   to   not   only   show   that   it   results   in 
predictively accurate models   in  a variety  of situations;  we 
also need to show that an alternate learning rule (such as Q
Learning,  or some other Reinforcement Learning strategy) 
does not.  Alternatively, we may determine that a variety of 
learning rules (over a specified range of parameter settings) 
all produce equivalently accurate results over a set of tasks. 
In   this  case,  we can potentially   identify   the unique aspect 
that   separates   accurate   models   from   inaccurate   ones. 
Similar considerations exist for those researchers developing 
variations  on  ACTR modules,   such   as   the   spacing  effect 
(Pavlik & Anderson, 2005) or various production weighting 
schemes (Gray, Schoelles, & Sims, 2005).  

Modular Model Creation
To achieve this goal of examining a wide variety of models 
(both ACTRbased and nonACTRbased),  we need to be 
able to rapidly construct models, and to easily reorganize the 
basic structure of ACTR.  This can include construction of 
new   modules   and   buffers   to   extend   ACTR,   or   adjusting 
various   fundamental   formulae.  Python  ACTR   (Stewart  & 
West, 2005), which is a reimplementation of ACTR within 
the Python programming language, was created to facilitate 
this. In creating Python ACTR the goal was to make it as 
open as possible to modify the ACTR architecture. 

Also,   to   create   experimental   environments   for   the 
resulting   models   and   to   analyze   the   data,   the   Carleton 
Cognitive   Modelling   Suite   was   created   (Stewart,   2006). 
This includes tools for the exploration of parameter spaces, 
the   use   of   equivalence   testing   rather   than   correlation   or 
meansquarederror   for  model  evaluation,  and  a  variety  of 
nonACTR   systems,   including   neural   networks, 
reinforcement learning, and genetic algorithms.

All   software,   including   implementations  of   the   spacing 
effect   (Pavlik   &   Anderson,   2005),   production   weighting 
(Gray,   Schoelles,   &   Sims,   2005),   the   SOS   vision   system 
(West, Emond, & Tacoma, 2005), and both QLearning and 
TDlearning   for   productions   (Fu   &   Anderson,   2004)   are 
freely available at <http://ccmlab.ca/ccmsuite.html>. 
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Act-R Theory Almost Provides a
Formula for Predicting the Rate

of Post-Completion Errors

Simon Li  &  Richard M Young

• Postcompletion error
– Forgetting to execute an action after the aim of the

current subgoal has been achieved
• E.g. leaving the original on the photocopier; forgetting your

cash card, …
– Sensitive to WM load
– WM capacity in 3CAPS (Byrne & Bovair, 1997)

• Deterministic model
– All-or-nothing error behaviour (0% or 100%)

Context

Our question

• Can we achieve a simple non-deterministic model?
– using just the basic (noisy) conflict resolution mechanism

of ACT-R
– which settles to a PCE rate of say ~5%

• Of course, this is far too simplistic a model to be
psychologically real
– but it serves as a baseline for more sophisticated models

• Issues of “parameter learning” will become relevant

• An interpreter to “carry out” a hierarchical
task (chocolate vending machine)
– will you remember to collect change?

• The PCE is based on ACT-R’s conflict
resolution
– a mechanism for selecting the next atomic action

• PCE --> competition between two rules:
– MTNG (move-to-next-goal) and TS (terminate

subgoal)

Our approach in terms of ACT-R

“Success Rate” for PCE
• Need to introduce one further wrinkle …
• Although a PCE is, by definition, an “error”

for us as observers, it is not necessarily an
error for the person (or the cog architecture)
– e.g. you forget to collect your change from the

ticket machine … but do you ever become
aware that you’ve done so?

• If not, then it’s not an “error” for the
architecture

• Use Pe to represent the “success” rate of the
PCE action

Mutual Dependence of
Parameters and Behaviour

• Behaviour depends upon the value of the
production parameters, Pi and Ci

• But the parameter values themselves depend
upon (are learned from, are estimated from)
the behaviour

• We need to understand both sides of this
mutual dependence
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Behaviour Depends on Parameters
• Add to each of the Ei a random quantity

(noise) of spread determined by global s
• The action with momentarily largest E is chosen

E1

E2

E1 + noise

E2 + noise

• P(choose action2) depends on ratio (E1–E2)/s

Parameters Depend on Behaviour

• Parameter values are “learned” by
(Bayesian) estimates from experience

• Benefit P is just the experienced success
rate of the action

• Cost C is just the average experienced cost
of the action

Mutual Dependence (Cyclic)

Parameter
values

Behaviour

Consistency of Parameter Values
• The parameter values learned from a pattern

behaviour do not necessarily coincide with the
values producing that behaviour (!)

• Suppose we want the model to select the PCE
action around 5% of the time

1) then we need EPCE < Ecorrect
• otherwise make more errors than correct

2) but also need EPCE ≈ Ecorrect
• otherwise make no errors at all

Important Implication

• This means that

The correct and PCE actions must have
Es that are approximately equal

• But also, just being approximately equal
will not of itself produce the 5% error rate

Calculating Parameter Values
for Consistency

• We can use this result to calculate the
conditions under which the parameter
values will be consistent
– i.e. the values experienced in the behaviour

coincide with the values generating the
behaviour
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The Forward Calculation
(details suppressed)

• Suppose the rate r of making PCEs is set,
say at 5%

• We calculate Ecorrect and EPCE in terms of the
objective properties of the task and Pe.  But
we know EPCE ≈ Ecorrect.  So we equate them,
and solve.

• This gives values for all the parameters and
around 0.7 for Pe (i.e. for Simon’s task)

5.5

0.5

0.95

0.7

14

11.5

0 200 400 600 800 1000

COMPLETE-TASK

MOVE-TO-NEXT-GOAL

MOVE-TO-NEXT-GOAL

MOVE-TO-NEXT-GOAL

POSTCOMPLETION-ERROR

POSTCOMPLETION-ERROR

POSTCOMPLETION-ERROR

Utility
(PG - C)

P value

C value

Run of model with Pe = 0.7

The Backward Calculation

• It occurred to me only later …
• Instead of assuming r = 5% and calculating

the parameters and Pe, I could leave r as an
unknown in the equations, then solve for it!

• Amazingly, the equation turns out to be
linear in r.  So, multiply out, collect terms,
etc. and we get …

Formula for PCE Error Rate

• Looks a mess, but all the terms on the right are
known properties of the task (and/or task
environment)

€ 

r =
Ms((PeG − Ce )− (G − Css ))

(PeG − Ce )(Ms − Me )+Me(PeG − Ces)− Ms(G − Css)

What does r Look Like?

WARNING

Don’t try this at home!

r as a function of Pe

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

“Success” rate of PCE

r  = probability of 
PCE
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Do we Need to Worry?

• Not a worry that can be outside range [0,1]
– just means no “real” solution for certain cases
– after all, when did the forward calculation, didn’t

bother to note that r in range [0,1] and therefore a
restricted range of values possible

• The whole idea of having such an formula seems a
bit disturbing …
– let’s return to this at the end

Do we really have what we seem
to have?

– i.e. a way of calculating PCE rate in terms of
objective properties of the task?

• Unfortunately (or fortunately?), not
• Although the value given by the formula is
consistent (i.e. a “fixed point”?), it is
unstable
– at least for the few cases we have analysed

• (Rather like balancing a pencil on its point)

Systems with Feedback can be Unstable

• If the “gain” round the loop is +ve, then the
system is unstable

Parameter
values

Behaviour

Stability Analysis
(details suppressed)

• Suppose the system happens (by chance) to
make n PCEs in a row

• Can show that this reduces the difference
between EPCE and Ecorrect
– i.e. makes it more likely that PCEs will occur in future
– (argument is simple and quite elegant, but not given here)

• Therefore, system is unstable

Discussion — 1

• What would it have meant if we hadn’t run
into the problem of stability?  Could we
really have a formula for PCE rate
– independent of individual (knowledge,

motivation, concentration, …)?
– independent of details of cognitive architecture

(only very broad assumptions made)?

Discussion — 2

• I think we could
• There are just enough assumptions in the

analysis to cover plausible individual
variation
– rationality & accuracy of decision making
– accurate tracking of Ps and Cs
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Discussion — 3

• How inevitable is that instability?
• Could there be similar cases where the

solution is in fact stable?

– don’t know
– would take further work
– not sure I’d know how to do it

END

Version Control
• First given, with Simon, at UCLIC 3.11.04
• Shortened version, at Act-R workshop 23.7.06

Demonstration of Instability — 1
• I’ve carried through several different ways of deriving the result, but

the easiest and most transparent seems to be a rigorous but quite
informal argument, as follows.

• We have two critical actions, S and F, which compete at a certain point
of the process.  S leads to success, always.  F leads to an observed
PCE, but nonetheless “succeeds” a proportion Pf of the time (which in
the body of the talk we have called Pe.)

• F is chosen on a proportion r of trials, which is thus the PCE rate.  S is
chosen on (1 – r) of trials. Typically r is small, say around .05.

• For F, its probability of success is Pf, as just stated.  Its cost is a small,
fixed cost Cf , which in Act-R would be typically around 0.05 sec,
since it terminates the task immediately.

• For S, its probability of success is Ps, which is typically high, say
around .98.  (It’s less than 1 because S may fire more than once per
run, and so may be involved in runs where F wins the competition and
leads to failure.)

Proof of Instability — 2
• For S, its cost is Css on runs where S is chosen, but a lesser Csf on runs

where F is chosen and cuts the process short.  Its actual parameter Cs is
a weighted sum of the two, in fact Cs = (1–r)Css + rCsf

• We’ve already seen that in order for errors to occur, the expected gains
of S and F must be approximately equal, in other words

                  Es = PsG – Cs  ≈   Ef = PfG – Cf                   (1)
• We now consider the effect of n consecutive choices of F on the

system.  The parameters for F, Pf and Cf, are not dependent on the
choice of action, so we only need to consider the effect on Ps and Cs.

• Suppose that the parameters for S have been learned as experienced
over N trials, where typically N will be quite large.  The effect of n
further trials is that Ps, Cs, and indeed Es = PsG – Cs will all be updated
as the weighted average of their values learned over N trials with the
values experienced during those further n trials.

Proof of Instability — 3
• So from the original N trials, the experience for action S leads to

learning Es = PsG – Cs.
• For the further n trials during which F is chosen, S experiences success

at the rate of Pf, and cost at the level of Cfs.  So based on just those n
trials it would learn Es(n) = PfG – Cffs.

• Since Cfs > Cf, we have Es(n) < PfG –Cf, i.e. Es(n) < Ef

• But we know Ef ≈ Es

• This means that Es(n) < Es, which in turn means that the experience of
those n trials will reduce Es when combined as a weighted average.

• Consequently, the probability of choosing F in the future is increased,
which means that Es will be reduced still further …
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The Influence of Belief on Relational Reasoning: An ACT-R Model 
 

Adrian P. Banks, University of Surrey, UK 
 
Whilst early reasoning experiments sought to minimise the influence of background knowledge on 
performance, more recently the role that prior knowledge plays in reasoning has become an 
important topic in its own right. One approach to studying this is to test simple deductive logic 
problems that contrast logical conclusions with believable ones. For example: 
 
Edinburgh is north of Cambridge 
London is south of Cambridge 
Conclusion: London is south of Edinburgh 
 
This is logically valid and believable. 

London is north of Cambridge 
Edinburgh is south of Cambridge 
Conclusion: Edinburgh is south of London 
 
This is logically valid but unbelievable. 

 
This research aims to understand how the believability of these problems influences our ability to 
draw logically valid conclusions from them. 
 

Major Empirical Findings 
 
Three major effects have been found: people are more likely to accept logically valid conclusions, 
people are more likely to accept believable conclusions, and - most interestingly - this effect of 
believability is stronger for invalid than valid conclusions. In particular, this latter finding occurs 
when conclusions are indeterminately invalid (conclusion is possible but not necessary) but not 
determinately invalid (conclusion is not possible). These effects have been found with categorical 
syllogisms (e.g. Evans, Barston & Pollard, 1983) and relational reasoning problems (Roberts & Sykes, 
2003). Relational reasoning problems test the spatial and temporal relationships between things, and 
these are the problems that will be modelled here. 

 
ACT-R Model of Belief Bias 

 
There are three stages to the model’s operation. (1) The premises are read and integrated into a single 
chunk. The chunk represents a 3x2 grid, with one slot per cell of the grid. This captures the spatial 
relationships of the elements in the problem. Premises may not uniquely identify a layout, so they are 
reread until all alternative layouts consistent with the premises have been found. (2) The conclusion 
is read and all chunks with sufficient activation are retrieved. (3) If all chunks retrieved are consistent 
with the conclusion then a valid response is made. If some are inconsistent, then an invalid response 
is made. If no chunks have sufficient activation, then the model guesses, with a slight bias towards 
supporting believable conclusions. 

The effect of prior belief is modelled by placing a chunk in declarative memory which has some 
initial base level activation. When chunks are created from the premises that are consistent with this, 
they are merged with it raising its activation further. When the premises are not consistent with prior 
belief, new chunks are created which have a lower activation. Hence the influence of prior belief 
arises because chunks derived from the premises that match prior belief have higher activation 
because of the chunk merging, and so they are more likely to be retrieved and influence the 
conclusion evaluation than those that do not match prior belief. 
 

96 ACT-R Workshop proceedings 2006



Results 
 

0
10
20
30
40
50
60
70
80
90

100

V
al

id
B

el
ie

va
bl

e

V
al

id
U

nb
el

ie
va

bl
e

D
et

er
m

in
at

el
y

In
va

lid
B

el
ie

va
bl

e

D
et

er
m

in
at

el
y

In
va

lid
U

nb
el

ie
va

bl
e

In
de

te
rm

in
at

el
y

In
va

lid
B

el
ie

va
bl

e

In
de

te
rm

in
at

el
y

In
va

lid
U

nb
el

ie
va

bl
e

Data
Model

 
 
Figure 1: Comparison of model predictions with empirical data 
 
This model has been compared with Roberts & Sykes’s data and provides a good fit to these data (R2 
= 0.985). This provides support for the model and theoretical claims about the role of belief in 
relational reasoning. 
 

Conclusion 
 

The good fit of the model to the data supports the idea that belief influences reasoning by a form of 
source misattribution. That is, activation of belief chunks is increased during the reasoning process 
and this increases the chance of a belief being retrieved instead of a mental model. Not only is this a 
novel explanation, it is also a more parsimonious and well specified explanation than some dual 
process accounts of reasoning (e.g. Evans, Handley & Harper, 2001). Future work will test 
predictions of this model and extend it to other forms of reasoning. 
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Cognitive Modeling of Web Search 
Michael Schoelles, Wayne D. Gray, Vladislav Veksler, 

Stephane Gamard, and Alex Grintsvayg 
 

CogWorks Laboratory 
Cognitive Science Department 

 Rensselaer Polytechnic Institute 
 

A significant challenge for computational cognitive modeling is to develop high-fidelity 
models of web surfing. To successfully model the entire task both software and cognitive 
engineering problems must be solved. At ACT-R-2005, we addressed some of the 
software engineering challenges posed by the task of attaching an ACT-R model to a web 
browser (Gamard, Schoelles, Kofila, Veksler, & Gray, 2005). In this talk we focus on the 
cognitive engineering challenges posed by the need to navigate and search a near infinite 
number of heterogeneously designed web pages in pursuit of a weakly specified target. 
 
PRIOR WORK 
Our work builds on the pioneering efforts of others. The first effort to bring semantics 
into the search of an unbounded data source was SNIF-ACT (Pirolli & Fu, 2003). The 
SNIF-ACT model replaced ACT-R’s expected utility function with one that was derived 
from the Rational Activation Theory (Anderson & Schooler, 1991) of declarative 
memory. Choice of actions was based on the activation spread to memory chunks based 
on similarity to the user’s goal. Similarity was based on metrics derived from the 
Pointwise Mutual Information (Pirolli, 2005) measure of semantic distance (MSD).  
 
An important class of models of web surfing are those based in the Construction-
Integration Architecture (Kintsch, 1998). CoLiDeS (Kitajima, Blackmon, & Polson, 
2000) claims that the perceived relevance of the Web page text or image to the goal 
determines what the users act on. Like SNIF-ACT, the similarity of the text to the goal is 
based on a MSD. In contrast to SNIF-ACT, CoLiDeS uses Latent Semantic Analysis 
(Dumais, 2003) as its MSD.  
 
CoLiDeS+ (Juvina, Oostendorp, Karbor, & Pauw, 2005) extends CoLiDeS with the 
concept of path adequacy, which is a history of the similarities computed. This approach 
performs similar to humans in that it ends up at the same page; however, the model takes 
more steps. Juvina attributes the differences in decision making to the weakness of LSA. 
In particular, the “general reading “ corpus was used. Juvina proposes that a more 
specialized semantic space would have given better results. 
 
The SNIF-ACT and CoLiDeS work suffers from two issues. First, neither class of models 
performs a realistic search of a web page. Although SNIF-ACT is based on ACT-R, it did 
not use ACT-R’s perceptual-motor capabilities. As far as we know, CoLiDeS has no 
perceptual-motor capability. Although the lack of perceptual-motor capabilities are a 
realistic simplification for an initial effort, it means that neither SNIF-ACT nor CoLiDeS 
can account for search time or search order as a function of the visual layout of a page. In 
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other tasks, perceptual-motor costs defined by time have been shown to act as soft 
constraints which determines people’s tendency to plan versus act (Fu & Gray, 2006). 
Small increments in perceptual-motor costs may lead to large tradeoffs between 
interaction-intensive and memory-intensive strategies (Gray, Sims, Fu, & Schoelles, 
2006). If the visual layout of a page affects search order, it is also affecting search time. 
Hence, high-cognitive-fidelity models of web search will have to take account of the 
endogenous influence of visual features on search order. 
 
Second, both SNIF-ACT and CoLiDeS used different MSDs to compute relatedness. It 
has been shown that all MSDs are not functionally equivalent (Kaur & Hornof, 2005). It 
is not clear to what extent which MSDs mimic human relatedness judgments (Veksler & 
Gray, 2006) for what web-based tasks. 
 
CURRENT EFFORT 
Realistic models of web search require a realistic accounting of the time required to 
search each new web page. Search time and the success of finding the most related target 
depends on how many prior items are visited and the semantic relatedness of those items 
to the searched for information. The order in which a new page is searched may be 
partially depended on exogenous features such as a tendency to search a new page from 
top-down and left-right. However, it also depends on endogenous influences of the visual 
design of a display. Hence, our research has turned to incorporating visual saliency 
metrics (Itti & Koch, 2001; Rosenholtz, 2001) into our models. Likewise, we have been 
impressed by the diversity of results returned by diverse measures of semantic distance 
(Kaur & Hornof, 2005). The problems of directly comparing results of various measures 
of semantic distance are very complex and require the development of new 
methodologies to compare various MSDs under various conditions (Veksler & Gray, 
2006). 
 
We are building ACT-R 6 models that incorporate both MSDs and visual saliency 
metrics. In contrast to SNIF-ACT and CoLiDeS+, we employ ACT-R’s perceptual and 
motor processes to perceive and act on web pages. We feel it is essential to model the 
whole task, since human search is influenced by visual features of the task environment. 
The model has the capability to represent in the ACT-R’s visual memory a web page and 
to access or calculate in real-time any one of 20 MSDs to assess the semantic relatedness 
of found text to a navigation goal.  
 
Our model is a work-in-progress and during the talk we will present some of the 
problems we have encountered in web surfing that are easy for humans, but difficult for 
ACT-R. Some of these problems are software engineering issues, others relate to the 
theory and functioning of various modules, while others may inform central assumptions 
of the ACT-R architecture. In any case, we believe the challenged posed by the web is 
one that the modeling community must face. The ability to search a near-infinite source 
for information and to interact with heterogeneously designed web pages presents a 
significant challenge to the state-of-the-art in computational cognitive modeling. 
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Background Overview of the Model The criteria Decision rules Perspectives

ATC in ACT-R:
a Model of Aircraft Conflict Detection

Éric Raufaste1

1CNRS - Laboratoire Travail et Cognition
Université Toulouse - Le Mirail

2006 ACT-R Workshop

Background Overview of the Model The criteria Decision rules Perspectives

Much of the Air Traffic Controller (ATC) task consists in
maintaining a sufficient separation between aircraft

In this study, conventional thresholds for minimal
separation are 5 NM horizontal, and 1FL vertical

Conflict: situation where two aircraft are at risk of an "air
proximity" incident
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Background Overview of the Model The criteria Decision rules Perspectives

The Rantanen and Nunes’ Experiment (2005)

The task : deciding whether a pair of aircraft is in conflict

Manipulated factors

_ Altitude difference : same or different by at least 1 FL
_ Heading angles : 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 315◦

_ Relative speeds : 0 vs. 10 to 50 knots
_ Miss distance : 2.5 vs. 7.5nm

Controlled variables : Flight level and Speed

Background Overview of the Model The criteria Decision rules Perspectives

Mental workload minimization principle

Try to obtain the fastest decision possible, using the least
effort

It uses a lexicographic approach :
1 Select a new criterion
2 Apply the criterion
3 If it is sufficient to decide, then decide and end
4 Otherwise return to (1)
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Background Overview of the Model The criteria Decision rules Perspectives

Headings

1 The model successively attends
the aircraft and their associated
speed vectors

2 The difference in headings is
computed and stored

3 Further processing can this
result as input

Diverging trajectories
Converging trajectories
Opposition
Pursuit

Background Overview of the Model The criteria Decision rules Perspectives

Altitudes

Aircraft fly at constant altitudes
then if altitudes differ by more
than 1000 ft =⇒ No conflict

Altitudes are only provided
symbolically
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Background Overview of the Model The criteria Decision rules Perspectives

Speeds

Each aircraft speed appears
under both symbolical and
analogical forms

Speed vector lengths are first
accessed

The difference in speed vector
lengths is computed

if the difference does not
exceeds a perceptual threshold,
numerical speeds are read

Background Overview of the Model The criteria Decision rules Perspectives

Lateral separation

1 Choose an aircraft
2 to be repeated until the target

aircraft is reached:
a. Place a new mental anchor
one speed vector farther
b. Move attention to this
mental anchor

3 Draw a mental line between the
last anchor and the target

4 Evaluate the size of the mental
line

ACT-R Workshop proceedings 2006 105



Background Overview of the Model The criteria Decision rules Perspectives

Initial processing rules

1 if headings diverge =⇒
Press no conflict ; End of trial

2 if altitude difference exceeds the minimal separation
threshold (1000 ft) =⇒

Press no conflict ; End of trial

3 Otherwise, continue processing

Background Overview of the Model The criteria Decision rules Perspectives

Opposition

1 Get lateral distance
2 Get the width of the analogical

scale (= 5NM)
1. If lateral distance ≥ scale
length

Press no conflict ; End of trial

2. If lateral distance > scale
length

Press conflict ; End of trial
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Background Overview of the Model The criteria Decision rules Perspectives

Pursuit

1 Get speeds

2 If predator not faster than prey
=⇒
Press no conflict ; End of trial

3 Get lateral distance
4 Get the width of the analogical

scale (= 5NM)
1. If lateral distance ≥ scale
length

Press no conflict ; End of trial

2. If lateral distance > scale
length

Press conflict ; End of trial

Background Overview of the Model The criteria Decision rules Perspectives

In the current state of the model,
The average correlation with RTs from Rantanen and
Nunes’ participants and the model is better than .92
The average mean deviation is below 600 ms
But high error rates in humans remain to be explained
on some conditions

in the near future
Modeling the angle effect in convergent headings
Modeling finer details of the mental processes
Adding the vertical dimension (based on Averty, 2005)
Modeling individual differences (based on Stankovic,
Raufaste, & Averty, 2006)
Modeling mental workload associated with those fine
grain strategy variables
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Abstract 

Visual search is one of the more extensively studied areas in 

cognitive science. In the last few decades cognitive 

architectures have attempted to model visual search as a 

component of simulating human visual processing. Such 

attempts have usually focused on search based on a few object 

features, following most laboratory studies. However, 

applications of cognitive architectures are moving out of the 

laboratory and are being applied to complex displays that 

support real-world dynamic tasks. This necessitates the need 

to model more complex visual search tasks such as search 

with relational constraints between multiple objects in the 

scene. The current work addressed the need for guiding a 

search based on relationships by modifying the visual system 

of ACT-R.  

Introduction 

Over the last few decades a number of cognitive 

architectures (e.g., ACT-R, EPIC, Soar) have attempted to 

model human perceptual, cognitive and even motor 

interaction with an external environment, including the user 

interface of a computer system (for a review, see Byrne, 

2003). In order for cognitive architectures to effectively 

model human interaction with a complex and dynamic 

display, the process of human visual search of the user 

interface must be realistically represented.  

There has been modeling of visual search in such 

architectures, but this is usually constrained to searching for 

colors, for a particular position, a particular letter or 

number, etc. In these searches the target item is displayed 

among a group of distractor objects. This type of search is 

pre-attentive; properties of items in the scene, obtained 

before visual attention has been focused on the items, are 

enough to guide the search. The distractors can be 

differentiated from the target by a variable number of 

properties, the least complex being those where the search 

item can be distinguished on the basis of a single attribute 

(color, shape, orientation, etc). In this case the item is 

located with minimal visual processing. This is referred to 

as the “pop-out” effect (e.g., Triesman & Gelade, 1980). 

However, as the number of features required to 

differentiate between objects in the scene increases, the 

complexity of the search process increases. In the most 

complex case the scene must be attended to serially, 

examining each object in turn in order to locate the target 

item. In between these extremes falls guided search, where 

there is a conjunctive set of features needed to distinguish 

the target item from the distractors (see, for example, Wolfe, 

1994 for a theoretical perspective; see Fleetwood & Byrne, 

in press, for a more applied example).  

Within guided search, in addition to the number of search 

criterion required for object differentiation, another source 

of complexity is the type of relationships expressed between 

scene object properties and search criterion. When 

executing a visual search, each search criterion specifies 

three things:  1) the relevant feature, 2) the value associated 

with that feature, and 3) the relationship desired to exist 

between the constraint value and the value objects in the 

scene have for that property.  For example, when searching 

for a red object in a scene, there is an implied relationship 

between the constraint and the property value of the object 

in the scene. In particular, the target item in the scene is one 

which has a value for the color property that is equal to red; 

in this case, the relationship is one of equality.  When 

searching for an object that is in the upper half of the scene, 

the relevant property is the spatial height coordinate, the 

value associated is the top half of the scene, and the desired 

relationship between the scene objects property value and 

the search constraint is the greater-than inequality relation. 

The simplest relations are those that compare an explicit 

value specified in the search constraint to fixed values of the 

scene objects.  More complex relationships compare a 

property value of a scene object to something less 

straightforward, such as the relations above and below. 

These represent relative position relationships in which the 

spatial positions of objects in the scene are compared, not to 

some explicit constraint value, but to the positional values 

of other objects in the scene.  

While there has been extensive research on visual search, 

the majority of experiments have involved modeling search 

with either fairly straightforward or minimal spatial 
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constraints. These search constraints are the ones that 

specify that the target object in the scene should have a 

particular property value, typically independent of other 

objects in the scene (e.g. in the upper half of the display). 

The complexity of a search becomes higher when a target 

item is required to have a relational property; that is to have 

a particular property value that is related to another object in 

the scene (e.g. to be above or beside another object in the 

scene). As these relationships become more complex visual 

search becomes much more difficult to model. 

While this problem is a general one for modeling human 

interaction with complex displays, a specific modeling 

framework is necessary to instantiate such models. The 

Human Error Modeling for Error Tolerant Systems 

(HEMETS) (Fotta, 2005) project is developing a software 

tool to assess the human errors likely to occur given a user 

interface for a system. HEMETS development uses and 

extends the ACT-R (Anderson, et al., 2004) cognitive 

modeling system which simulates human task performance. 

One of the major challenges in developing HEMETS is the 

modeling of the human interaction with a complex computer 

display. ACT-R contains a set of perceptual-motor (PM) 

modules which includes a visual system that allows 

modeling of this interaction to some extent. The visual 

system acts as an interface between the cognitive 

mechanisms of ACT-R and a simulation of any external 

environment, including computer displays. The visual 

system is responsible for maintaining information about 

what is in the visual environment. In performing visual 

search the cognitive system scans the visual scene and shifts 

the attention of the system to particular objects. However, 

the system has limitations in modeling human visual 

scanning which needed to be addressed in order to more 

realistically model visual search in HEMETS. This paper 

describes our current approach to address these limitations.  

In order to prototype HEMETS a user interface from a 

simulation of air traffic change detection is being used. A 

screen shot of this simulation, the CHEX air warfare task 

(St.John, Smallman, & Manes., 2005), is shown in Figure 1.  

 

 
 

Figure 1: CHEX air warfare task simulation scene 

This simulation mimics part of the user interface in a 

naval Combat Information Center. The operator’s task with 

this interface is to detect certain changes in aircraft (the 

blob-like objects) that may constitute a threat to the user’s 

ownship (cross-hatched object in center). Specific tasks 

include determining whether a particular object is an aircraft 

traveling along an air lane, leaving an air lane, turning 

inbound, or crossing a range ring. 

Experience with this and other similarly designed 

interfaces led the developers of the CHEX air warfare task 

to conclude that operators approach this task by visually 

scanning around prominent features in the scene including 

the range rings (light rings in Figure 1) and the air lanes 

(solid straight lines). Thus, HEMETS must be able to model 

this type of scanning if it is to truly represent human 

interaction with this type of interface. In order to perform 

such scanning, the system needs to be able locate objects in 

the scene based on their relation to the prominent features. 

ACT-R, however, can not accommodate this type of visual 

search so modifications were needed to ACT-R’s visual 

system.  

We first explain the current visual system and its 

limitations in visual search and then discuss our approach to 

overcoming these limitations.  

ACT-R Visual System 

The ACT-R visual system (see Figure 2) is composed of 

two modules, the visual-location module and the visual-

object module. The visual-location module is responsible 

for guiding visual search, locating objects in the scene that 

match a provided set of constraints. The visual-object 

module is responsible for shifting attention to, and 

extracting properties from an object at a given visual-

location. 

 
 

Figure 2: Visual System in ACT-R 

 

Objects in a scene are represented in ACT-R by a set of 

features encoded in a list called the visicon (see Figure 3). 

These features describe where an object is, what kind of 

object it is, what color it is and so on. A request to the 

visual-location module is composed of a set of properties 

and values which describe an object to be located. For each 
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of these, there is an expressed relationship that the objects in 

the scene must satisfy (e.g. the value of the specified 

property in the object in the scene must be greater-than the 

specified value). These property-value-relation triplets are 

used as a constraint set, filtering out objects from the 

visicon that do not satisfy the constraints. In the situation 

where more than one object in the scene satisfies all of the 

constraints, one is selected at random from the possible 

choices.  

 
Figure 3: Visicon feature encoding 

 

The visual location module currently supports two kinds 

of constraints: visual constraints and spatial constraints. 

Within these categories there is a fixed set of supported 

properties that can be used as constraints as well as a 

restricted set of relationships that can be required to exist 

between the target item properties and the scene object 

properties. Combinations of these constraints can be 

specified, under some restrictions, limiting the search to 

items matching the criterion, akin to guided preattentive 

visual search. Filtering objects this way allows the system to 

deal with pop-out effects; objects matching the particular 

constraints can be located rapidly, no matter how many 

other objects are cluttering the scene (e.g. locating a green X 

among a group of red Os). 

Visual scanning is an extension to visual search where the 

goal is to perform repeated searches in an ordered fashion 

among multiple objects that satisfy a particular constraint 

set. ACT-R supports ordered scanning through a special 

constraint that indicates whether or not an object that has 

been searched for recently is a valid candidate. Thus, an 

object returned from a recent visual search request will not 

be returned on a subsequent search request, allowing the 

search to return the next item in the scan. 

Current Visual Search in ACT-R  

The visual attributes supported by this original system 

include: color, size, kind and value. The color attribute 

describes the color of the object. The size attribute restricts 

objects based on total area subtended (in degrees of visual 

angle). The kind attribute represents the classification of the 

object and value is a user-defined slot. The relationship that 

can be required to exist for the scene objects’ property value 

is restricted to equality; the property value for the object in 

the scene must match exactly the specified constraint value 

(e.g. color must equal blue, size must equal 23, the kind 

must equal aircraft, etc).  

The spatial attributes include the x and y coordinates of 

the object in the scene as well as the distance from the 

perceiver (depth distance). The relationships that can be 

specified for spatial constraints include equality (=) and 

inequalities (<, >, <=, >=), and the special relationship 

nearest. Nearest has the special property that it specifies 

that the scene object selected will be the one nearest the 

constraint value, it is a filter that is applied to the candidate 

scene objects that satisfy all of the other constraints.  

The values for these spatial constraints are a scene 

coordinate, specified either explicitly (e.g. < screen-x 50, >= 

screen-y 100 would specify a valid scene object is one 

which has an x coordinate that is less than 50 and a y 

coordinate that is greater-than or equal to 100) or as 

references to a known visual-location such as the currently 

attended object (e.g. > screen-x CURRENT-X would 

specify that a valid scene object would be one whose x 

coordinate is greater-than the x coordinate of the currently 

attended object). There are also two other special values that 

can be used: highest and lowest, which, like nearest, are 

applied as filters to the scene objects that have already 

satisfied all of the other constraints. These select the object 

which has the highest (or lowest) appropriate property value 

(e.g. screen-x highest will select the scene object with the 

highest x coordinate that also satisfies all of the other 

constraints).  

There are also limitations on how many constraints for a 

particular property can be expressed in a visual-location 

request. The nearest relationship, for example, can only be 

used once in a given request. The screen-x and screen-y 

properties are the only exception to this rule; they can be 

specified twice to represent the constraint that the position 

must fall within a specified range.  

These property, value, and relationship specifications 

allow the visual location module to perform most visual 

searches with straightforward visual and spatial 

requirements. Using these, and one other type of constraint, 

the system can also perform a small selection of visual 

scanning routines.  

Current Visual Scanning in ACT-R  

When performing a visual search request, in the event that 

multiple objects satisfy the set of constraints, the response 

of the visual location module is to select randomly from 

among the candidates. If the same request is issued again, 

the system will return another random object (possibly the 

same one as before). In order to prevent the system from 

returning the same object repeatedly, allowing the system to 

iterate through each of the applicable scene objects, ACT-R 

has a third type of constraint: the attended constraint, which 

can be used to indicate that the system should return only 

those objects not returned as the result of a previous visual 

search request. Using this, it is possible to make repeated 
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visual-location search requests and get each scene object in 

turn that satisfies the given constraints.  

The sequence in which the valid scene objects (for a given 

set of constraints) are traversed is not specified. The system 

will skip randomly around the scene returning random valid 

scene objects, skipping over other valid scene objects. A 

more difficult task is to scan the scene in an ordered fashion, 

for example from left to right, top to bottom, not skipping 

any valid scene objects, but returning them in the sequence 

determined by the ordered scan.  

The visual-location module supports these more advanced 

scanning tasks through a combination of the constraint 

properties described above. By using the attended constraint 

to prevent backtracking to objects already seen, and by 

specifying the nearest relationship to the last object seen in 

order to have the scan progress without skipping over valid 

objects in combination with other constraints it is possible 

to perform ordered scans. For example, using those 

constraints, and the additional constraint that the x 

coordinate needs to be greater than the last seen object, the 

visual search requests would return objects that progressed 

from left to right across the scene starting from the first 

returned object. In order to scan the scene entirely from left 

to right, top to bottom, it would first be necessary to issue a 

visual search request to locate the upper-left most object (by 

issuing a request using the highest and lowest keywords for 

the x and y locations), then scan from left to right by issuing 

a request using a constraint similar to the one above 

modified to also scan top to bottom.  

HEMETS Modified Visual-Location Module  

The original constraint specification system in ACT-R was 

designed to model simple experiments with fairly 

straightforward spatial requirements. In general, it has been 

adequate for such purposes. However, complex scenes 

requiring complex scanning strategies, such as the one 

depicted in Figure 1, requires more sophisticated 

specifications. 

Modified Visual Search in HEMETS 

Although the set of visual attributes supported (color, size, 

etc) allow the system to find most simple objects in a scene, 

as the complexity of those objects increases, it becomes 

necessary to use properties not currently available to 

distinguish between different objects. For example, in order 

to locate an object whose width was less than a certain 

value, it would be necessary to be able to pass in a 

constraint of the form: < width 15. This however, is not 

possible since width is not one of the fixed set of attributes 

currently useable as a constraint in the visual-location 

module. Additionally, the type of operators supported in the 

constraints is also fixed given a particular attribute type. For 

example, for color, constraints must specify that the color 

must equal some value (e.g. blue), so it is difficult to find an 

object whose color fell within a particular color range. 

The first alteration to ACT-R’s visual-location module, 

extending its visual search capabilities to handle more 

difficult visual scenes, was the addition of the ability for the 

visual-location module to use user-defined properties as 

search criterion. Four additional user-definable properties 

can be specified. This allows for searching for objects where 

the important visual attribute was not one of the standard set 

but specific to a particular kind of object. The addition of 

four usable properties is still a fixed, small number of 

properties about an object usable by the visual-location 

system during a search. As the number of visual attributes 

defining an object gets large, this solution fails as before. To 

address this issue, we further modified the system to accept 

an arbitrary object property as a comparison criterion; as 

long as the object has the particular attribute, it can be used 

as a feature criterion.  

The next alteration to the visual-location module was to 

relax the restrictions on the relationships that can be 

specified for a particular type of constraint. The visual-

location module required colors to be compared using 

symbol equality (= red, = green, etc), and the x and y screen 

positions to be compared using numerical equality and 

inequality functions (=, <, >, etc.) to some specific value 

(e.g. < screen-x 100) or to a currently attended location (e.g. 

< screen-x CURRENT-X), or by symbol equality to highest 

or lowest (e.g. = screen-x HIGHEST). These operations 

were fixed to support comparing specific object attributes. 

Rather than simply adding fixed relationships for all 

possible object properties that are used as search criterion, 

the system was modified to allow any operator to work on 

any valid input in a criterion. What is valid is determined by 

the operator (i.e. numbers for numeric inequality tests, etc). 

Additionally, support was added for the definition of custom 

methods for performing specialized comparisons between 

attributes that don’t support the standard current comparison 

operators. For example, it is now possible to create a custom 

color< operator that takes two colors and indicates whether 

one is lower than the other on a color scale that can be used 

as a relationship in a visual-search request criterion.  

Another side effect of these specialized operators and 

attributes was the removal of the limitation on the number 

of times a particular attribute could be used as a constraint 

in the same visual location request. The restriction that a 

particular property could be used only once as a constraint 

in a visual search request proved restrictive when attempting 

to do more complex scene scanning for a variety of reasons. 

For example, when attempting to perform an ordered search, 

it was necessary to use the Nearest Current criterion in 

order to progress across the scene in a fashion that did not 

skip over objects. Since the Nearest relationship can only be 

used once, it is not possible to perform a search that 

progresses in a spiral out from a particular object or location 

in the scene. To accomplish that, would require specifying 

Nearest <spiral-location> to keep the search on the path 

defined by the desired scan spiral in combination with 

Nearest Current in order to progress to the next nearest 

from the last attended object. With the generalization of the 

operator and object attribute constraint methods; this 
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restriction on the number of uses of a particular slot was 

removed. 

There are two general classifications of search criteria 

shown in the current implementation. The highest, lowest, 

and nearest represent search constraints that are applied to 

the set of all objects in the scene that satisfy all of the other 

constraints in the visual-location search request. The other 

constraint properties and relations, such as color or position, 

apply to an individual object in the scene independent of 

what other objects in the scene satisfy any constraints. We 

have formalized this distinction by differentiating global 

and local constraints (see Figure 4). Local constraints are 

those constraints that are applied to each individual object in 

the scene that require only information specific to that 

object taken in isolation (e.g. testing whether the screen-x 

value of the object is > 100). The global constraints are then 

run over the collection of objects that satisfy the local 

constraints, filtering from among those (e.g. picking the one 

with the highest screen-x value, or that is nearest to a 

particular object or location). These constraints are specified 

on a per-model basis and all support custom relationships 

and any properties that objects in the scene might possess.  

Additionally, when more than one object in the scene 

satisfies all of the property constraints, rather than selecting 

randomly among them, it is possible for the model author to 

define a method for selecting from among the candidate 

objects.  

Modified Visual Scanning in HEMETS  

Two general scanning methods which were significant in 

our current air traffic change detection task were enabled by 

these changes. The first is being able to direct an ordered 

scan based on the physical attributes of another object in the 

scene (e.g. in our task, following along an air lane in the 

scene looking for objects along that air lane). To accomplish 

this we define a special operator that is similar to Nearest in 

nature, called Nearest-Along. This operator takes an object 

and an allowable distance. The object is the item in the 

scene (the air lane in our task) to scan along with the 

allowable distance representing how far away from the 

object it is ok to be to satisfy the constraint. This new 

special relationship allows a visual-location search request 

to consider a scene object’s location to another object in the 

scene as a relevant search criterion. This relationship used in 

conjunction with the normal Nearest operator to progress 

from one object to the next nearest without skipping objects 

allows us to follow along an air lane locating aircraft.  

The second common task in our air traffic change 

detection scenario is scanning around the range rings. This 

generalizes to scanning in a ring around a fixed central 

location. Under the previous implementation it would be 

necessary for every aircraft to store its distance from a 

specific location as an object attribute. This required at the 

very least the extension of usable attributes in visual-

location search requests. Even when successfully 

implemented, this approach could not easily determine 

when the ring was completely circled. With the new 

implementation, we define a specialized operator Around 

with a radius argument. It is then possible to issue a visual-

location search request that circles the central point at the 

specified radius and terminates when the ring is completely 

traversed.  

Summary 

Visual search has usually been studied in the laboratory and 

modeled considering only the difference between intrinsic 

object features (e.g., color, position, orientation, size). The 

use of relationships between objects to guide visual search 

has received much less research attention. Modeling of 

relationships for use in visual search has been previously 

accomplished in some cognitive simulations but only at a 

simple level. For example, ACT-R can search for an object 

nearest the current object being attended to.  

Our current work enables the modeling of more complex 

relationships to guide visual search. The combination of 

enabling specialized operators, attributes, local and global 

constraints, and using object attributes more than once 

permits custom search methods that model scanning the 

scene in complex patterns. Although the current 

development was driven by the necessity to model scanning 

for a particular interface, the techniques developed can be 

applied to a wide range of user interfaces or simulated 

environments. 

The extensions enable modeling of some of the more 

complex aspects of visual search as performed outside the 

laboratory. Thus, models built using these techniques can be 

Figure 4: Visual-Location filtering process 
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studied in a variety of settings in order to extend our 

knowledge of human visual search.  
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Human Error Modeling Architecture 
Systems Interface (HEMA SI)

ACT-R Workshop July 21 - 23, 2006 IMTS 2

Talk Outline

• SegMan

• CHEX Air Warfare Task

• Object Recognition Issues
– Scene Elements

• ACT-R Integration Issues
– Performance

– Persistency

• Relation/Benefits/Accomplishments to overall task
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ACT-R Workshop July 21 - 23, 2006 IMTS 3

Segmentation/Manipulation (SegMan) 

• Serves as an intermediary between an environment 
(visual scene) and the cognitive modeling system 
(ACT-R). 

• Processes visual scene in any graphical user 
interface
– Groups pixels by color and identifies pixel-groups via 

patterns

– Identifies both objects and text

ACT-R Workshop July 21 - 23, 2006 IMTS 4

Object Recognition Issues

• Speed/Direction indicators
– Associating with proper aircraft

• Air Lanes
– Compensating for occlusion/segmentation by aircraft

• Range Rings
– Recognizing thin-line/occluded rings

• Aircraft Occlusion
– Compensating for occlusion by other aircraft
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Speed/Direction Indicators Association

• Incorrect association of

direction indicators to

aircraft

• Solution: 2-stage algorithm
1. Circle aircraft looking for potential indicator connection

2. Trace indicator, ensuring it projects directly away from the 
aircraft

ACT-R Workshop July 21 - 23, 2006 IMTS 6

Air Lane Recognition

• Air Lanes segmented by occluding aircraft
– Segmentation changes over time (moving aircraft)

• Solution: Line projection algorithm

1. Fill Algorithm - identifies each segment point

2. Linear Least-Squared line fitting – compute line equations for 
each segment

3. Line Projection – merge lines to form a single line object
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Range Ring Recognition

• Normal fill method fails
! Rings are thin (~1 pixel)

! Primarily diagonal lines

– Solution: Leaky Fill 
Algorithm

! Allows following diagonal points

• Rings segmented by
occluding aircraft

– Solution: Radius connection

! Multiple segments of ring joined based on radius.

ACT-R Workshop July 21 - 23, 2006 IMTS 8

Aircraft Occlusion

• Occlusion by other

aircraft
– Causes failure to locate 

aircraft

• Solution: Fill Algorithm
– Fill algorithm that starts from original discovered location 

and expands outward to the objects edge
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ACT-R Workshop July 21 - 23, 2006 IMTS 9

ACT-R Integration Issues

• Set up SegMan as a device in ACT-R

• Allows translation of scene into ACT-R environment 
representation (Visicon)

• Issues for ACT-R visual scanning
– Scene scanning time

– Object persistency over time

ACT-R Workshop July 21 - 23, 2006 IMTS 10

Optimization of Multiple Scene Scans

• Rescanning scene entirely repeatedly is too slow

• Solution: Caching of static items
– Initial scan (~4sec)

! Identifies and caches static items (air lanes, range rings, distance 
hash lines, land masses)

! Identifies moving items (aircraft)

– Subsequent scans (~0.25sec)

! Identifies moving items (aircraft)
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ACT-R Workshop July 21 - 23, 2006 IMTS 11

Object Time-Persistency 

• Each scan of the scene is independent of previous

– No information connecting one blob (aircraft) to another in two 
scenes

• Solution: Position-Based Correlation 

– Aircraft move slowly

– Two objects in close proximity to each other in two scenes are 
identified as the same object (aircraft)

• Generalization for faster moving scenes

– Add direction/speed analysis to correlate two objects

ACT-R Workshop July 21 - 23, 2006 IMTS 12

Relation, Benefits, Accomplishments

• High Performance visual scene processing allowing 
for real-time cognitive modeling

• Visual scene processing can connect arbitrary air 
space control interfaces to   ACT-R

• These problems can be generalized to many other 
interfaces, reducing the time required for future 
deployments of HEMETS
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PENN STATE

Cognitive Aspects of Serial Subtraction

ACT-R Workshop 2006

8899
-    7
8892
-    7
8885
-    7
8878
-    7
8871
-    7
8864
-    7
8857
-    7
8850
-    7
8843
-    7
8836

Frank E. Ritter, Sue Kase, Jeanette Bennett, Laura Klein,
& Mike Schoelles

IST, BBH @Penn State, RPI
http://acs.ist.psu.edu/papers/

Part of understanding the effects of stress and caffeine on
cognition

Human data obtained from an empirical study utilizing the
serial subtraction task, part of the TSS Task

Analyses yield an understanding of problem types that
generated errors and individual differences in subtraction
rates

ACT-R 6 model of process and of potential stress theories

This project was supported by the ONR, N00014-02-1-0021, and NIH through GCRC grant  MO1-RR-
10732.  The views expressed in this article do not necessarily reflect the positions or the policies of
the U.S. Government, and no official endorsement should be inferred.

Rensselaer Cognitive Science

PENN STATE
Methodology Overview

ACT-R Workshop 2006

15 male subjects performing serial subtraction task
4 blocks (4 minutes each) subtracting 4-digit numbers

1. subtract by 7
2. subtract by 13
3. brief task change – mathematical word problems
4. subtract by 7
5. subtract by 13

Subject reports answers verbally to experimenter
             reprimanded when answers are incorrect
             ‘harassed’ by being asked to go faster
Audio recording of subject performance

Errors, pace (within and across blocks), variance, IDs

Pre- and post-task appraisals
Mathematics anxiety surveys (sMARS, CMAQ)
Mood Assessment Scale (self-reported stress)

8836
-    7
8829
-    7
8822
-    7
8815
-    7
8808
-    7
8801
-    7
8794
-    7
8787
-    7
8780
-    7
8773

Rensselaer Cognitive Science
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Subtracting by 7s – frequency of errors

ACT-R Workshop 2006

Subjects made 1511 subtraction attempts, 1346 correct responses, 165 errors – 10.9% error

1.7
1.2
0.1
0.1
0.2
0.1
0.8
0.1
0.2
0.1
0.1
0.1
0.8
0.1
0.1
0.1
0.3
0.1
0.1
0.1
0.1
0.1
0.1
6.8

25
18
1
2
3
1
12
2
3
1
1
2
12
1
2
2
5
1
1
2
2
1
2

102

-6
-5
-4
-3
1
2
3
5
13
20
76
83
93
100
293
693
893
983
991
992
993

1003
1793
Total

Total       1511
Correct   1346    89.1%
Error        165     10.9%
Duplicates   2      0.1%
Additions   56      3.7%

0.1
0.1
0.1
0.3
0.3
0.1
0.5
0.1
0.1
0.3
0.3
0.3
1.8
4.4

1
1
1
4
4
1
7
1
2
4
4
4

27
61

-6807
-6007
-1007
-907
-207
-114
-17
-16
-14
-13
-10
-9
-8

Total

Greater than  -7
Value    Frequency  Percent

Correct  -7
     Frequency    Percent

Less than  -7
Value    Frequency  Percent

Errors

resulting
in

additions

107 (7.1%) errors

resulting in

subtractions

other than -7

56 (3.7%)

errors

resulting in

additions

PENN STATE

Rensselaer Cognitive Science

Subtracting by 7s:  errors -8, -6, -5

ACT-R Workshop 2006

The most common errors were misremembering to subtract 7; instead, subtracting

by 8, 6, or 5

Subtract by 5 error: the digit in the

1s column is a 1, 2, 3, or 4.

A one was in the 1s column 66.7%

of the time; a two  22.2% of the time

All problems required a carry-over

from 10s.

Subtract by 6 error: a 3 was the 1s

column digit 52% of the time.

8% of the problems did not require

a carry-over from 10s.

Subtract by 8 error: a 1, 4, or 5

appeared in the 1s column a total of

81.4% of the time.

                    Digit     Freq

4       29.6%

5       29.6%

1       22.2%

3.5% of the problems did not require a

carry-over from 10s.

1.218-5

1.725-6

1.827-8

PercentFrequencyValue

Misremembering 7

Subtracting by -5

Digit in 1s column of problem

4321

F
re

q
u
e
n
c
y

14

12

10

8

6

4

2

0

Subtracting by -6

Digit in 1s column of problem

97543210

F
re

q
u
e
n
c
y

14

12

10

8

6

4

2

0

Subtracting by -8

Digit in 1s column of problem

9654310

F
re

q
u
e
n
c
y

10

8

6

4

2

0

 1          2              3            4

Digit in 1s column

  0     1      2     3      4     5      7      9

Digit in 1s column

    0      1       3      4      5       6       9

Digit in 1s column

  Subtract by 5   Subtract by 6   Subtract by 8

PENN STATE

Rensselaer Cognitive Science
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Subtracting by 7s:  error +93

ACT-R Workshop 2006

Misremembering the 100s column, not effected by a carry, by incrementing it by 1,

results in adding 93.

The erroneous increment of the 100s column is either from 7 to 8, or 8 to 9.

The incorrectly answered problems tend to fall into 3-problem sequences.

0.81293

PercentFrequencyValue

Misremembering 100s

  Subtraction problems causing addition by 93 error

Frequency

missed:            [2]            [2]                    [2]             [3]

8899      8892      8885

-    7       -    7       -    7
8892      8885      8878

8794      8787      8780

-    7       -    7       -    7
8787      8780      8773

8759

-    7
8752

In sequence In sequence

  Error:       8992      8985       8978              8887      8880      8873           8852

PENN STATE

Rensselaer Cognitive Science

Subtracting by 7s:  error +893

ACT-R Workshop 2006

If 1,000s and 100s column values are 8 and 9, and then transposed as 9 and 8, the result

is an addition of 893.

This error also occurred when the 100s column value is 1 and a carry-over is required;

subjects mistakenly reported 9 instead of 0.

0.35893

PercentFrequencyValue

Misremembering and
Transposing 100s and 1,000s

  Subtraction problems causing addition by 893 error

Frequency

missed:               [2]

8983      8976

-    7       -    7
8976      8969

8962

-    7
8955

8101

-    7
8094

In sequence

  Error:             9876      9869                 9855            8994

PENN STATE

Rensselaer Cognitive Science
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Subtracting by 7s:  errors -17 and +3

ACT-R Workshop 2006

When the value in the 10s column is mistakenly decremented by 1, after a correct subtraction

of the 1s column, the result is subtracting by 17 instead of 7.

If the 10s column is mistakenly incremented by 1, after a correct subtraction of the 1s column,

the result is an addition of 3. +3 error: 10 out of 12 problems

involved a carry-over from 10s

column. This could mean the

decrement of the carry is

forgotten.

In 3 of the 10 problems with the

carry, the forgotten carry occurs

when 9 is not decremented to 8.

  Problems causing -17 error
Frequency

missed:      [2]

9039      8948      8787

-     7      -    7      -     7

9032      8941      8780

  Error:    9022      8931      8770

0.8123

0.57-17

PercentFrequencyValue

Misremembering 10s

8157      7996      7674

-    7       -    7      -     7

8150      7989      7667

  Error:    8140      7979      7657

  Some problems causing +3 error

9046      8969      8934      8913      8871

-    7       -    7      -     7      -     7      -     7

9039      8962      8927      8906      8864

  Error:    9049      8972      8937      8916      8874

8864      8773      8094      7940     7891

-    7       -    7      -     7      -     7     -     7

8857      8766      8087      7933      7884

  Error:    8867      8776      8097      7943      7894

-17 error:  Only 2 of the 7

problems involved a carry-over

from the 10s column

PENN STATE

Rensselaer Cognitive Science

Individual Differences in Subtraction Rates

ACT-R Workshop 2006

Cluster analysis conducted using Ward’s method of minimum-variance

clustering and squared Euclidean distance as the distance metric

Variables:

Subtraction by 7s, total attempts (2 sessions)

Subtraction by 7s, total errors (2 sessions)

Pre-task appraisal, sum

Post-task appraisal, sum

Self-reported stress (from Mood Assessment Scale), sum of 4 reports

Mathematics anxiety (from CMAQ), total score

Clustering identified two groups of subjects

Evidenced by individual pace plots characterizing two primary

levels of subtraction performance

PENN STATE

Rensselaer Cognitive Science
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ID Example: Group 1

ACT-R Workshop 2006
PENN STATE

Rensselaer Cognitive Science

Green dashed line - subject told

to go faster at session mid-point

Red bars - subtraction errors

Group 1 mean

Total attempts     130.8

Total errors             9.7

Appraisal

    Pre-task               9.4

    Post-task           13.2

Self-report stress    8.1

CMAQ math anx.     9.8

Instrument ranges

Task appraisal    min   5    max  25

(25=very stressful, cannot cope,

demanding task, threatening,

poor performance)

Self-rep stress    min  4   max  28

(28=very much stressed)

CMAQ                    min   6   max   30

(30=math anxious)

ID Example: Group 2

ACT-R Workshop 2006
PENN STATE

Rensselaer Cognitive Science

 

Green dashed line - subject told

to go faster at session mid-point

Red bars - subtraction errors

Instrument ranges

Task appraisal    min   5    max  25

(25=very stressful, cannot cope,

demanding task, threatening,

poor performance)

Self-rep stress    min  4   max  28

(28=very much stressed)

CMAQ                    min   6   max  30

(30=math anxious)

Group 2 mean

Total attempts       83.5

Total errors            21.5

Appraisal

    Pre-task              11.3

    Post-task            16.3

Self-report stress    9.5

CMAQ math anx.    14.8
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ACT-R Workshop 2006
PENN STATE

ACT-R 6.0 Model

Non-negative subtraction facts

Sub-goal for borrow, initiated when subtraction fact retrieval fails

Speaks answer in one of three ways - digit-by-digit, entire number, two halves

Trial time is mostly time to speak answer

No overlap of retrieval and speaking in version 1

ACT-R 6.0 features

     - Problem represented in the imaginal buffer

     - Variable slot names for current column and minuend (kept in goal buffer)

     - New declarative memory element created for each subtraction

Rensselaer Cognitive Science

PENN STATE
Conclusions

ACT-R Workshop 2006

8773
-    7
8766
-    7
8759
-    7
8752
-    7
8745
-    7
8738
-    7
8731
-    7
8724
-    7
8717
-    7
8710

Have a detailed data set of cognition (and physiology)

under stress

Pace suggests learning is important

The details suggest several and different changes to

subtraction process and mechanisms

Model is in hand, and overlays to model are also in

hand

The overlays do not appear to support these changes,

but formal comparisons can start shortly

Rensselaer Cognitive Science
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Modeling Emotion in ACT-R 
 

Robert L. West (robert_west@carleton.ca) 
Institute of Cognitive Science, Department of Psychology Carleton University 

Ottawa, Ontario, Canada, K1S 5B6 
 

Terrence C. Stewart (terry@ccmlab.ca) 
Institute of Cognitive Science, Carleton University 

Ottawa, Ontario, Canada, K1S 5B6 
 

Bruno Emond (bruno_emond@uqah.uquebec.ca) 
Institute for Information technology 

National Research Council Canada, Ottawa, Canada 
 
 

In this ongoing project we are exploring how to represent emotion in ACT-R. However, rather than starting by modeling a 
specific experimental finding, our approach has been to first create emotional structures in ACT-R such that it can 
qualitatively model a wide variety of emotional effects. The goal is to create a single emotional system that can then be tested 
by modeling the many diverse experimental results related to emotion, without changing the way emotion is represented in 
ACT-R. To create these structures we used buffers and production system modules that run in parallel with the ACT-R 
procedural module. The production systems we used were identical to the ACT-R procedural production system except for 
parameter values. This approach is consistent with viewing ACT-R as a general framework for understanding the modular 
nature of the mind (Stewart & West, 2006). The first issue we faced was that emotions are often triggered by bottom up 
attention to an object in the environment. To deal with this we created a visual production system that scans the environment 
whenever top down commands are not being issued by the procedural module. We also created an emotional production 
system to represent the activity of the amygdala in terms of identifying threat or reward. Consistent with neurological 
findings, the emotional production system fires based on the contents of the visual buffer and has a faster firing time than 
procedural productions. The emotion module exerts influence on the procedural module in two ways, (1) by placing chunks 
representing emotional states into an emotion buffer that the procedural module has access to, and (2) by spreading activation 
into the declarative memory system, thus influencing the production module retrieval results (similar to Stocco & Fum, 
2005). Likewise the procedural module can influence the emotional module by altering what is in the visual buffer, the goal 
buffer and the imaginal buffer. 

References 
Stewart, T.C. and West, R. L. (2006) Deconstructing ACT-R. Seventh International Conference on Cognitive Modeling. 

Trieste 
Stocco, A., & Fum, D., (2005). From emotion to memory: An ACT-R view on the Somatic Marker Hypothesis. Twelfth ACT-

R Workshop, Trieste, July 15-17, 2005. 
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A Theory of Visual Salience 
Computation in ACT-R

Overview

Visual salience and search issues and extant approaches

A rational analysis approach

Base-level salience

Spatial constraints

Value constraints

Limitations and future work

Demo (if time) 
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Identify the BLUE letter

3
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Salience and Search

4

Fundamental problem: where to look next

Issues (partial list)

• Bottom-up salience

• Preference for feature values (e.g., look for blue things)

• Spatial preferences
✦ Including very complex ones

• Dynamic displays
✦ Onsets

✦ Movement

• Relationship to eye movements

Extant Approaches/Models

So, there’s good news and there’s bad news

This problem (or parts of it) is an extremely 
popular one, so why re-invent the wheel?

Examples (also a partial list):

• Triesman

• Wolfe

• Itti & Koch

• Deco & co.

• Rosenholtz

• Duncan & Humphreys

• Pomplun

5

• ACT-R

• Cave

• Logan

• Nakayama & co.

• Chelazzi

• Humphreys & Müller

• Desimone

Steal only from the best...

But who’s the best, and why?

• Current ACT-R not it, as it doesn’t handle bottom-up salience, 
nor does it ever err on conjunctive searches, etc.

Approaches vary on a great many dimensions

• General focus, central data, computational properties, degree 
of neural inspiration, and many more

• How to reconcile/synthesize all this?

Identify common principles, find unifying theoretical basis

6
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Rational Analysis

The great missing question in all these models: why do 
these models work the way that they do?

• Because they can fit some interesting data (e.g., Wolfe)

• Because they believe it maps to the neuroscience (e.g., Deco) 

Rational analysis approach: What’s the problem that the 
visual system solves by being salience-sensitive?

• A resource allocation/limited bandwidth problem

What’s the limited resource?

7

Rational Analysis

Have only one set of eyeballs

Severe acuity limitations over most of the visual field

• Therefore, move them around to sample from a probabilistic 
environment

Want to maximize the amount of information which gets 
through the system per unit time

• In a context-sensitive way

• Give priority to high-information items

Something sort of like our old buddy

8

Ai = Bi + wjSji + ε∑

Also, ACT-R Considerations

Meet the needs of ACT-R modelers and be consistent with 
structure of the overall architecture

Many ACT-R models look around rather a lot, in worlds 
where the visual scene changes regularly

This means computational complexity has to be low

• Can’t spend all the model’s time computing salience
✦ Rules out the more elaborate neural and dynamical models

Complex scenes and cases of strong knowledge about 
where to look when

Handling scenes with relatively well-defined objects 
relative to background helps simplify the problem

9

ACT-R Workshop proceedings 2006 141



Base-level Salience

Want to give priority to items which carry most information

What’s the index of information carried in an alternative?

• Get this from the Hick-Hyman law

• Consider a display with 5 blue items, 4 green items, and 1 red 
item
✦ The red item carries the most information because it is the least 

likely (like being told “it’s sunny” here in Pittsburgh)

10

H (blue) = log2
1
0.5

= 1

H (green) = log2
1
0.4

= 1.32

H (red) = log2
1
0.1

= 3.32

H (v) = log2
1
p(v)

Complications

Visual objects have multiple attributes which support 
salience (color, shape, size, etc.)

• Fine, just iterate through the attributes and add

Computing p(v) for continuous attributes (e.g., size)

• One option is to simply discretize and count frequencies (and 
numerous models do something like this, e.g. Wolfe)
✦ Puts a lot of load on the modeler to specify how categories are 

defined

• Current alternative (inspired by Rosenholtz)
✦ Compute absolute z-scores for attribute values

✦ Transform to probabilities through normal distribution

‣ For example, z of 1.96 yields probability of .05

11

Base-level Salience

One more issue: certain attributes seem to carry more 
weight than others

• For example, color generates more effective pop-out than 
shape

• Weight each attribute in the summation
✦ Determining weight values would fall under “research issues”

✦ Sum of weights constrained to be 1

12

Terms

• k iterates across the non-nil attributes of object i 

• Gamma is weighting factor for attribute j 

• pi(vk) is probability of value on attribute k for object i 

Bi = log2
1

pi (vk )k=1

# attr (i )

∑ γ k
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Spatial Constraints

When a +visual-location> request is issued, various 
spatial constraints are allowed

• See earlier talk on doing this better

But how do such constraints figure into visual guidance?

For “absolute” constraints (e.g., screen-x > 50) this can be 
fairly straightforward

• Identify the items which meet all such constraints

• Count ‘em, and use that to compute p(v)

• If the constraints identify few items, then they get a big
boost; small boost if many meet constraints

13

Relational Spatial Constraints

“Relational” constraints (e.g., “highest,” “nearest”) are less 
clear

Current approach

• Among objects which meet local constraints, count objects 
which also satisfy relational constraints

• Use that frequency to compute another p(v) and count bits

• Note this “resolves” the order ambiguity problem

• Doesn’t currently use new spatial specification system

Other approaches should be explored

14

Value Constraints

+visual-location> requests can also specify constraints 
on attribute values, such as “color: blue”

There are multiple options here as well

Took a simple approach

• Again, go back to an old friend

15

wjSji∑
• But how to set Sji?

• Again, be simple

✦ If valuejk = valueik, then Sji = Smax 

✦ Smax = 1, but this is settable

Again, evaluating other approaches is important

• Hook function available allow alternatives
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Current Equation

Noise is logistic, settable

Base-levels updated when scene changes

• That is, on every proc-display call

Context parts updated on +visual-location> request

+visual-location> request returns location with highest 
salience if above threshold

• Must match on specification of :attended as well

• Threshold is settable as well

16

Li = log2
1

pi (vk )

k=1

# attr (i )

∑ γ k + log2
1

pi (vs )

+ wjSji∑ + ε

Limitations and Future Work

Details still to be worked out (e.g., attribute weighting) 

Need a better model of the retina

• Acuity limitations

• Insensitive to certain attributes as eccentricity increases
✦ For example, very limited color vision outside of fovea

Need tighter integration with EMMA

Proximity/clutter effects

• Nothing in the information content suggests this should be a 
factor (I think)

• This is probably the biology “showing through”

Effects of onsets and other changes

17

Demo

18
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