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Hierarchically-Based Perceptual Grouping in ACT-R

Bradley J. Best (bbest@maad.com)
4949 Pearl East Circle, Suite 300
Boulder, CO 80301 USA

Glenn Gunzelmann (glenn.gunzelmann@mesa.afme.af.mil)
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6030 South Keng Street
Mesa, AZ 85212 USA

Introduction

When people encode visual information from the
environment, they automatically organize the
information to create a coherent image. This involves
determining which areas go together to make objects, as
well as determining what sets of objects go together 1o
form groups. In ACT-R, the first of these processes is
controlled by the creation of visual features to represent
obiects. The second process, however, has been
essentially absent from the architecture.

In complex, irregular environments, such processes

are not possible. We have developed applications of

ACT-R to the Traveling Salesman Problem (TSP), as
well as a 3D orientation task (Figures 1 and 2). In the
TSP, the goal of the task is to produce the shortest
possible route starting and ending with the same point
that visits each point only once. In the 3D orientation
task, the goal of the task is to identify ones location
along the perimeter of the top-down view given a first
person, egocentric view. There is evidence that people
perform these tasks by organizing the objects into
groups (Gunzelmann & Andersan, 2004, in prass; Best,
2005).
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Figure 1: A Traveling Salesperson Problem Prior to
Solution.

Figure 2: Sample orientation trial. Where is the viewer?

To faithfully model human performance in these
tasks, we require the capability in ACT-R to recognize
groups of objects in the display. To achieve this, we
have implemented a hierarchical grouping algorithm
that provides functionality and flexibility in this
process. Many candidate algorithms for human
grouping behavior exist. Compton and Togan (1593)
developed a model that grouped points based on an
exponential function of the distance between points
Graham, Joshi, and Pizlo {2000) developed a grouping
model based on a pyramidal clustering atgorithm while
Pizlo (2005) described an evolution of this model that
depended on a grouping algorithm based on the
Minimax algorithm. Each of these algorithms require 4
threshold to be set for determining the groups that arise
from the grouping process. However, human grouping
behavior is likely to be much more interactive than
these algorithms allow. We have chosen to implement
an algorithm based on a hierarchical clustering method,
specifically to produce groups consistent with existing
approaches, but with the flexibility for central cognition
to interact with the grouping process rather than
through an all-or-none scheme.

Figures 3 illustrates the representation used by a
hierarchical clustering method. This method produces a
tree structure which allows groups to be determined at
various levels of aggregation. A horizontal cut across
the tree will produce a set of groups where the level of
grouping is consistent for the all of the groups (e, it
imposes a default spatial frequency grouping criteria).
However, it is also possible for an interactive process to
choose different levels of aggregation across different
sections of the tree (e.g, to select groups of a certain
size) Thus, this representation is capable of producing



groups consistent with other methods, but also of
supporting the interaction of cognition with the
grouping process.

Figure 3: Hierarchical Clustering (in two dimensions).

Groups in ACT-R

To allow ACT-R to “see” the groups identified by the
algorithm, they are instantiated in ACT-R as items in
the icon, which can be attended and encoded. The
location of the group is identified as the center of mass
of the individual objects that comprise it. In the visuai
icon, the value slot is used to hold a group identifier.
We use the same convention for the objects in the group
to facilitate group-oriented visual search.

When a group is attended, a visual-object of type
group is created. This chunk includes the group 1D, and
aiso has a slot for the number of objects in the group.
There are sure to be limits to the ability to perceive this
directly (i.e., subitizing), but so far we are dealing with
relatively small groups (<5 objects), making this a
reasonable assumption.

The appropriate level of the hierarchy on which to
base group definitions is an open research question.
We have chosen, as a first effort in this direction, to
create an initial grouping by selecting the groups
corresponding to a spatial frequency threshold
determined dynamically from the density of points in
the display. Spatial frequency is represented here 23 a
parameter ranging from 0 to 1, where this frequency
parameter represents the quotient of the dispersion (i.e,
summed distances of these points from the mean of
their group) of points within the group to the dispersion
of points of the overall display. Thus, groups
consisting of one point, which have no within-group
dispersion, produce a spatial frequency of ), while the
group comtaining all of the points in the display
produces a spatial frequency of 1. This relationship is
given by the following formula:

Scaled spatial frequency =
within group dispersion / overall display dispersion

The result of this calculation can be used as a

threshold for determining a consistent level of grouping
across displays with different densities. This automnatic

adjustment of grouping to the density of display objects
addresses the problem with alternative schemes which
might produce very different size groups in dispiays
with different densities (at the extreme producing one
group for the whole display if points are tightly
clustered relative to the chosen threshold)

There are a number of issues still to be resolved for
this mechanism, inciuding the selection of an
appropriate level of the spatial frequency measure on
which to base group definitions, and an empirical
demonstration of the utility of grouping that
automatically scales with density: There is also a need
to resolve other issues, like whether objects of different
types can be included in the same group and how to
handie dynamic displays These issues will be resolved
as research issues demand and resources allow.
However, the main contribution here, a grouping
process that gives modelers a mechanism to leverage in
their research, is already providing leverage in
supporting modeling in spatial domains where grouping
behavior is an essential aspect of human performance
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Pre-Attentive Visual Search
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Overview of Presentation

A Impacts

~ Improved understanding of visual search

~ Initial formalized theory of visual salience

= Motivation for furthering previous research
- Triesman, Wolfe, Zelinsky and Findlay

Task, model and data comparison

» Formalization

> [mplementation

~ Results

Conclusions and future work
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and Pre-Attentive Distinctiveness

Important for understanding aspects

of human-computer, human-object interactions
Large impact on safety critical scenarios

>~ Air traffic control

» Automotive and aircraft control

Increasing dependence on graphical interfaces in
e-commerce, as well as everyday life.

Cognitive theories of visual search and salience
still remain slightly stochastic and could benefit
from developed formalizations.

3 TIRDS

and Pre-Attentive Distinctiveness

Cognitive psychological studies
> Examples: Triesman, Wolfe, and Zelinsky
3 Physiological studies

» Examples: Mishkin, Livingston, Findlay and
Gilchrist

M Human Factors
» Examples: Wickens

] Cognitive Science
> Examples: Kieras, Byrne, Hornof and Salvucci

¥ TGS

Use basic visual search task paradigms
> Top Down or Bottom Up
= Conjunctive or Non-Conjunctive
= Confirmation or Denial

Create a model and formalization that _
can account for known trends
(Zelinsky; Triesman; and Wolfe)

Our Approach ACT-R+PO

Extend the base of ACT-R’s currently
instantiated perceptual motor buffers

The following formula offers a very simplistic
theory of pre-attentive visual salience

Pop(Stim) =1

f (Stimcolor) X f (.Stimfcature)

f(Total-Stim)?

§
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YES. Kguwn

1000 -

Assess .
Knowledge

Find Matching
Fealures

Features
Found?

Na, Known

\ No, Unknown

Testing the Formalization

- Yeg. Unknown

Target
Knowh

No
¥
Grab an unused |
slimulus a3
Targal

Yes

wovel Stimudi
Availahle?

= Tnitial results are encouraging.

-4 - Zelinsky Pos.
Parallel
--@--Zelinsky Pos.
Serial
--@--Zelinsky Neg.
Parallei
- Zelinsky Neg.
Serlal

—z- ACT-R POS.
parallel

23— ACT-R Pos.
Serial

—7— ACT-R Neg.

parailel
e ACT-R Ned.

| Serial 1
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Lessons from Initial Implementation
of Pre-Attentive Distinctiveness

= Need inclusion of more basic
features (motion, size, etc.)

= Need alternative formalizations

Other models or theories of pre-
attentive search will need the
same testing paradigm with more
complex visual field
~ Top Down or Bottom Up

» Conjunctive or Non-Conjunctive
» Confirmation or Denial

] TS

Summary of Results

m Our model and formalized theory
succeeds in:
. Simulating the pop out effect in visual search

-~ Simulating differences between bottom up
versus top down conjunctive search

-~ Simulating differences between bottom up
versus top down parallel search

»~ Simulating differences between confirmatory
versus denial searches

Our theory suggests a graded “pop-out”

offect. This is in line with Wolfe’s theory

of efficient searches.
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Future Work

Eye tracking studies

> Use richer data sets to develop more complete
theories

Continue to develop a more complete
formalization of pre-attentive visual
search

= Extending our formula to include more basic
features (e.g. size, linear angle)

> More data comparisons
> Test and compare alternative formalizations

LRI/ 1
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A production systemn for the serial recall of
object-Jocations in graphical layout structures

Carsten Winkelholz (winkelholz@fzan.de)
Research Establishment for Applied Science (FGAN),
Research Institute for Communication, Information Processing and Ergonomics
Neuenahrer Strasse 20, 53343 Wachtberg, GERMANY -

Christopher Schiicl {c.schlick@iaw.rwth-aachen.de)
Institute of Industrial Engineering and Ergonomics, RWTH Aachen University of Technology
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Abstract

This paper presents a production systemm within the ACT-R
theory of cognition for the serial recall of object-locations in a
graphical layout structure Concepts of aoise and the encoding
of object-locations in local allocentric reference systems have
been integrated into the visual module for this purpose The
intrinsic reference axis of the local reference systems
automatically result from the previously attended objects The
production system describes the process of encoding end
rehearsal of object-locations at the stape of the presentation as
well at the answer-stage. The model encodes environmental
features of the object-locations by cbject-to-object spatial
relations. The production system reproduces the main effects
in an experiment which was carried out with 30 subjects

Introduction

Ehret (2002) and Anderson et al. (2004) describe production
systems that reproduce learning curves for the location of
information on a display. In these examples the underlying
mechanism for learning locations is the same as for the
learning of facts. After some practice the location of specific
objects like menu buttons can be retrieved without a time
consuming random visual search and encoding of labels. In
ACT-R the location of a visual object is represented in
absolute screen coordinates. Furthermore there is no noise
integrated into the visual module. Therefore the location of
an object is learned independent of its position on the screen
and its position within an object-configuration. But there is
evidence that the kind of how objects are displayed has
implications on object-location memory. One experiment of
Travanti & Lind (2001) investigated object location
memory in hierarchical information structures across
different instances of 2D and 3D perspective displays. The
results of their tests show, that the 3D display improves
performance in the spatial memory task they designed. But
beside the perspective view also the structure of the object-
configuration was different in the 2D and the 3D display.
Cockburn (2004) repeated the experiments where he
displayed the object-configuration of the 3D display in 2D.
He found, that if displayed in 2> the 3D object
configuration improved performance on object-location
memaory. In both studies the memory task was to associate
alphanumerical letters to the object-locations. Therefore

Cockburn suspected that the vertical orientation of Travanti
& Lind's 2D display made the formation of effective letier
mnemenics more difficult than the horizontal 3D layout,
because words and word combinations normally run
horizontally left to right. By analyzing these studies we
came to the conclusion that one major facter had not been
considered - the factor of the object-to-object spatial
refations (the structure of the graphical layout respectively).
Therefore we performed own experiments in which the
structure  of the object-configuration  were  varied
Furthermore, to avoid subjects to create letter mnemeonics in
our experiments the task was to memorize sequences of
highlighted objects (Winkelholz et ab. 2004). The objent-
configurations investigated are shown in figure 4a. In each
encoding retrieval triaf, the subjest was presented one
structure. After an acoustical signal the computer started to
highlight objects of one randomly created sequence. Only
one object of the sequence was highlighted at once. The
sequences were five (4 structures) and six (8 and C
structures) items long. The end of a sequence was indicated
by a second acoustical signal. Each object of a sequence was
highiighted for 2 seconds. Subjects were instructed to repeat
the highlighted objects in correct order, by clicking them
with the mouse. As a measure of performance the number of
correct repeated sequences was chosen. The displayed
dependencies of the overall performance on the object-
configurations (figure 4b) show two things. First, that a
horizontal orientation of a structure improves the
performance in the memorizing task compared to a vertical
orientation {4; compared to A;). Second, performance
increases the more distinct object-to-object relations are
within a structure E.g. in the matrix structures B, and B, the
ohject-to-object relations covers the whole plane, whereas in
the linear structure B; object-to-object relations are only in
one dimension. Since there is no difference in the
performance between structure B; and B, this effect can not
result from spatial vicinity. As well suggests the effect in
the performance between C,; and £, that noisy object-to-
object relations are needed to model this effect. While
object-locations are represented in absolute screen-
coordinates this effect can not be modeled on the level of
production rules within ACT-R and some extensions to the



visual module are needed. One promising approach in this
direction was suggested by Wang etal. {2002) and Johnson
et al. (2002) who extended ACT-R to automatically encode
object-to-object relations  between the previously and
currently attended objecis Based on this approach we
extended the visual module not only to encode the spatial
relation of previously and currently attended object, but also
to use the two previously attended objects to form a local
reference axis according to which the location of the current
attended object is encoded Furthermore, we integrated a
noise model into the visual module, extended the
mechanism of visual indexing and integrated some kind of
competitive chunking mechanism in the equation for the
activation.

Visual Module Extensions/Restrictions

Reference systems

The location of an object can oniy be identified within a
frame of reference. In experimental psychology it is well
accepted to divide the frames of references into two
categaries; An egoCEniric reference system, which specifies
the location of an object with respect to the abserver and an
environmental  (allocentric) reference  system, which
specifies the location of an object with respect to elements
and features of the environment As mentioned above the
visual module of ACT-R encodes object-locations in the
reference-system of the screen, which is equivalent creating
all spatial object reiations to one edge of the screen.
However, according to Mou & MceNamara {2002) humans

also use yeference systems concerning the intrinsic axis of

the object configuration. E.g. two salient objects create an
axis that is used to specify the lacation of other objects, The

most natural way to integrate this into the concept of

attention of the visual module is to consider the last two
attended objects as an axis of reference. This is an extension
10 the proposal of Johnson et al (2003) considering only the
previously attended object in creating object-to-object
relations, which means that only the distance is represented
in a pure environmental reference system and the angles in
an egocentric reference system. However, creating object-
location memory chunks in this “semi-allocentric” reference
system is less effort to the visual module because it only

needs to keep track of two objects, whereas in the case of

the pure atlocentric reference system three objects are
needed. Therefore in some situations the production system
might be forced to use spatial memory chunks in the semi-
aliocentric system. We considered in the visual module all
three different reference systems, which are summarized in
Figure 1.

The introduction of object-relations based on three objects is
important for three reasons: First, it fits well with the
concept of intrinsic axis in the object configuration as
reported by Mou & McNamara (2002). Second the concept
of angles is essential to most cognitive operations in
geometric tasks, Third, it is the simplest percept for spatial

memory chunks that aliows reconstructing object locations,
also if the whole configuration is rotated

e cos(@)sin(e)

cgocentric semi-alloceniric ailocentric

Figure 1: Three different reference systems. The objects are
attended in the order (p.o.p.1.00)

Noise

The variances in recalled object-locations require the
memory chunks to be moisy. To integrate noise into the
memory chunks the first question is how ohject-iocations in
different reference systems are represented in memory
Huttenlocher et al. {1991} showed among other things, that
the distribution of recalied locations supports the
assumption that subjects imagine object-locations on a plane
relative to a center in polar coordinates. We generalized this
to use spherical coordinates in respect to an extension of the
visual module in three dimensions. This assumption has also
some interesting implications on the representation of
locations on a screert. Spherical coordinates are a system of
curvilinear coordinates that are natural for describing
positions on a sphere or spheroid. Generally £is defined to
be the azimuthal angle in the xy-plane from the x-axis, ¢ to
be the polar angle from the z-axis and r to be distance
(radius) from a point to the origin. In the case of the
allocentric reference system this means, that if the three
points p.z, poy, Po Were attended and p, has to be represented
in a local allocentric reference system, the point p.y defines
the origin, the polar axis is given by (p.,p-2). and the local
spherical y-axis points orthogonal into the screen. For the
semi-allocentric reference system, again p.; is the origin, but
the polar axis is parallel to the vertical axis of the screen and
the x-axis is paralle! to its horizonta! axis. In the case of the
egocentric reference system the viewpoint of the subject is
the origin. In the typical scenario of a user interacting with
symbols on the screen the differences in the angles and
distances between symbols represented in the egocentric
system are very smail compared to the differences if
represented in an allocentric, or semi-aljocentric reference
system. Therefore, if the same magnitude of noise is
assumed in ail referepce  systems, memory chunks
represented in the egocentric reference systern would be
exiremely more inaccurate compared to object-locations
represented in the other two reference systems and therefore
can nearly be neglected. The next question is, if 8,4 and r
should be considered as single, independent memory
chunks Because it is impossible to imagine a distance
without a direction and an angle without corresponding
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lines, it is reasonable to combine distance and anguiar as
one percept in one memory chunk. Because of this
argument, also in the case of the actual allecentric reference
system the egocentric orientation of the reference sysiem
should be stored into the memory chunk. This does not
imply that the angular or the different dimensions of one
chunk can not be separated later. In spatial reasoning ofien
two angles have to be compared. But this can be handied as
commands 1o the visual module. Then aiso timing issues can
be considered for example for the mental rotation of an
actual allocentric reference system. In principle the spatia
information of the semi-aliocentric reference system is pow
also present in the chunk of an actuzl allocentiic reference

system. This might suggest discarding memory chunks of

the semi-allocentric reference system. But as mentioned
above, creating object-location memory chunks in this semi-
allocentric reference system is less effort to the visual
module and therefore in some situations needful Finally a
spatial location is represented by D(r. g é,¢'er), where 1, 6 ¢
are the :f.pherica} coordinates as described abave, 25
indicates in which reference system r6¢ have to be
interpreted, and ¢’ is an additional attribute for the actual
allocentric reference system and holds additionally the polar
angle in the semi-allocentric reference system. The values of
the spherical coordinates in the memory chunk are
interpreted as random numbers distributed according to a
quncated logistic distribution  f{x.xs, 53, with to each
dimension corresponding standard deviations
(o(é7), 004 The scalar value in the slot of the memory
chunk indicates the maximum xp of the distribution. The

noise in the r-dimension is biased by a factor according o if

the distance to be estimated is vertically or horizontaily
oriented. Furthermore, the noise o; is refative to r As the
final noise in the r-dimension we use:

o (¢, r) = (f, +{1- 1., yeos' (¢, r (0
Every time a location is to be encoded, it is decided if the
perceived values for the location correspond to an already
existing memory chunk. The posterior  probability
Ppi=P(Dj|F,) that the location of a feature F, belongs to a
memory chunk M, and the probability Fo that no appropriate
memory chunk already exists, are given by

P(F 1 D)) v
Pp =7 - » Fo=
YT Y PIRD) Ve PIFD)
] ]

(2

The parameter V! describes the weight of a noisy
background and

P(F(r,8,8,4) D(r,.6,.9,.6.)) = (3}
[0 (@, r 0 f(8.6,,0,) /(4 PRCRTACI NN

On the other hand, if an object-location is requested based
on a memory chunk D(r.6 ¢ ¢'ex), the values are set {0
random values according to (3). After the noise has been
added to the location request, it is decided if the values are
latched on possible features in the display. Therefore, the
object-locations of all features Fi(r, 8, ¢, ¢%) in question
are calculated in the current local reference system

corresponding to the reference system in the request. The
probability P, that the location request is caught by feature
F, and the probability P, that it is not, are given similarly 1o
(2) by

p e PGIR) o (4
VLY P(x|RY VYT P FY
i |
These equations express the posterior probability

P=P(Fix) that if a noisy location x from the memory is
given the location results from the feature F;. The likelihood
probability functions P(x|f) are the truncated logistic
distribution according to if the feature £, would have been
the stimulus and are similar to (3). The process ef encoding
and reconstruction of a location into a random number in
memory is illustrated in figure 2
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Figure 2: Perception, representation and reconstruction of a
location

This noise model has two interesting properties. First,
because the truncated logistic distribution is asymmetric, the
expected report of an object-location is biased away from
the reference axis. This is the same effect as reported at
categorical boundaries. Second, for object-locations on a flat
screen the values of @ are discrete 6=(#/2,0,-72) and
encode whether the object-location in question is on the left
side, on the right side, or aligned, when facing into the
direction of the reference axis. This is consistence with the
assumption to interpret the reference axis as a categorical
boundary, where & encodes the category.

Visual Indexing

It is evident that subjects browsing a graphical layout
stracture encode environmental characteristics of object-
locations, eg if an object is located on the border of a
matrix. To encode such environmental features the cognitive
system needs to attend objects nearby. The crucial point is
that after some objects in the environment have been
attended, attention needs to return to the object in guestion.
If this return would depend on noisy spatial memory
chunks, the strategy to encode environmental features might
be highly counterproductive. At this point the cancept of
visual indexing, or FINST - FINger INSTantiation,
(Pylyshyn, 1989} is needed. Accarding to this theory the



cognitive system has “access to places in the visual ﬂ.eid at
which some visual features are located, without assuming an
explicit encoding of the location within some cocr_dinate
system, nor an encoding of the feature type”. Expenmenfs
suggest that the number of FINSTs in the visual system is
limited to the number 4 to 5. In the visual module of ACT-R
the concept of FINST is used to decide if an object has
already been atiended. Whenever an object is attended, a
FINST is created Because the number of simuitaﬁeous]_y
existing FINST is fimited, any time a new visual object is
attended the oldest FINST is removed to creaie a new
FINST for the currently attended object To imp]em.ent
environmental scan patterns, FINST need to provide
additionally to the information that an object has alreatdy
beer attended also information for accessing its location
without, or at least minimal noise. In the visual module
interface described in the next section this has been
accomplished by determining a visual index th_rough ;ln‘c
sequential position in the chain of attended locations. This
index can be used in visual module commands to return ({Fr
avoid to return) attention to a particutar location in the chain
of attended locations.

The visual module interface

Figure 3 shows the visual module interface, with _thc slots
that have been added, and the slots whose meaning have
been extended.

Pereeption: Actiom:
=visual-{ocalion> . svisualocation>
vel-e  symbol jegecentric yslr symbal

vsl-a  symbol ;eliacertric vsi-phi symbol

vs-sa  symbot semi-allocentric wst-mphi symbal
kind - [text, .ompty] vshihata symbal
ingext Lail. 1 vslrnihala symbol
index? fril, {] vshix [aachi, . hacks)
index3 [nd. {] atlended [nott. .notS.notit. notis)
index4 {nil. {]

indendd {nil. §)

Figure 3: Modified visual module interface

For each reference system one slot (vsl-e, vsl-a, vsi-sa) has
been added containing a symbolic value of a memory chunk
encoding the location in the respective reference system
(egocentric, allocentric, semi-allocentric). l"he_se symi?oilc
vatues can be used to request new locations in the visual
field. For this purpose the command-slots vsl-r, vsi-phi, vsi-
mphi, vsl-theta, and vsi-mtheta have been added. For each
dimension (r,8 @) there is a slot extracting this dimension
from the spatial memory chunk given to this slot, Thus, the
dimensions of different spatiai memory chunks can be
combined to one request. The angular dimensions can be
inverted through the slois vsl-mphi and vsh-mtheta
(9—-3-9>0?9-n:r:€+;r,¢«~+arccus(cus(¢+:r))).'fhis

approach enables the visual module to compare the fength
of two distances or to scan an imagery path backwards.
Only spatial memory chunks within the same reference
system can be combined. Possible sub-symbolic parameters
for timing and if any combination should be disabled, need

to be investigated in future work. The request for a new
location through these slots may prompt the visual module
to attend an empty location. This case is indicated by the
symbol EMPTY in the kind slot. First, we tried to
implement the environmental scan patterns only by using
these slots. But it turned out that as long as these requests
are noisy operations, it was too risky to loose the actual
object-location in guestion during an environmental scan.
The possible gain of information for an object location was
culled by this noise Therefore we introduced the slots
index{,. index3, and vsl-ix to have precise access to indexed
locations. The slots indexN indicate whether the currently
attended location has already been attended at position N
(counted backwards) in the chain of atiended locations. By
using the descriptive identifiers backN on the slot v.sl-_ix a
particular location in the chain of already attended locations
can be re-attended. The possibie descriptive identifiers on
the attended slot have been extended to notN and notiN. The
notN identifier prevents the visual-module to attend a
location that has already been attended within the last N
attended locations. The notiN identifier prevents the visual
module to attend a location that has been atlended exact at
position N in the chain of attended locations. Only with this
access to indexed locations it is possible to “weave” a
reliable network of object-to-object spatial relations.

Competitive Chunking

A subject learning object-locations in a graphical structure
becomes familiar with the structure after some time. This
means he recognizes environmental features faster and is
therefore able to link environmental features more efficient
to object-locations. The concept of familiarity within a
symbolic architecture of cognition has already baen
discussed by Schreiber-Evert & Anderson {19901, T}}ey
developed the theory of competitive chunking (CC), which
assumes that memory chunks are supported by subchunks.
For example subjects are able to learn sequences of letters
more efficient, if the sequence contains well known words
or syllables. This is because the memory chunk for the
sequence can be compressed by replacing cler}rsents of }he
sequence by references to subchunks having a high
activation and can therefore be retrieved reliably and fast
from memory. The concept of CC as described by Schreiber
& Anderson is not part of the curren version of ACT-R.
However, we suspect that such a concept is needed, to
describe the effect of becoming familiar with a
configuration of objects. One way to manage subchurks
within ACT-R. is to couple them tightly to their parent
chunks by their symbolic values in specific slots. This
method does not result in an effect considered as CC,
because it doesn't allow accessing associated subchunks by
free association. In many situations only one of possible
several subchunks associated with the parent chunk needs to
be retrieved, but by this approach the slots need to be
retrieved  consecutively. Therefore, a more promising
approach is to couple chunks only by symbolic tags they
share. This way e g an arbitrary number of environmental

o

features can be associated with one object-location, and can
be retrieved competitively. The problem is that subchunks
that have been learned in context of different parent chunks
carry the same information but differ in the tag shared with
its parent chunks. In the sense of CC they should be
supported because of their commeon patterns. To study this
effect in the learning of environmental features we extended
ACT-R’s activation equation for memory chunks by the
following term:

aoon N By
C'i mcwzzzjnlemml‘[Bk'}“M:] (5)
mel nal k& €

The index & runs through the chunks of the same kind, the
index m and » through the slots of the chunk type. The
parameter K. compares the similarity of the slot values
and can be expressed by the similarity parameters of the
partial matching term:

A, A ep Moo M
g g w-'r’[fe ™ g "¢"J>Cr
matk —

0 ,otherwise

(6

The partial matching parameter M, we interpret as the

log probability In(P(v,=v,s}) that the value in slot m of
chunk D, results from the same source as the value of slot m
of chunk D,. This is in accordance with the default choice of
My=0 If the slot values are equal. Hence K. is the
probability that both values are equal. To limit the
contributions, K is cut by a threshold ¢, So roughly
speaking the sum of the K. over the slot pairs is a measure
of how many equal siot values chunk / and k share. If only
Konix 15 used as a factor for the competitive chunking, alse
siots contribute, which values are equal over all chunks,
which means that they do not carry any information.
Therefore we introduced the factor /., that estimates how
much normalized information the knowledge of the vajue
Vw=vui in slot m of memory chunk D; contains about the
values V, in slot » of the other chunks.

HV |V, =v.)
RO | NI 7
H{¥,} 7

Lunt 15 zero if v,,; contains no information about ¥, and 1 if
V. is fully determined by the knowledge of v, If the slots
only contained clearly distinguishable symbolic values, the
entropies in (7) could be calculated by the frequencies. But
in the case of spatial memory chunks the similarities have to
be taken into account. '

[=1

EM,M.

1 E
HY) = N;’in v (8)

EM“T eM,.‘,r
H(V; l f/m' = Vm-‘) = — m—— eM"("'I In FN___.___ (9)
Moung  F A -
g ™ 1 Ze i}

In the limit of clearly distinguishable slot values the
equations (8) and (9) are identical to a formula estimating
the probabilities of the entropies for the information by the
frequencies of the slot values. Further, the contribution of

1 N

each chunk is weighted by a factor according te its basis
activation B, with a lower bound to zero for and
appreximating B, for large activations.

Due to the additional term (5) in the activation equation
virtual subchunks emerge through the clustering of attribute
values, which support their container chunks

Simulation

We used the extended visual module to model human
performance in a task for the serial recall of object locations
in graphical layout structures briefly reviewed in the
introduction. oo

Production rules

The production system we developed describes the
enceding and retrieval stage of the memorizing task. During
the encoding of the sequentially presented object-iocations
the previously highlighted objects up to the current location
are rehearsed. During the rehearsal, environmental features
of the object locations are encoded or it is checked if one to
the chject-location retrieved environmental feature matches
the environment of the current object If the environment
does not match, the reference system is restored through the
visual indexes, and a new guess is made excluding the
denjed object-location The environmental features are
encoded in competing chunks with a symbolic tag to the
corresponding  object-location and  spatial relations to
objects in its neighborhood To check an environmental
feature is time consuming, because it has to be retrieved
from memory. Therefore, the production rules for checking
or encoding the environment compete. The answer stage is
equal to the rehearsal stage, except that environmental
features are not encoded anymore and are only checked.
Overall the production system contains 142 rules. This
unexpected high number of rules results from the time
pressure set on the task. At any possible stage the model
needs to check if a new card is highlighted, which leads to a
lot of exceptions needed to be handled.

Most ACT-R parameters were left at their defaults, and
subsymbolic computation was enabled. Further, retrieval
thresheld (:rt 0.0), latency factor (:If 0.3%) and maximum
difference (:md -100). The variance dyy of the noise for the
angular dimension was set to 0 06 radians and to 5.08 for
the r-dimension. This is smaller than the standard deviation
teported by Huttenlocher et al. (1990), but in their
experiments no reference point was displayed, heace noise
might be larger because of an uncertain reference location.
The skewing factor f. in eg {1) of the noise in the 7-
dimension was chosen to be 08. The parameter for the
background noise was set to ¥=2e3 The competitive
chunking parameters were set to c.=0 7, c;=/ § and ¢ =0 8.
For all simulations and graphical structures the same
parameters and production rules were used.
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Figure 4: a) graphical layout structures used in the experiments b) overall performance, c) learning curves

Results

The results are shown in figure 4. The output of the
simulation medel adequately fits the data (R=083).
However, the simulation exhibits no leamning curve. The
competitive chunking mechanism worked as intended. The
traces of the mode} reveal that in the first trial only the
environmental feature of the first object-location gets
enough activation to be retrieved, at the last trial mostly the
envirommental features of the first four object-locations are
retrieved. But to get some kind of saturation from existing
churks in the competitive chunking equation, we let the
model first learn sequences in random object-configuration.
After this saturation the other structures seems not to be
distinet enough to change the effects in the competitive
chunking equations. The learning curves in the experimental
data are not significant, so they should not be over-
interpreted. The model underestimates the performance of
the subjects in the symmetrical tree structure A, This may
indicate that the visual system takes advantage of
symmetries in an object-configuration that are not captured
by the model yet. This could be done by more sophisticated
scan patterns or the saturation in the competitive chunking
should have been done by training the model on mere
regular structures.

Conclusions and Future Work

This paper described extensions to the visual-module of the
ACT-R/PM theory that allows developing very detailed
models for the visual working memory. The concepts were
derived from well known eifects in experimental
psychology In conclusion the modeling gave us a deep
insight into the mechanisms and bottienecks of encoding
object-locations. One challenge in modeling the memorizing
task was the limited number of FINSTs. The number of
FINST limits the complexity of environmental features that
can be encoded. This is interesting with respect to visual
working memory in three dimensions. In three dimensions
encoding of an object-location in a real allocentric Jocal
reference system needs at least three object locations to
define a reference plane. This reduces the number of free
FINST in an encoding task. This might explain why spatiai
reasoning in three dimensions is for most people more
difficult than spatial reasoning in two dimensions. In future

work we will extend the concepts described in this paper to
three dimensions, Furthermere, we currently investigate
how the occurrence of noisy scalar velues in atiributes of
memory chunks should be considered in the equation for
learning of association strength and base level jearning.
Furthermore, spatial reasoning tasks might be modeled in
future work
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Abstract

Recent research on cognitive medeling and game playing has
focused on the game of Paper, Rock, Scissors (PRS) Models
of PRS piayers have been created using both neural networks
{West & Lebiere, 2001} and ACT-R (Lebiere & West, 1999;
West, 1998). In all cases successfizl models of human play
were created.  This seems to be, in part, because of the
simplicity of the game. In Rutledge-Tayior & West (2004)
neural network models of players of a modified version of
paper, rock, scissors were tested. The network medel was
able to fit the human data, but it wag necessary to use a
genetic algorithm to adjust the reward and punishment
amount for the various game outcomes. The ACT-R model is
much more constrained than a generic neural network in
terms of how it can be adjusted. Since it uses the declarative
memory System, leaming is based on "harvesting” and
“popping.” In the present work the question of how to create
an ACT-R model where rewards of various magnitudes need
to be impiemented is investigated. This is done by exploring
some simple techniques such as the double retrieval and
harvesting of chunks, and the manipulation of the default
parameter for noise (ans) The results are compared to the
human data from Rutledge-Taylor & West (2004} in which
humans played the variant of PRS described above

Keywords: ACT-R; cognitive architectures; paper, rock,
scissors

Introduction: The neural network models

Neural network models of human paper, rock, scissors game
play have been described in Rutledge-Taylor & West
(2004), and West & Lebiere (2001). The game of paper,
rock, scissors was chosen for two reasons. It is a game
familiar to most prospective experimental participants. Due
to it’s simplicity, an analysis of how it is played is tractable.
In Rutledge-Taylor & West {2004), and West & Lebiere
{2001) the same types of neural networks were used. The
networks were perceptron-like in that they had no hidden
layer. The output layer consisted in three nodes, one for
each of the possible play options of paper, rock, and
scissors  When presented with input, the play option
associated with the output node with the greatest activation
is chosen by the network. The input layer consisted in
either one or two groups of three binary nodes, one for each
of the possible play options. Each input group represented a
move made by the model’s opponent in the past history of a

game underway. Models with three input nodes were called
lag 1 models; they received as input the last move made by
their opponent. Models with six input nodes were called lag
2 models; they received as input the last two moves made
by their opponent. For each input group, the node
corresponding to the move made would be have an
activation of one, while the other two would have
activations of zero. For example, if a lag 2 model’s
opponertt had played paper last and scissors the time before
that, the input pattern to the network would be
{(1,0,0),(0,0,1)). The network weights were integer values,
which in the case of West & Lebiere (2001) were initialized
to 0, and in the case of Rutledge-Taylor & West (2004)
were randomly initialized to -1, 0, or 1. For each model
there is an associated three by three reward matrix which
determnines how the model’s network weights should be
adjusted after an iteration of piay based on the outcome
Fach cell in the matrix corresponds to the combination of an
outcome from the model’s perspective {win, tie, loss} and
the move chosen by the model {paper, rock, scissors}. The
value in the corresponding cell is added to the network
weights that contributed to making the selection of the move
played. The two most simple reward matrices were catled
aggressive and passive. In the passive reward matrix, cells
associated with wins have values of 1, ties have values of 0,
and losses have values of ~1. The aggressive matrix is
identical, with the exception that ties have values of -1.
Thus, networks with passive reward matrices, hereafter,
referred to simply as passive networks or passive models,
treat ties as neutral events whereas the aggressive networls
categorizes both ties and losses as non-win negative events.
West & Lebiere (2001) pitied human participants against
several of the neural network models, and compared these
results to model versus model games, They found that pairs
of identical models, when pitted against one another, on
average, tied; networks that processed two lags had a
competitive advantage over networks that processed only
one; and, aggressive networks had an advantage over
passive networks. Interestingly, the extra lag and aggressive
advantages were approximately equal in magnitude
Humans participants showed a performance profile similar
to that of the aggressive lag 2 network model. On average,
the human participants had won 8.99 more games than the
aggressive lag 1 models after 300 games, and against the
passive lag 2 models had won 11.14 more games after 287
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games. Howevet, against the aggressive lag 2 model, the In Rutledge-Taylor & West (2004) a neural network - -
network had, on average, 2 8.39 win advantage after 20 model of human play was proposed. It was produced using y . N . . . . .
minutes of play. The failure of the human participants to, at a genetic algorithm. The mode] was a lag 2 network with a F ] th? Chl{ljnk.{‘?fth the g;eatzst sugj of ag’qva‘gon and‘ no;se, és Cziptllrfuze_dl l‘eammg drastically compromises the ACT-R
least, tie the aggressive lag 2 networks was attributed to a unique reward matrix: rock wins = 3, paper wins = 2 L A se;cttla ’ LISerovte\: ?t eat]i e_sre lﬁte. move 1:1; P ays & mo dels ali-?lhtles uzi (;ompete against lag 2 neural networlc
lack of motivation on the part of the human players; playing scissors wins = 0; rock tie = -1, paper tie = -1, scissors tie = and the network maxes 1t's Choice (as. escrive made 5.(t gse _mode:s .a159 pez?forme‘d poorly against the
an opponert that is difficult to beat is less fun that playing  0; and -2 for all losses This mode! produced game results above). The result of the pl‘ay is recorded (using LESP‘). aggressive lag 2 model in pilot simulations). The best ACT-
D ' . - - Were this all that the model} did, it would not learn. This is R model was the lag 2 model with a noise setting of 028
one that can be taken advantage of similar to that of the human participants. See table i, because only the recalled prediction would be rewarded, and  and optimized learning turned off Althouﬂha the wi :
. . . . . ] & : 3 n
iUtIEdge-Tay;Q; & Wes’t (2004) trnvestlg]mecltwthli t];bls: GA. ﬂodel énli;)duc::c% gotod bresul:; ;iowe;er,ti;ere 15, - - worse, regardless of whether the prediction was correct.  differences against the two opponent neural n:twcrics was
peréorlrnapces 0 : umanz .;gamst computer zfleura ne O‘; ah &s ’; Iia 1er a H oc story Oﬁ_f told about the values ;l“ y Therefore, after the network’s move is revealed, a series of  not a perfect match, this model is considered a success due
moGels in 2 S_Eghﬂ}" ifferent version of paper, rock,  the model’s rewan matnx. is concern motivated the SR productions retrieve the chunk in memory corresponding to  to the fact that only a single parameter was manipulated; alj
scissors. In this version, r?aiied Rock=2, two points are prgduct:on of an ACT-R model of human paper, rock, _ | this move (i e., the chunk triplet of last move, second to last of the other parameters were left at their default settings
awa;;)d_ed _tD ;hel Wimziel‘ n _th:{ rock d\’zT:USh 5CISS073 scissors play. move, and the networks subsequent move) This way, the {with the exception of the optimized learning parameter,
combination of play, and one point is awarded to the winner correct chunk is reinforced. which is by default on).
in the paper versus rock, and scissors versus paper cases. ACT-R models - Coming up with an ACT-R model of the Rack=2 paper,
Humans played against the aggressive lag 1 model, the  There are many different ways to build a paper, rock, - Testing the ACT-R models rock, scissors player proved to be a challenge As a starting
aggressive lag 2 model, and new model called the r ock=2  goissors game player in ACT-R. Not only are there many In West & Lebiere (2001), humans were pitted against three point, the model with a noise setting of 0 28 and optimized
?Od?i'ngel l’?ﬁi;:z.t;ﬁ Odi‘c:i'soidiﬁgf 'cxtlhto Zh;c a%greij;g parameters, affecting the manner in which ACT-R models T different neural network models, as described above. In the i;i”:“g :“T‘Edfff;vas Slt:}?d ;gm}r(lstjthe zg;gress{l;}e lag 11,
ag oael, wi € exceptian e rocK=s Ie behave, there are aiso several different architecturall i case of the human versus the aggressive lag 2 model, the ggressive lag 2, and the Rock=z modeis.  Lhe resut
matrix cell corresponding to winning with rock had a value  gigrinct ways that a model designed to play pa:)er, rociz -y results were somewhat ambignbogus. Whe%her the score  Wes@ fairly good match of the human data. Next, a model
of 2. The standard aggressive models are not explicitly  gsigeors could be built. For example, there is the distinction . difference in favour of the model was due to an inherent with the default noise setting (sgp ans 0 25) was tested.
sensitive to the game condition that winning with rock is  petween a rule based ACT-R model and an exemplar based C T skill inferiority on the part of the human participants, or due This model was a somewhat better match.
worth more that winning with either paper or scissors. The 4 ©T_R model, as described in Anderson & Matessa (1 998). B . to extraneous factors such as lack of motivation is unclear Table 3 presents a comparison of 'th'e points differences
rock=2 model was designed to be, potentially, sensitive to Ty examine every architecturally distinct ACT-R model } Therefore, the ACT-R models of human play in the standard ~ 2nd strategy ;ndlceg for human participants, and the two
this new aspect of the game. : Y o aper. rock, scissors game, were compared only to the ACT-R models designed to play the Rock=1 game. The
p 24 . would be too grand a project, so we limited ourselves to an = | — paper, ’ game, comp Y Sum SQ diff. row indicates th f th
The results of play were that, after 300 games, the human exemplar based model of game play proposed by Lebiere results of humans versus the ageressive lag 1 model and the phos . TOW Indcates the sum o the squares of the
participants were, on average, able to eamn 16.5 more points  4nd West (1999). We examined both lag 1 and lag 2 ACT- - - passive lag 2 model. For both the lag one and lag two ACT- "I”Eh erences betwe‘en the models’ scores gnd thg human data.
han th . o dels. 5.7 s than th 2 R models. ans values of 0 35, 030, 028, 0.25, and 0.13 e rating row is the sum of the points difference and
than the aggressive lag 1 models, 5.7 more points than the g models of the normal rock=1 version of paper, rock, ’ ' 2 Seely LiEes O ' double the stratecy index difference, divided by 1000 Th
aggressive lag 2 rodels, and, 256 more points than the  ciissors. and the rock=2 version of the game = were tested. Also, the effect of optimized learning was e stiaiegy A nce, divided by ‘The
rocde=2 model  Additionally, the ex d points diff , ! i game. tested.  For each combination of parameters, 100 strategy indices were weighted more heavily in determining
2 , the expected points difference  The model is embedded in LISP code. The LISP code e ’ - i
based on the rati th which the pl laved each of mo n ode. co - J simulations of 300 games each were run. The models were the rating of a model due to the fact that it’s values tended to
ased on the ratios with which the players prayed €achi @7 provides the ability to automatically reset and run the model : ; i be smaller than the points difference values.
the three possible moves was calculated  This expected ! : A reset between each simulation. The first obvious result was - |
points difference was subtracted from the actual poinis multiple tlm;s, and to log data from ;h ose runs, It s z;lso B ] that optimized fearning drastically reduced the performance hDgsplte the fairly good match of the Rock=2 models to
the means of sustaining an opponent for the ACT-R mo el. P : the human data, there w i n. i
difference to produce a measure of the human players’ 4 L,?;P implemented n%aural Egtwork model is defined in the —~ - of the ACT-R model No combination of lag and noise fact that the na?ve mrgdelislgs?tet;n t?;: : Orlczrr} efhlsvwathie
bilities to orchestrate more wins than would be the case if P value could produce an ACT-R model that came close 1o i B e ot 2
avl . , code replicating the human data. However, when optimized This, however, should not be unexpected. In West &
the humans played randomly according to the ratio by o picating - i prmiz Lebi 2001y it b d th ici
hich th do their choi F ol Thi learning was tumed off (sgp :op NIL), several good models ebiere (2001) it was observed that human participants
humans Score dgya su'afegyg index of "’%l 6 agai;st’ the &5 mentioned above the ACT-R models are exemplar based. of two models p;‘:tiii ggfsa{iz;e&axiig t(};ze?t(}?i ;;;‘:is ;?&0?255 that human
; . . < wWas more
aggressive lag 2, -5.7; and, against the rock=2 model, 19 8. T}?‘;_ means ;hath the models mfgke their Moves bashed on e =
This suggests that against the lag 1 models, the humans  Predictions do' W t;t seqt:enc’}?};s © gppcnf;lnts] rs"xovdes'; eyt.ve » i Table 2. Naive ACT-R models of rock=1 paper, rock. scissors play
were able to predict the models' moves with greater than ~ o¥perienced in We dPaS Lo ex: és ta’ ¢ uncttm e‘;; arative
chance success. However, against the lag 2 model, it was rr;ernory cc;fre_s pon ;ng to eacl s Tif ¢ pa emf Ec}h nroveg = | . Human ANS=0.28, OL=NIL ANS=0.35, OL=T
the neural network that was better able to predict the Puz ? pftt; letion. g; examéj e,};n ke- cashe of the fag } Opponent Win. Diff Win. Diff  Error Win. Diff  Error
humans’ moves. That the humans enjoyed an average net model, there are such chunks; there are nint ~— - " 53 i
points advantage was entirely due to their sensitivity to the combinations of last and next to last move, and for each Agg Lag 1 9990 12297 2.307 4337 -5.653
fact that wisning with rock was worth two points (i.., they f:omb.mattc;n Etl"xert:hare th;ele pos;;llbie ;;}red;{ct}x}ons. fc;]r ea;h e Pas. Lag 2 11 645 8.149 -3.496 -3.010 -14.655
would play so as to maximize wins using rock). iteration of play, the model recalls a chunk that matches the Sum SQ. Err. 17.548 246727
last two moves made by the LISP neural network opponent; — -
Table 3. Naive ACT-R models of rocl=2 paper. rock, 5cissors play
Table 1. Human and GA neural network model performances compared B ) Human ANS=0.28, OL=NIL ANS=0.25, OL=NIL
H GA model Di ¢ Opponent Pts. Diff. S.1 Pts. Diff. S.L Pts. Diff. 31
Somanent ___mpim[a)?ﬁ L DemE fgf’ffe o1 szsag{‘i;me“ . = | . Agg Lagl 16.500 11600 16,921 16781 11.554 14.748
Aspﬂzallg . ;5 - .;.1 - 5. 116 5 .l.{} — s. Di — .(.)97 | . Agg Lag 2 5.700 -5.700 -7.762  -5198 -4267 -1877
A:il]m:z 57 5-7 4'42 1‘09 -i 28 4‘6-1’ Rock=2 25 600 19.800 41.396 32.153 33,792 27.309
RZ:W:ZE 75‘6 1"9‘3 22‘37 ;6‘73 3 ;3 "3’02 ™ Sum SQ diff. 430.928 179689 227684 80901
‘ 2 | 23 3. L Rating 0079 0.039
..




Table 4. Savvv ACT-R models of rocle=2 paper., rock. scissors play

Human Rock Scissors Rock+Scissors
Opponent Pts. Diff. 5.1 Pts. Diff. S.I. Pts. Diff. S.L Pis. Diff. 3.5
Agg Lagl 16 .50 1160 37.70 40.64 409 19.14 26 24 21 .63
Ape Lagl 570 -5.70 11.88 1536 -16.40 -1 38 7.52 2.23
Rogl=2 2560 19.80 52.94 56.94 25.38 30.02 38.45 29.07
Sum 8Q diff 123522 266624 64245 180 08 26335 249.54
Rating 6.57 100 076

valuable than winning with paper or scissors, and explicitly
tried to maximize rock wins. This is apparent from the fact
that human participants were able to achieve, on average, a
positive points difference against the aggressive lag 2
model, despite the negative strategy index. Thus, an ACT-R
model sensitive to the Rock=2 game parameters was
designed

Just as there are many different ways to build a paper,
rock, scissors player in ACT-R, there are various options for
how to “build-in” knowledge that winning with rock is
worth more than winning with either paper, or scissors. The
option that was chosen for this experiment was to double
harvest chunks associated with particular plays by the
model's opponent. Three variations were tested. First, rock
plays received extra attention.  That is, when the neural
network played something other than rock, the relevant
chunle was retrieved and harvested once, just as is the case
with the Rocle=] models. In the case of rock, this retrieval
process occurs twice.  The rational is that human
participants might be merely paying more attention to when
their opponents play rock. Technically, the effect is that the
ACT-R model will be more likely to predict that the neural
network opponent will play rock, and respond with paper.
This will cause the ACT-R model to play paper more
frequently, which will indirectly have the effect that the
neural network will be more likely to play scissors, which is
desirable for the ACT-R model. This is because by playing
scissors more frequently, there is a greater likelihood that
ACT-R will benefit by piaying rock. Obviously, the
dynamics of the interplay between the players is very
complex In fact, West & Lebiere (2001) argue that when
two neural network players are pitted against one ancther,
they form a chaotic dynamic system. Second, we tested
models which gave extra attention to scissors. And last, we
tried a model that gave extra attention to both rock and
scissors plays by it's opponent.

In testing the ACT-R models in the Rock=2 game,
optimized learning was turned off, and a noise setting of
{1 25 was used.

The Results

Of the three ACT-R meodels, each paying extra attention to
different subset of opponent moves, none matched the
human data perfectly. However, the model paying extra
attention to opponent plays of both rock and scissors
produced a good qualitative fit to the human data. Figure 1

depicts a comparison of the points difference achieved by
both the human participants and the Rock and Scissors
ACT-R model versus each of the three neural network
models.  Table 4 summarizes the comparisons of the
models’ performances against the three neural network
opponents and that of human experimental participants.
Although the “scissors” model matched the strategy index
values best, it’s failure to beat the aggressive lag 2 neural
network is the principie reason for disqualifying it as an
adequate model of human play.

Figure 1. Rock and Scissors model of Rock=2 PRS

Points Difference

Aggressive lag 1 Aggressive fag 2 Rock=2 lag 1

Ii:l Human BlRock+Scissors l

Conclusions

The results of human experimentation from West & Lebiere
(2001) and Rutledge-Tayior & West (2004) were replicated
with varying degrees of success. Good models of the
human performance in the Rock=1 game were produced,
without tinkering with the available parameters controlling
the manner in which ACT-R behaves. However, in the case
of Rock=2 game, the naive ACT-R model was unable to
take advantage of the fact that winning with rock was worth
more than winning with either paper or scissors. Of thres
models designed to pay extra attention to certain oppenent
moves, the model] that attended to both rock and scissors
plays matched the human data well. Therefore, the process
of retrieving chunks twice is a viable option for increasing
the activation of chunks more than would be achieved by
the normal “popping” and “harvesting” process. Intuitively
there seems to be a need for this.

)
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Navigation in Degree-of-
Interest Trees

Raluca Budil (budiu@parc.com)
Peter Pirolii  {prot@parc com)
Palo Alto Research Cenlar

ACT-R Workshop. 2005. Trieste. flaly pare

Hierarchical Displays

Many collections of information are
organized hierarchically

Hierarchical Displays

Many coliections of
information are i
organized :
hierarchically iy
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Hierarchical Displays
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Marny collections
of information are
organized
hierarchically

Good Visualization Requirements

1. Space in nodes to dispiay information
2. Retationship between node and context
3. Quick search for a node
4. Fits into a bounded region

iCard & Maticn 20023
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Degree of Interest {DOI) trees
DOl tree experiment and results
Tentative ACT-R Model
Problems

Tentative solutions




DOl Trees

Which porlion of a tree
should it be displayed?

A combined function of:
- importance of & node,
~ distance o the user focus
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Degree of Interest (DOI) Trees
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DOl Experiment

Task:
Given a hierarchical information structure,
find a given node in the structure.

Examples:
Find a banana.
Find the play "Romeo and Juliet”

Ret by J Hednorand M Floctunad |

The Browsers

nattg

[

Windowea Exploraf -ike

Task Difficulty

How fikely a node is to be on its aclual path
~ High scen! lasks {easy)
Calegories - Things - Notural - Vegalabio = Frids Tropical 2 Batang

+ Low scent tasks (hard)

Cetogarios + Pacple = Specific Puople =+ Orgonizptions = Govermoatal
-3 Uniled Stafos -3 Lagisialive Branch = Ubmiy of Cangross

A differen! raiing experiment
was conducted io assess the
scant of the task

Tree Spread per Browser

Dot Explorer

—— Wiglted notos
Find the bonans

L

! |

¥

Ty

Tree Spread per Task

Find the Chovy Corvelle

Comprrmy # Thaey P Aaificsl + Tingla
S umancal o Mechom 3 Yeiwad P
CWE S AmuEa o Ganaa Horeey By
wrirond # Cavare

Experimental Results

« No difference in RT for the fwo browsers

» Larger "spread” in the DOI browser

— More nodes seen in the DOI browser

— Fewer revisitations per node in the 801

—Wondered farther away from the soiution path
in the DO! browser

Low scent task involved lower RTs, morer -

nodes visited, farther away from the

solution

Overview

<D0 tress

< DO free expenment and resulls
« Tentative ACT-R Model

+ Probiems

» Tentative solutions

ACT-R Navigates DOl Trees
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Model Components




Biobs = groups of items close together {a ta Logan's CODE
hd

tecryl

Rightmcst
; blob

The righimest unattended blob is aliended first

Semantic Component

Within a biob:
Attend to all nodes in the biob
For each node evaluate it for relevance to
the goal
gelect the node that has the best
“evaluation” function
Click on that node

‘Thig akgorihm i oplimal witkin thal biob (A shauid find tha bost lam if the
pvatualion function is correct} 2

ftem Evaiuatio_n__

i - el
- . Mechoanr, A

- I Tt

The Hem In the gosl is assoclated to gl the nades
Sij = "semantic similarity” ((5LSA value between the

two words) =

Information Scent and Activation
Spreading
. Traditionally, information scent has been

expressed as production uitlity (Pirciii
20063)

We now atternpt to go back to more
natural ACT-R representations (strength of
associations, partial maiching)

item Evaluation

- Aflempt to retrieve each item in the biob
« If retrieval is successiut. then mark the tem as &

possible candidate
(This step wili prune oul all candidatas with Jow similodly to the
\nrget iem)

. When no more itams within the biob:

refrieve the candidate with the highes! similarity
(i &., with highest activation value}

+ Click on thal candidale

b

Y

i)

4

Feedback to Visual Component

- All the nodes in a bicb are attended one
by one

» However, if the candidate with the highest
similarity is not in the current blob, that
candidate will be selected and attended
next (if it is still on screen)

Problem

» This model cannot find the soiution to
some of the problems in a reasonable
amount of time

+ Reasons:

- Fea;}!e do not necessarily attend the
rightmost blob

- simifarity-based evaluation funclion may not™ —
be right

Evaluation Function

©oqiel Mt i
N loereesit H

-} TG TET AT

Vo compared GLEALSA saleetions tor the firsl {Jr.
thiwa kevel in the oo with haman ratlngs: :
Ho rank carrnlation!

Changes to the Evaluation
Function

Perhaps evaluation is not simiarity based,
but categorization-based

Is banana more a fruit than a nut or a
vegetable?

The Case of Lobster

DOl Hrowser Explarmr Browsix




The Case of Lobster
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SHHRHITE

i i z wiliy category-nased selastiorn
Simanly and visual display irterfare wiih category

Future Work

+ Bui SA-based category server that can
grl\'lgev:r?'liro what! degree is a banana a fruit ?

Worinal oo sparsel

i i e
. 2 blob selection algorithm to ma
g\]r?gtgrﬁégls and 1o select sparse blobs {use a

plob activation function)

» t a ulllity-based mechanism that
lin;g‘rgénse&hen %otgmp attending nodes within a

biob

Summary

isualization technique

« DOl trees are a wsuahzahqn :
that offers access to more information per
time unit -

» Simitarity and categoriza‘uon boi_h play a
role in semantic processing of visual
dispiays

- We need more sophisticated tools to do
visual search in ACT-R
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Spatial orientation in ACT-R: Architectural insights and extensions

Glenn Gunzelmann (glennngunzelmann@mesa.afmc,af.mil)
Air Force Research Lakoratory
6030 South Kent Street
Mesa, AZ 85212 USA

Spatial Orientation

This paper describes an ACT-R model that performs the
spatial orientation task illustrated in Figure 1. The
model has access to two views of a space, an egocentric
visual scene and an allocentric map. It must identify the
location of the viewer on the map based on the content
of the visual scene. Responses are made by clicking on
the dark green ring around the outside of the map The
model makes realistic predictions about the response
times and errors of several pilot participants. We
currently are collecting eye tracking data for eventual
comparison with the model’s predictions

Figure 1: Sample Trial Where is the viewer?

Instance-based Learning

The model’s behavior is guided by instance-based
learning (IBL). At various points in the solution
process, the model must decide whether the current
estimated response is “good enough” or whether further
reﬁnement/infonnation~gathering should be depe. To
make this decision, the model retrieves a chunk from
declarative memory that encodes the results from a past
experience. If the chunk represents a previous error,
more refinement is done to produce a better estimate.
When a previous correct response is retrieved, the
response is made. Noise and similarities between
chunks impact these retrievals and make the mode]
fallible.

Individual Differences In the model, instances stored
in memory have a slot indicating whether it was a
correct or an incorrect response. The retrieval requests
can specify this value, and the similarity between the
chunks representing the two slot values in memory can
be varied as well. Together, these two features specify
the response bias/criteria for the model. If correct and
incorrect are highly dissimilar and the retrieval request

is for a previous correct response, the model approaches
the task with the philosophy: ‘If this were ever a good
enough approximation, then it ig good enough now.* In
contrast, if the retrieval request is biased toward
retrieving an incorrect instance fram memory, the
model’s philosophy is: ‘If this approximation was ever
not good enough, then it is not good enough now ’ By
varying the similarity between the two values
intermediate degrees of bias can be obtained,

With this mechanism, overall accuracy can vary from
around 35% in a model focused on retrieving a correct
instance to 95% in a model focused on retrieving an
incorrect instance. This covers the range of
performance observed so far in the human data (58.1%
to 85.1%). This suggests that individual differences in
human performance on this task may be a function of
response bias or tendencies, and Hlustrates how ACT-R
can be used to capture these effects using IBL.

Perceptual Grouping and Visual Search

In addition to the instance-based learning mechanism,
the model incorporates modifications to the vision
module that enhance its functionality. Perceptual
grouping has been added to allow the model to see
clusters of objects on the screen. This allows ACT-R to
use a strategy that is more in line with how participants
report doing the task, The perceptual  grouping
algorithm is applied when pm-proc-display is called,
producing a set of groups, which are then treated like
any other item in the visual icon by the architecture.
The value slot is tagged with an identifier both in the
group and in the objects in the group. This allows for
efficient search among group members. The algorithm,
itself, is hierarchically based. Additional work is stil]
needed on issues such as defining the appropriate level
of the hierarchy for grouping.

In addition to the perceptual grouping mechanism,
the model introduces enhancements to the visual search
options that allow ACT-R to search along vectors,
rather than just according fo horizontal and vertical
constraints. Additional slots have been added to the
visual-location chunk for bearing, range, and reference.
Visual search can be constrained by the bearing and
distance from either the current location of fixation or
another visual location, specified in the reference slot
These additional options add significant flexibility to
visual search that is conducted refative to a given visual
location on the screen.
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L g Time Interval Estimation: Internal Clock or Attentional Mechanism?

Niels Taatgen, Hedderik van Rijn and John Anderson
s Carnegie Mellon University and University of Groningen

The human ability to accurately estimate time intervals in the order of 0 to 20 seconds
J— can be explained by two seemingly incommpatible theories: the internal clock and the
attentional counter theory The attention counter theory postulates that attention is
needed to advance a counter during the estimation or reproduction of an interval. The
., internal clock model has no role for attention and can estimate intervals with need for
intervention. Although empirical and neurophysiological data seem to favor the
internal clock theory, there are nevertheless effects of attention that it cannot explain.
L Our ACT-R temporal module is modeled after the internal clock theory, but because it -

- is a component of ACT-R the attentional expects of time estimation can be explained
— - in quite a different way than the attentional counter theory proposes.

) The support for this assertion consists of two experiments with respective models.
- The first experiment uses a dual-task paradigm in which time estimation has to be
- - done together with an choice-reaction time task. This experiment was used to
construct a model based on the temporal module. To further test this paradigm we
designed a second experiment in which we combined estimating time with two other
_ . task, making it a triple-task paradigm. Before we actually did the experiment we
constructed a mode! and made a prediction {(announced on the ACT-R mailing list).

The predictions turned out to be fairly accurate with a fit that is indisputably zero-
— - parameter,
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- Individual differences in multi tasking

a

Lisette Mol (lisettemol@cmu.edu), Niels Taatgen, John Anderson
- ] - Psychology Department, Carnegie Mellon University

_ : An experiment consisting of two tasks was carried out in an attempt to measure
] structural individual differences. That is to say individual differences that vary over
1 ' participants rather than over trials

The first task was a task in which targets could appear either in a window on the left
i - or in a window on the right of the screen. Participants could earn points by responding
- to targets on the left by pressing the space bar and to targets on the right by clicking
on them with the mouse. Targets could appear simultaneously on the left and on the - -
E - right. In addition, participants could earn a higher profit for targets on the left, by
estimating a time interval, of which they did not know the duration. They could click
a button to see whether a new interval of high profit had begun Periods of high and
low profit were alternating and of even length. If the button was clicked during a high
~ profit period, participants would receive the higher profit for responding to targets on
the left until the end of that period.

you hate that part of the modeling)

m Support for Clock mode!
(barely touched upon here}

Conclusions
m Predicting = not fitting (which is great if

' Model predictions vs. Data
@ Support for Minimal Control Principle

I The second task was the Abstract Decision Making task (ADM), developed by Joslyn
and Hunt. In this task participants have to sort objects into boxes, which can only take
objects with certain features. Participants cannot see the objects or the boxes. They
can pose questions on the features of the objects using a text interface. The features of
the boxes need to be remembered During the task, objects become available once
every 30 seconds in the practice trials and once every 15 seconds in the test trials It is
possible that a message that a new object has become available pops up while the
participant is still working on the previous object. The return key has to be pressed in
by order to continue after such a message.

A correlation of 0.73 was found between the average time it took a participant to

L ca assign an object to a box in the ADM, and the percentage of high profit periods in
which the participant did not click the button to try to estimate the time interval in the
first task. This suggests that there are indeed structural individual differences

N underlying performance on these tasks. To investigate what these differences consist
of, ACT-R models of both tasks were developed. Our hypothesis is that the
coordination of top down deliberate reasoning and bottom up processing of visual

e stimuli can account for most of these differences. )

For the timing task a model was made before the experiment was conducted, to
. predict the data. This model was based on a simpier version of the task in a previous
' experiment. The predictions of this model matched the data quite well. To test our
above hypothesis, a second version of the model was created, in which visual stimuli
could not interrupt the process of testing for a high profit period, once it had been
initialized. In this version top down processing had priority over bottom up processing
- whereas in the initial model this was the other way around. In the first mode! visual
stimuli were given priority. Using the first model for the participants that did not learn
to estimate the interval and the second mode! for participants who did, the models
- matched the data even better.

Failing to attend the time at all

Model predictions vs. Data

T

-,




ADM task three different models were made. One in whif:h the strategy was
of a decision tree in advance. This allowed for very efficient questioning of
cts and corresponds to a top down strategy In a second model, which

onds to giving priority to bottom up processing, all features were asked befolre
correep + was assigned to a box. In a third model the strategy to ask for features until
an ?bjezs a single box left in which the object would fit was implemented. This
t};iz:;onds to combining top down and bottorn up processing.
C

ound that performance on the ADM of participants who were bgci at
. ating the time interval in the first task, was most often best described by the
estift” ;5 of the model which always asked for all features. Performance on the
redwtl? articipants who were good at estimating the timing interval, was most often
ADl\;:d gest by the results of one of the other two models. This is in accordance with
Ezt;yPothESis that some participants are better able to benefit from top-down

processing than others.

For the
to think
the obje

1t was

some support has been found for the hypothesis that the ability to coordinate
So far, n and bottom up processing can account for some of the structural individual
op dowces that we found in participants who performed the two tasks described
dlfferenm future work, we intend to do follow up experiments and to perform more
abor. 1 analyses on the experimental data and the outcomes of our models. For a
statistic? periment on the ADM, we intend to make predictions on participants’

ex .. .
f‘:”?:é;ggsed on our ACT-R models and to monitor their behavior in a more detailed
stra

way-
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Dual-task Timing Task (DTT)

A piedin

Abstract Decision Making

Task (ADM)

* Objects need to be sorted info bins.

* Objects became available at a regular pace.

- Objects have three features: color, size, shape.
» Score depends on the specificity of a box.

« Fealures of items can be asked, properties of baxes

have to be remembered.
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« Score

» Estimation of time interval

periods
- Percentage No-response (timing)

+ Percentage Dual-tasking during high profit
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Conclusion

{n both the ADM task and the Dual-task

timing task it seems that (slightly) more
top-down control improves performance.

Preliminary classification
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How to integrate time-duration estimation in ACT-R

Jeronimo Dzaack, Nele Pape, Sandro Leuchter, Leon Urbas
Research Group User Modeling in Dynamic Human-Machine-Systems
University of Technology of Berlin
Jebensstr. 1, J2-2
10623 Berlin, Germany
+49 30 314 7200

ABSTRACT

From literature a theory of retrospective time-duration estimation is derived. According to the
theory a timer-module for the cognitive architecture is invented and described. In an empirical
setting the implementation of the theory is proven. The results are discussed against the

background of the assumptions.

INTRODUCTION

The estimation of time-duration in dynamic human-
machine-gystems is an essential reguirement for system
control {see Schulze-Kissing et al. 2004). Time-duration
estimations help us to stay tuned to the sequential
gecurrence  of events in a complex environment.
Retrospective time-duration estimation is an important
aspect in developing systems concerning human-machine

interaction. In some situations only the processing of

temporal information enables persons in complex human-
machine systems for example to differentiate between a
feedback delay caused by a system innate latency, and an
expanded feedback delay that is caused by abnormal system
performance. If the duration of a feedback delay exceeds
the expected normal latency duration, an operator suspects
a malfunction {Schulze- Kissing, et al, 2003) Time-
duration can be estimated either prospectively from some
event to some point in the futare, or retrospectively form
some point backward into the past.

Only a few studies are concerned with retrospective time-
duration estimation and even less empirical studies can be
found. Because of this lack of investigations of time-
duration estimation in cognitive architectures, especially in
ACT-R, our research group concentrate on retrospective
time-duration estimation. We developed an ACT-R timer-
module that implements a theory of human time-duration
estimation distorted by information processing. In an
experimental study the empirical validity of the new timer
module of ACT-R and its mapping to real settings is tested.

THEORETICAL BACKGROUND

Regarding the literature several theoretical approaches of

time-duration estimation can be found. It seems that the
relative length of prospective and retrospective judgments

may depend on several variables and that different
processes are involved

According to Omstein retrospective duration judgments
increases as a function of the amount of stored and retrieved
information, or storage size allocated (Ornstein, 1969},

Hicks and co-workers (Hicks, Miller, & Kinsboume, 1976)
proposed a model where subjective time-duration
estimation is assumed to be increased with subject’s
attention to time. This attention results in the storage of
subjective temporal units In the retrospective paradigm,
subjective temporal units are presumably not stored.

In the contextual-change model proposed by Block and
Zakay (1996) retrospective time-duration estimation
depends on retrieval of contextual information which is
encoded in association with event information. The
estimated time-duration is dependent on the amount of
contextual changes stored in memory until a point of
request.

McClain (1983) conducted an experiment were subjects had
to judge a time interval either prospective or retrospective.
The subjects had to encode in a fixed iime wordlists
presented in several intervals. In 120 seconds the subjects
had either to encode 15, 30 or 45 words in three different
information-processing  conditions. In  contrast to the
prospective cendition subjects — under refrospective
condition — the estimated time-duration did not differ so
much depending on the information-processing condition
(i.e. encoding the words in 2 deep or shallow level of
cognition). In the retrospective task the time-duration
estimation clearly increased with the amount of words
encoded.



For our ACT-R timer-module we used the data pre‘semed
by McClain to calculate the three factors }ised in Fhe
equation to compute the retrospective time-duration

estimation.

In the data presented we added the average active time over
the trials (i.e, the time subjects are cgnce:med 'w1th
encoding each word). The remaining time is seen as }dlﬂw
time. We set up an equation concerning the estimated time-
duration by the sublects {see equation 1). Based o t?ns
equation we extracted two independent factors describing
the non-idle component as well the idle component of the
estimated time-duration.

idle Time x a + nonldleTime x b = estimatedTime

Equation 1: Equation to calcoiate facfors for retrospective
time-duration estimation (a, b: independent factors)

As gathered from the data a is weighted }{X,X and b is
weighted XXX. These values are used in the timer-module
described later

THE ACT-R TIMER-MODULE ) S
At the current state retrospective time-duration est§mat{on is
the focus of our work. We developed a retrospective timer-
module for ACT-R, that can be integrated in the consisting
architecture of the current specification {(Anderson 1998').
The timer-module attaches to the principal of blzlff(;‘!'s in
ACT-R. We used the buffer-syntax to specify the mte'rface
for the application of the timer-module. Thus the timer-
module can be added to and used like a new buffer.

As the timer-module is made available as a buffer in J"\.CT-
R the interface is obliged to be simple and supplies a
comfortable way to be assessed. Three statements are
important to work with the timer-moduie (see table 1).

RHS: Set anew time:-
+timer> reference
isa timer-reference
mode retro
id =id
RHS: Send a guery 1o the
+timers timer-buffer
isa timer-reference
id =id
Esisr.uan Query the estimated
isa  timer-reference | yime ora timerfailure
id  =id .
duration =duration
stimers
isa cimer-fallure
RHS: Delete n limer—{eferencc
~Limers {only for technical
isa  timer-reference | reasons)
mode retro
id =id

Table 1: Commands for the use of the timer-buffer in ACT-R

083

The timer-module aliows to set reference-points according
to reference-points in an episodic memory store (at if::ast the
first has to be set) The time between two different
reference-point, as well the actual state of the ‘model an_d a
reference point can be enquired The gsnmated time
between these points is calculated by assessing an amount
of time to every contextual change that i§ stox_‘ed in this
period (e, productions fired). Thc SpE?GlﬂCﬁthﬁ of ti?e
temporal weights is based on empirical ew.dence reported in
Hiterature as shown above For tecimnf:ﬂl reasons, as
debugging and programming, it is possible to delete a
timer-reference.

THE THEORY OF THE TIMER-MODULE )

In the foliowing we describe the theory of the retrospective
time-duration estimation module. In an approximation it
can be compared to an episodic memory  store New
episodic reference points can be set to §p1}£ up the passed
time. In the retrospective approach this is rmade by the
explicit setting of distinctive reference-poxnt§ according to
reality (i.e, distinctive actions will be hold in memory as
landmarks and help to navigate through the ;Jassed time).
The time between these reference-points is estimated by the
timer-module algorithm (see equation 2).

(A+-2}%T~)XAU><TT ATITT < 0,9

Cx AUxTIT .else

DE =

Equation 2: Duration estimation aigor"ithm (DE: dura.tion
estimation. ALl action umit, AT: active time, TT: fotal time,
A,B,C: variables based on empiric evidence)

In the timer-module contextual changes are seen as the
smallest action units {AU) to calculate the time. In our
current timer-module we distinguish betwefm non-idle and
idle productions that are weighted' by different fac;'torsn
Every production is regarded as non-idie as long there is no
addition of “idle-" to the produciion-name,'ldle productions
are regarded as non/less cognitive productions Thus every
non-idle production is seen as a contextual ch‘ange In
further development it could be possible to combine more
productions to an action gnit.

Every time a production fires (firing-hook-fn) the ove_ra!l
active time of the simulation is measured (the elapseq time
between the last production and the curent product:on:x is
measured (active time — AT)) and divided by the total time
from start of the simulation to the current time (TT). If the
ratio is less than 0,9 (ie., idle time is less than 10%) the
product of both (AT x TT) is multip%i.ed by a factor
composed of the sum of a bias for idle-time (A) and the

ratio of an idle-time factor (B} and the radical of the ratio of

active time and total time. This allows to integrate the ra.tio
of idle and non-idle time to the equation of the retrospective
time-duration estimation. Otherwise the product of active

1 I

I

_1_,_,.._ ....
i i

I
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time and total time is multiplied by a fix factor (C), that
means no specific influence of idie-time to the results. To
separate these two cases is necessary because the idie-time
slots do not give reliable time cues. Thus we integrated the
specifics concerned with the different weights into the
factors (i.e., independent factors of the equation)

If the measured real-time of a production fired is 3/2 times
greater than its default action-time (ie, the time a
production needs to be completed) the calculated time is
batance with an idle-factor to adapt the according idle
system waiting-time. Thus problems running a simulation
in real-time environments can be adopted.

To take into consideration the theoretical background there
arg two assumptions concerning the retrospective time-
duration estimation connected with the timer-module. First,
the more productions are fired between two reference points
(eg, there is more cognitive waik), the longer the
estimated time. This can be explained by the high cognitive
work and the connected amount of contextual changes that
help to reproduce the passed time while doing a compiex
cognitive-demanding task. In contrary, the less productions
are fired between two reference points, the shorter the time
is estimated (e.g., less cognitive work)

Waiting time or idle-time is estimated in another way than
cognitive-demanding time. It is estimated shorter than non-
idle time, because the cognitive workload is low.

THE ACT-R MODEL

The next step is to verify the timer-module. Therefore we
invented an experimental setting and integrated the timer-
module in a running ACT-R model. Two analysis have to
be made: the timer-module does not affect the performance
of the ACT-R model, because retrospective time-duration
estimation has no effect on the performance of humans.
And the retrospective estimated time-durations have to
correlate with estimations measured in reality.

Picture 1: D2-Drive version A

The used ACT-R mode} for both analysis is a model
invented by the research group Modeling of User Behavior
in Dynamic Systems (MoDyS) of the Berlin University of

Technology, that displays the interaction of humans with a
test. The engaged D2-Drive test refers to the D2 test of
attention and concentration by Brinckenkamp (2001) The
overall aim is to identify a pattern as correct according to
Brinckenkamp’s specification. Three versions of the D2-
Drive were developed (Kiefer, Dzaack, Urbas 2003),
whereas we used the version A. This version refers to
{static) visual search of one specific pattern in a row (see
picture 1). The aim is to identify the middie pattern and
give the correct response (yes: is a D2-pattern, no: is not a
D2-pattern} Pressing the response-button {ves or no)
changes the represented pattern in the window and the
process starts again.

The altered ACT-R model runs the D2-D¥ve test for a
given time and changes to an idle mode to emulate non/less
demanding cognitive work. The runming-time was 60
seconds with different non-idle and idle times (non-
idte/idle: 30/30, 45/15 and 35/5). The subjects of the
experiment had to do the same as can be seen later

Results

The ACT-R model with and without the integrated timer-
module does not show any differences in performing the
task. This was measured by the given responses of
identifying the pattern (i e, while doing the non-idle task).
Thus we conclude that the timer-module does not affect the
copnitive workload of the mode|.

Running the ACT-R model with the timer-module shows
the prospective estimation of time-duration as we anticipate
based on literature: the longer the nen-idle-time of the trial
the longer should be the estimated time by the ACT-R
model (i.e, the greater the amount of contextual changes
the longer the estimated time-duration). The case with 35
seconds non-idle-time shows the longest estimated time of
the model. The case with 30 seconds idle-time shows the
shortest estimated time of the model. Thus we conclude that
the timer-module is a suitable instrument for prospective
time-duration estimation that shows the effects of
prospective time-duration estimation as found and
described in literature.

EMPIRICAL EVALUATION

To show the relevance of the models behavior to human
performance we conducted an experiment. Subjects had to
fuifill a simple task in a fixed time interval (60 seconds).
The questior was whether the time Jjudgment would depend
in the same way on the amount of produced contextual
changes as the ACT-R simulation does. Thirty-one
participants {twelve female, nineteen male) took part in the

study in exchange for a donut. The sample covers students
and graduates of the Berlin University of Technology. The

participants were naive to the purpose of the experiment
and the relevance to time.
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Picture 2: Experimental design

The subjects were instructed to complete version A of the
D2-Drive test (as seen above). They were instructed to do
the task as fast and correct as possible. After a training-
phase the D2-Drive test started with a acoustic signal. After
30, 45 or 55 seconds depending on the condition of the
observed paradigm the task stopped and the subjects were
informed that data was processed and that the task had not
finished. After the total of 60 seconds (non-idle time plus
idle-time)} the next acoustic signal finished this task peried.
Subsequently the subjects were asked to reproduce the
passed time between the two acoustic signals. Therefore
they should press a button and wait for the next button-
press until they thought that the same amount of time had
passed by (for all see picture 2). This way of reproducing
the estimated time-duration was user because it had been
suggested (McKay, 1977) that this measurement technique
was more sensitive than verbal expression.

Resuits

Overall the time-duration estimations in the empirical
setting are much shorter than the real time task duration of
60 seconds. The mean time-duration estimation for all
subjects is approximately 42 seconds with a standard
deviation (SD) of 21 seconds. The first condition with 30
seconds D2-Drive task and 30 seconds idle time was rated
with 2 mean time-duration estimation of 45,6 seconds (SD
22,7 seconds). The condition with 45 seconds D2-Drive and
13 seconds idle time was estimated 49,3 seconds {SD 23,7
seconds). The results show that long idle time (30 or 15
seconds) seem to lead to considerable variances of time-
duration estimation. The third condition with 35 seconds
D2-Drive and 5 seconds idle time shows similar results in
comparison to McClain (1983); estimated time-duration is
30,4 seconds (SD 9,8 seconds). The more pattern were
judged in the given time the longer was the estimation of
time-duration.

Observing the gained data from the case (55/5 seconds) we
detected a correlation (R) between the results of the D2-
Drive test (measured by the pressed buttons) and the
estimated time-duration {R=0,72). That allows us to assume
a connection between the processed information and the
estimated time (i.e, contextual changes).

In the two other cases (30/30 and 45/15 seconds) no
correlation could be found. In our opinion the long idle-
time has implications on the estimation of time and is
independent of the observed effects Another explanation is
that subject could change to an cognitive-demanding
internal task (e g, occupied by problem-solving) what we
could not prevent with the experimental setting Thus we
claim to concentrate on the 55/5 seconds condition to
investigate the correctness of the timer-module of ACT-R.v

DISCUSSION (ACT-R VS. REALITY}

OUTLOCK

To further examination of the timer-module some follow-up
experiments are planed as well as the modification of the
underlying ACT-R model. And if necessary the alteration
of the timer-module As discussed a long pooied idle-time
period affects the estimation of time duration. To observe
this issue of long idle times and the concerning estimation
of time-duration we plan a first study with interleaved idle-
time during the tasl. To investigate retrospective time-
duration estimation and explicit seiting of reference-points
by humans we plan to integrate the version B of the D2-
Drive in our experimental setting as a second study. In this
study subjects have to fulfill five patterns arranged in a row
and afier completing this task the window changes to
another view with new pattern — and the task starts again
{Kiefer, Dzaack, Urbas 2005). We conclude this window-
change as a distinctive event that aliows us to assume to be
a reference-point.

Although we think about changes concerning the
introduced timer-module. The smallest entity for the
estimation of time-duration in the timer-module are action
units. At the current state of the timer-module these action
units are formed through the productions fired. An
interesting approach would be to substitute more than one
production to an action unit. That allows to combine
coherent productions to one action unit.

The next step in our reseasch group is the integration of
prospective time-duration estimation and its experimental
prove. We just started investigating this issue.

The combination of retrospective and prospective time-
duration estimation may be a promising approach. Both
should be integrated in cognitive architectures. This opens a
wide range of new applications in the field of designing
dynamic human-machine-systems and in the field of
research. We think that time-duration estimation in both
characteristics - prospective and retrogpective — gives new
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answers to questions concerned with human behavior in the
real world as well in the new virtual world,
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Is It a Boy or a Girl?
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Abstract

Grammatical gender is early learned by children acquiring a language such as Spanish, butl causes tremendous
difficulties to L2 learners [earning it with or without class-room instruction. The natural gender of referents.can be a
useful cue for choosing the correct articles given no other information as shown in previous studies with adult
English speaking L2 learners of Spanish. The present study on natural gender ratings for name picture pairs as a
nenlinguistic domain revealed comparable results. An ACT-R model was developed in order to investigate in detail
how participants come up with their ratings identifying four strategies. This mode! was also used for deducing
hypotheses for a further study which aims at collecting eye movement data. Altogether, results of both studies and
heuristics implemented in the model demonstrate that at least adult 1.2 learners apply general, net language specific
strategies for learning an unfamiliar phenomenon of a foreign language

Natural versus Grammatical Gender

Children acquire the grammatical notion of gender at an early stage in development, and more
importantly, well before they have a stable concept of natural gender (Karmiloff-Smith, 1979, for
French; Pérez, 1990, for Spanish). Thus, Spanish and French children successfully use phonological
cues at a very early stage in order to allocate the correct article irrespective of language external cues,
such as the semantic category of the corresponding referent (Pérez, 1990). Results like these imply
independence of language and other cognitive modules at least as far as gender for L1 learners is
concerned. This is very much in line with the claim that gender is not a semantic phenomenon in
languages like Spanish where rivers and mountains are masculine, whereas motorcycles are feminine.

As opposed to children who acquire their mother tongue, adult L2 learners often encounter
difficulties when assigning gender to unknown nouns, especially when their L1 lacks grammatical
gender (Franceschina, 2001). In that case, several strategies might be used by the L2 learner: skipping
the article, guessing, transfer from L1 to L2, if the mother tongue has gender. In addition, natural gender
of referents is probably a strong cue that enables the learner to choose the correct article. Larrafiaga
(2005) found that English L2 learners of Spanish more often chose the correct article for nonsense nouns
when the natural gender of a pictured referent matched with the grammatical gender of the
corresponding noun than without that correlation. In addition, their answers were biased to choose the
male article more often and to prefer systematically nouns instead of pictures (See also Franceschina,
2001).

The present study investigated whether or not this is a specific strategy for language learning.
Instead of having to allocate the articles, participants rated the natural gender of name picture pairs for
unknown characters of the Hairy Potter story. In addition, an ACT-R model was written to model results
of both studies.

Method

Participants 179 participants (49% male, M = 24 years, SE = 5 4 years) parlicipated in this web experiment (www tu-

chemnitz de/project/elearning/Potter_engl) All of them were familiar with main characters of the Harry Potter story but not with its
secondary characters

Material and Procedure Combinations of 24 non frequent male (m_) and female names (/) and 72 pictures of male (_m), female {_7) and
non identifiable secondary characters (_#) of the Harry Potier story were chosen for this study These characters are mentioned within the
first five books of the story less than five times on the whole and are not mentioned by name in the films For non identifiable pictures,



characters are either animals or they are shown from an unfavorable perspective. As fillers 18 female and male main characters were
presented as converging name picture pairs {male - male and female - female combinations) In addition to the names and pictures
condition (42 items per participant), 2 controf conditions with names only {42 items) or pictures only {80 items) were presented. For the
names and pictures condition altogether three lists were canstructed for balancing male, non identifiable and female pictures per name

between participants. Ratings and answering times weré collected as dependent variables.
The study was conducted via internet. Participants filled in a questionnaire on general information first and rated

afterwards the presented characters. They were instructed to demonstrate their familiarity with the magic world of Harry
Potter in the prompt by rating characters presented by name and picture as male or female respectively The complete study

took abott 10 minutes.

Resulis

As expected, participants rated converging name picture pairs more often as male (mm) or female (/)
respectively than not converging pairs (mf and fin; see Table 1), F (2, 44) = 7.19, p < .001, ' =.75.In
addition, participants preferred systematically the *male" answer resulting in more "male” ratings for
non identifiable pictures combined with male names () than "female" ratings for non identifiable
pictures combined with fernale names (/) (see Table 1). For not converging pairs, pictorial information
was systematically favored over verbal information. This effect was stronger for pictured male
characters than for pictured female counterparts (see Table 1).

For identifying participants strategies for rating the natural gender of characters, answers and
answering times were compared to both control conditions. Answering times for rating names only {(My
= 1827 ms, SEy= 421 ms) were shorter than answering times for rating names and pictures (Mys= 2523
ms, SEns = 726 ms) (see Figure 1), F (3, 172)=24.29, p < .001, nz = 298, indicating that participants
integrated both sources of information into their rating. Answers did not differ for names in the names
only condition (My_= 91, Skp_= 05; My = 22, SE¢ = 27) and in the names and pictures condition
(M, = 84, SEq_= .29, My = .27, 5E; = 35), F(3,172)=0.16, 7 = .00.

3500

answering times inms

2000 -]

1580

1 1 T T
M et P2 1P3
Condition

and female names {dotted ling) for names only (N) and names and pictures conditions (NP)

Figure 1 Answering times for male (line)
(NP1, NP2, NP3} were presented for counterbalancing male, non identifiable and female pictures

Altogether three names and pictures lists
per name between participants.

In contrast to the comparison between names only and names and pictures conditions, answering
times for rating pictures only (Ms= 3451 ms, SEg= 2111 ms) were comparable to the names and
pictures condition, F{3,221)=1.86,p= 14, n2 = .03, with a very small trend toward shorter times for
the name picture pairs. For that condition, names probably acted as a trigger for processing pictures.
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Figure 2. Rates of "male” answers for male (circle), non identifiable

three lists of the names and pictures conditions (NP1 NP2, NP3) (square) and female (triangle) pictures for the pictures onfy (P) and for

The Model
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Decision strategies By principle, participants could process either no, one or both sources of
information. In addition, they could either know the gender of no, one or both stimuli. According to the
above, four strategies are possible: guessing involving ignoring both sources of information, preferring
names as seen for the Spanish study, preferring pictures as seen for the Potter study, or integrating both
sources of information as seen for both studies. For integrating both sources of information, four cases
are possible: pairs with two unknown stimuli resulting in guessing, pairs with one unknown stimulus
resulting in preferring the known stimulus, converging pairs, and not converging pairs resulting in
conflict resolution.

For guessing, all combinations would result in male or female 1atings by chance. This strategy was
not very likely to happen and was, therefore, restricted to cases of unknown names and non identifiable
pictures in the model.

For preferring pictures and for preferring names, the model processed the preferred source of
information first and the other source thereafter, only if the preferred one was unknown or not
identifiable. In that case, the model preferred the previously not preferred source of information. If both
stimuli were unknown to the model, it guessed the gender. According to this strategy, answering times
and "rate of "male" answers should be equal for known converging and known not converging pairs. For
unknown or non identifiable stimuli, answering times are predicted to increase and rates of "male"
answer should be equal to the other preferring strategy.

For integrating both sources of information, performance and answering times should be highest
compared to guessing and preferring either names or pictures. Within that strategy performance should
be highest and answering times should be lowest for known converging pairs. Performance and
answering times should fall slightly below in pairs with unknown or non identifiable stimuli. Lowest
performance and highest answering times should be observed for not converging pairs because of
conflict resolution.

For the first version of the model, we began with a strong preference of the integrating strategy as
indicated by results of both studies. Preferring names or pictures were used only for pairs with one
unknown or non identifizble stimulus. Guessing was used only for two unknown or non identifiable
stimuli within one name picture pair. Because of presentation of letters and numbers instead of names
and pictures, we focused on the performance instead of answering times. As to enable guessing, sub
symbolic processing was enabled. No other parameters were adapted to the task.

Results Table I shows "male" rates for all six conditions for participants in the Potter study and
for the model. For about 10 runs of the experiment, the model overestimates participants’ performance
for converging pairs slightly and underestimates their performance for the other conditions slightly.
However, the correlation between models' and participants' performance is relatively high, r = 987.

Table 1: Natural gender ratings (percentzge of "male” ratings) by participants and the corresponding ACT-R model for male
(m_) and female names (f ) combined with male {_m), female {_ /) and non identifiable (_n) pictures

mm mn fm mf fn ff
Participants 098 085 083 033 034 065
Model 1.00 075 070 028 023 000

In contrast to matching performance in respect to given answers, the model is far from producing

answering times that are comparable to the participants at present, r =- 23.
Nevertheless, the actual version of the model has allowed us to draw conclusions and hypothesize
on participants' answering behavior in a preliminary study that is been conducted at present with the aim

of collecting eye movement data:
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. Wef e?(pect that participants_ demonstrate either one of the preferring strategies or the integrating
o Z gflg]); rScir most of performed trials. Actual strategy should be identifiable using the converging pairs
Participants identified as guessing should be extremely seldom within this study. They should
demonstrgte: comp_arable low performance and short processing times for all trials “ Yo
.Pam‘crpants identified as using the preferring pictures strategy are expected .to process pictur
only ignoring names for all known and identifiable pictures. For these cases answering timespsh Ifc? b
equal and cqmparellbiy Jow. Answers should be given according to pictures e’xciusiveiy Process'ou f )
not converging pairs should not differ from converging pairs as long as pictures are knﬂown It ismg °
predicted f(.)r' non identifiable pictures these participants can either guess the actual gender ;)f character.
or, alternatively, process the name presented instead and estimate the gender according to the cue z'ers
by the names. According to the actual version of the model, preferring names for non identifiab] S
pictures are more likely than guessing. )
I?a'r“ticipapts identified as preferring names should demonstrate answering behavior correspondi
to par.tlc:;?ants identified as preferring pictures with processing names only and processin ictlfre H‘?g
guessing instead for unknown names only. This strategy is expected to occur more seldorf t}lj o
preﬁrring. Rictures for the actually conducted Potter study, -

' Participants identified as infegrating both sources of information should process both names and
pictures for almost all pairs. For unknown or non identifiable stimuli, processing times should beS -
enhanced compa}red to converging pairs. At the same time, performance is likely lower for these pai
For not converging pairs, performance is expected to be poorer than with converging pairs Bothp IFS"
processing and answering times will probably improve for these pairs as compared to con\;er ing pair.
Eye mov;ment pattern should shed light on how in detail these conflicts are resolved snepas

This study is being conducted with about 10 participants and one list of picture‘name pairs

Discussion

Comparable to Larrafiaga’s (2005) results on grammatical gender, participants in the present study used
both verbal and pictorial sources of information for judging the natural gender of persons. In addi{i N
they c%ernfmstrated a strong preference for one of these sources when judging non~convergin o
combinations, opting primarily for "male". These results support the claim that adult L2 Ieariers resort
to lar;guag&u}uspeciﬁc strategies for language production in the absence of relevant 1inéuistic cues

A corresponding ACT-R mode] fitted data out of the Potter study in respect to given answers, but " ti
respect to answering times. This missing fit can be explained primary by the fact that the task’ invc)r}m c!In
processing letters and numbers instead of names and pictures. In addition. the implemented conﬂictve
resolution process does not through satisfactory results yet. A plausible e;{pianation is that participant
check firstly whether conflicting gender is caused by encoding or retrieval errors. As a"resu;l)t sti:*g:;l S
must be reread and processed once again, what would explain the higher answering times Afternat' I 1
they may rate the relevance of presented stimuli in order to decide which information to c; t for Fiill‘;iﬁl %
strat.egy management is very restrictive in the present version. For getting the model closeIr)‘ to | "
part:c:pam:s' answering behavior, an increase of the probability for preferring either names or picture
sf‘wuld be implemented. Finally, for the actual version it is not possible to reduce processin tfmes fi S
plcture:_? by names processed before. Nevertheless, implemented strategies allow hypothesef on >
answering behavior in a actually conducted study collecting eye-move?nent data.

' .To sum up, the present version of our model allowed us to discover more in detail which strateei
pamclpaz'}ts use for rating natural gender of characters presented by name and picture and for ratj e
grammatical gender presented by noun and picture. In addition to this, it worked as a "transl;t{ci'fng
between both domains of Spanish gender and natural gender ratings highlighting the communalities and
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differences of both domains. And finally, it functioned as a starting point for further research on the - ‘J
relationship between language and other cognition. ; )
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f Learning From Instructions
®m 1y
, G g oo e 2 : | David Huss, Niels Taatgen, and John Anderson
:::::: 7:1‘-:-::: : ; . -9:;: poﬂ:inn-qni 2 i
T ta-farthant} o 1 sTate xxanine-54 : . . - . * v
(s waragw-sosbetonsibiar-as % o ettty : S Understanding procedural learning is a continuing challenge Previous work within ACT.-
ot — ; : ot : R has produced the architecture’s current metheds of Production Rule Learning (PRL} and
W e ; T Pl“OdE:ICtI(?n Rule Compé!ation (?RC) Thmggh PRC and PRI, ACT-R has been able to account for
o e tree : | learning in tasks ranging from simple multitasking to air traffic control Yet, both PRC and PRL
- - B L wm | M rely on t.he meodeler to provide a starting state in which sufficient task knowledge resides in the
\.flﬁ.m. . : he ;‘ A _ decl.arat:ve -and procedural systems. Currently, ACT-R provides little insight into how procedures
B e ; ok e A i / are internalized from external sources such as instructions or display feedback.
T In order to address this, our research examines learning on an aviation task. The task is
autopilot navigation via the Flight Management System. We have created an accurate, computer-
- based simulation that is capable of interacting with both human and ACT-R subjects. In our
empirical study involving CMU undergraduates, we manipulated the instructions provided to our
= 1

participants. One group received theirs in a traditional list-based format while another was
provided instructions inspired by recent work within the ACT-R architecture.

The traditional list-based instructions were taken directly from the United Airlines pilots®
s training manual. The opposing condition used environmental cues to reduce the need for internal
control states and explained the results of a given action. Figure 1 provides examples of these
instructions as well as a simplified view of how they may be represented.

o marngr- it lom vt -Siomstt- 19 ke ; p . = 538 £ il a
7

[ {p mensge-pavition-find-grova-sa 1. Press the LEGS key
st vttt ampiiongua) ; 2 Enter the desited waypoint in the
fogua-Sa . - seratchpad
oy e 3 Push the 1L key
not-erqueued  actions E . 4 1f the word "discontinuity” appears on the
Trpatials Py el ]
SASEGHIRHTS  POE-EMGTY screen.
sty free follow the procedure to remove
riperials ot - discontinuitics
154 1n-ne==|={m . R 5 Verify the route en the Navigational
inipection-fn <laspection-fn i ) Dispiay
. anals f: R
";::ﬂﬂ ! tucus-en £ 8, Press EXEC
wriortion & e xeikal info-type nxy-acTion Gl
ToCstweunsLYInded- memhiary i b g TS e —!
- i a
l - * I you want to change the route and
yeu are not yet on the LEGS page,
then press the LEGS key in arder to go
™3 to the LEGS page :
i you want to modify a waypoiat, yo
I enter the waypoint to repiace i with
into the scratehpad, and then press the I
i . line key comespeading 1o the waypoint
Jith Pevrontil Tioek | Jeumency . » you want 1o modify
A Figure 1: Examples of instructions
m! - . . .
! From our study we have revealed that, not only is performance worse in the list
o . condition, but the ACT-R inspired condition demonstrates improved transference when tested on
1 i ' untrained procedures on the FMS. An ACT-R model is able to partially demonstrate this
i S behavior. If steps are forgotten, the knowledge of productions’ results allows for a process
3 3. resembling a means-ends analysis. Yet this model fails to account for the significant within-trial
T learning exhibited by our participants. This has led us to develop a second model that will engage
., in the “trial and error” learning exhibited by our subjects
Ay 2
Ty 3
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ASA Averaged :
18 ASA Conclusions
Segmentations
0
m, x4 ® Model does predict data better...
3 ™ > e _.but prediction is based on analysis of the to be
o @ predicted data. _
5 F----- r-Frf-4--1-~-F-- 0. : - .
m ™ 5 ® And, participants do consistently report using.,
5 _ ‘ : 2, “alphabetical chunks”. ,
R-square: _ i o4 .—.n L1 _
lorward: .60 ABCDEFOHIS KLMNOPQRSTUVWXYZ
backward: .B4 Alphzbetic Position

ALPHA + ASA Structure from ALPHA

e Quite simple {from an ACT-R perspective)
principle:

Association based retrieval where possible,

Strategy where necessary

ALPHA predictions ALPHA Conclusions

R-square: 45.4

Betare

155
R-square; 46.3

] 30 aerer
—— Perdicras

| :‘. — Cmand- e Reasonably good predictions (for 1982)

¢ Deterministic model

2,0

Résponss Time {saci

Tiaapinse Time {sac}

Lt el s £ led bttt 2t Al L LY
"ABCDEFGHIJHLMEDPORSTUVWRYZ
Alphabatic Pesition of Proba

ASA ASA Individual Subject

Alphabetic Search by Associations
Scharroo, Leeuwenberg, Stalmeier :
&Vos, 1994, JEPLMC. Data driven”
segmentation
e Claim:
« Model is implausible at different conceptual levels

+ Sawtooth-shaped pattern in ilahr et al's data 1s an
artefact of averaging.

= Pattern is dependent on ..:E,mm_.w\ %mﬁm_.. pattermn is even
weaker in people who learned alphabet in a different:way

—_— [ ]
UOREIDOSSY

Response Time

o Simple associations explain data better. . .
Resquare:

iorward: 40 Alphabetic Position

backward: 44




Associations m_.o..s ASA Structure + Association
% .

>Qh_<mﬂo.: from .- 7
Subvocalisation

(Ay = By + WS + WosS) > 7

Alphabetic Search
Structure + Association
g .
e Association strengths + activations determine & 1 5 a-e
= "o 4 I
position-related slope § o A - © n
E 3 - o R - P o
. . . Ly [ g S ~ B \
e Association strengths determine “implicit” chunks ® " R A WA !
8 Q - /5 r., o
o Both “direct retrieval” and “walking-through-list” S
answers possible g -
o Individual RT are predicted to increase within
. o -
chunks more than overall-slope predicts. e o e T e B e e s e
a bedaetghij kx|l maopag: s iuvwsxyz
Posltion .
n R "R TR TR P " " v v
b i A R i B A RS S

alfabal

R

: o v m...w i A 0 i By
= o =goal> m
=goal> : !
i i ~task-next " w
1sa mﬁrmwmn-ﬁmm_?:mxﬂm isa aiphabet: q
curlet =let @ oy

curlet =let @
answer nil

answer =ans I Ly

" » Performance is'driven: .. ° " &
Say answer H by activation + numberof steps:* -

alphithzte
\sequance S

+retrieval>
isa alphabet-sequence [
cur  =let {5} .

Associations from ASA Associations from ASA

W

Ay = B+ Wi, S
A<

Ai=B +M@§mm4, .Ww PRI -
t = Bk Wyso
/H Av<T
A.\.wq = .ma“ +...S\mm._m.,v >T
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Greg Trafton (NRL)
Erik Altmann (MSU)
Derek Srock {NRL)

+ Susan Trickett (GMY)

Raj Ratwani {GMLU)

Chrls Monic {GMU/Westat)
Cabhie Boehm-Davis (GMY)

eEE)

Begin Hegin Resurne
prinwry Alert Jor ceznndary Retum ta ritrary
tatk rerondary Luk ek primary ask gk

|

—~

Interraplion
Lag

\-;\H. Phenpiba

Resumytion
ay

» The interruption process is all about
interrupted and resumed goals

» Altmann & Trafton (2002) prasent a
cemputational cognitive medel In ACT-R that
deals with memaory for goals

+ Qur madel makes 3 key pradictions about
interruptions:
- Aftoer belng iaterrupted, the goai{s) of the primary
tzsk will decay (according to base-tavel equation)
- Preparing to resume a task can slow down decay
{Trafton et &l. 2003)
- Prospecilve ancoding of goads (forward-iocking)
= Retrospective rehearsal of surrent state Inlo

~ Priming of cues in the environment can facilitate
resumption




» Immedistely after an interruption, there is a
large resumption fag compared to non-

interrupted work
Lag

B e smsimasm e e o i S

Trettwn Aduian, Bmek. & Miray, 003

«+ I calculated RT between actions for the first
10 actions after each interruptions {first
actlon is resumption l2g)

1213415617 [4:8]110

421097211 2 [33[10.12314331.3] 2

3701712438012 7415121215
Average

[46]ialieliofia]1af1i]10[ 9|8

30 $aon Dkrpus Exvet

i 1
|
| |

« Acouple of years age |
showed the long tesm EE
disruption effect and a
simple mamory mode! for It.
in general, the interruption
Is very disruptive
ImmedIately after an
interruption, and then
becomes less disruptive aver
time

[T B I

Frs b VL b e

mory

+ I took seriously what John has been saying
for several years: Use zero-parameter models

My overall goal is to use a good memory
model to explair and predict the fong-term
disruptive effect

{And then build systems that reduce the
overall dissuptiveness of interruptions, but
that's & different project)

» "Therg are several differeat memory equations
for base-ievel tearning:
- Simphfied Base-level learning equation {Optimized
tearning, default in ACT-R)

« Probably used the mast in most ACT-R models

- Base-Love! Leaming Equation 4.1 (fufl version)}
+ Computationally Intensive but good

- Spacing effect equatien {Pavilk & Anderson, In press)
+ Very computationally intensive; scoounts for spacing

effact dota very well across multlple data sets

« Which one ig the best modef to explain long
term disruption?

B, = ln(irj"’):r B
Ic

Anderson and Lebicre. 1598

- B; i the activation of the chunk

- 1 Is the number of times that the chunk has
besn encountared at past lags b

» & is a free parameter set at 0.5

« 8 is typlcally absorbed in the estimates of
other parameters

o

i

—

-

IR

i

n

B, = In{ 1- d* In(T)

(i-d)

Andersen and Lebiere, 1998

» §; is the activation of the chunk

» n is the number of times that the chunk has
baen encountered in the past

» T is the total time of the life of the chunk

~dis a free parametersetat0 5

il

B
d(B_)=ce" +a
Paviik & Anderson. in press

» B; is the activation of the chunk

« n Is the number of times that the chunk has
been encountered at past lags t

n ¢ is the decay rate

» ¢ is a free parameter (decay scaie} = .217

+ a is a free parameter {decay intercept) = 177

+ | calcuiated activation of each action in the entire
task, then converted activation into predicted RT:
R'g‘::]:‘.u--lm\r:hm

- Fls a free paramater (set to 1 as default}

» All models used zero free parameters:
- d = 0.5 throughout
~ F = i throughout
- ¢ = 217 (Frum Pavilk & Andersen; Paviik communication)
- a = t7¥(Fram Pavilk & Anderson; Pavilk communication)

« Method:
- 65 participants
= 10 interruptions per session

- Primary task: complex resource allocation task
(Brock & Trafton, 1599}

- Secondary task: Batas task (ATC-lke)
= All participants are switched to secondary
task immediately: no slert and no
environmental cues availabie at resumption
» 3 Sessions {within}

» Zera parsmeter models may not be perfectly
optimized

+ Since I'm only using memaory retrieval, any
quantitative fit wili {should?} be low {no /PM
in my modei)

= We know that the Initizl resumption lag
depends on things other than just pure
actlon/recall, so the resurnption jag model
paoint is jikely to be a big underestimation




PR PPR TR e

+ Surprisingty (to me, at least) the full moded
had the best fit.

« The spacing model may have been st a
disadvantage because we don’t know about
the specific parameters putside of spacing
axperiments

« The simphfied mode! Is In between the two
quantitatively, but dees not show the steap
disruption at positions 2-4

+ Ajl three zero parameter models are quite
good, picking up both qualltative and
quantitative effects (sans resumption iag)
- {not surprising, since they are 2i from the same
family of models)
tong term disruption effect can be captured
by simple memory model, primarily use and
re-use of action chunks {as opposed to a goal-
based account we have been working on with
the immediage {resumption lag) disruption)
Net much ropm for production time, other
memory retrigvals, etc. s the fit too good
quantitatively, at least for the full medel?

« Turn optimized lzarning off 25 2 default within
ALT-R

Mow do we declde which memory model /
memory enuation to use for different tasks or
situations? The full mode! is best here, but
clearly not for traditionai spacing effect
experiments

i
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General principles of cognition?

Nick Chater
Institute for Applied Cognitive Science
Depantment of Psychology
University of Warwick

. OVERVIEW

I. Fragmentation and integration
It Case Studies

A Scale invariance

B: Probabilistic modelling

C: The simplicity principle
{il. Where nexi?

|. Fragmentation and integration

Fragmention in the cognitive
and brain sciences

are independent

of theory o . .0f experiments

Language acquisition = Focus on increasingly

Parception detslied behavicral

Memory and/or imaging

Reasoning studles of spedific
phenamena

» Extrapoiation
typically secondary

Computational architectures
are an integrative step

= Candidate » But architectures are

architectures only one type of
constraint
» Physical symbol
system hypothesls « E.g., the myrad
« ACT-R connectionist

architectures for
reading single words

» Connectionisrs
« Exemplar models

Some candidate general principles

Prineiple Maths Damains Examples Referenees
Scale- sftwinied | +Prythonkpics *Wabrr'n Lrw Chitse &, Brow 1991 Creevin
imvarianes nrll-m:lmlr vmcaoe pamre] siverea’ Law Brwn, Nmnm;r;r‘::‘
st mrmery rpowe limof forgrting | i Prvck evswr; Suwany, Brows
slrmming *pererer fiw ol patiice & Chuirr { prem). Pivch Rivvew
Fuulaw )
Frobabilisitic | *Barele *Pemiod +Drviabin virion +Chiiet, Terceunoh, Witgen, Y
el :.;m?‘ g procsing | sBuddiical Smpatics (m.uﬁzn Ikl Imrd’l‘}t’;t.“
e g +Coundibonata Cabaiird & Chaer (571 Aok
hvon| *Wanen's bela e il Ravrew, Calafoed 2 Grmer 1230,
%y llrginims The perhosdizhr smond, LT
atmrgey?
Simpliciy ~Kedmergrtery | Portequin
eomnlealty <Langurpy mopbisition sPerepnal wysnigation *Chrt [$996), Pk Areew,
sl mesaming shesmieg frven pemitio” | Gl 120023, Chd Lonpony,
eridonee Ciuw & Vainf I-er'"‘-\i
laher's parudas Copmurr Ly




Il. Case Studies

A. Scale-invariance

« In @ matshelk - yed ) . n
w THrow away [ =
“units” 4 16
s Lan you a 12
regongtnact -1
them from your
data? 1 [
5] ]
» IFnot, g 323 4 o651 152
% X

phenpmeanon is

scale-irvariant Only power laws pexe

are scale invariant

The ubiquity of scale-invariance

From scale-invariance to
psychological “laws”

= City shas » Scale-invariance as a
» Slze of firms “null hypothesis” for the Reguiority Forn Explunation
= River sizes cognitive and brain Webee's |aw Y _iHtovnsant. H indeprenden nf
» Earthyuakes stlences anits
a Digtribution of digits Sizvens' faw e B
{Benfortl's Law) . Ratin preserving: inpel-outut
s (ZIoFs » This nulf hypothesis — - e -
. x\"a%r;i frequencies (Zip! impIiEE many WEE!* an;-:r:;:;:‘rg il = w{Qyr= Ratio preacrving: memeryime
« Stock fuctsations I‘"UW“ psychelogical Powes low af gractiee | AT = RTVr* | Ratio proserving: irisls-ipec
aws. . Fittz’ $ow 7= a+blogl DT | b Non-invarians 2 for initissing
= Mandelbrot: Scale- movemet)
invariance as a primitive
Serial position in Immediate free recall
A
-3 -
it om \silatt §
(&
1285 B
(TN =
v AN i
Pim, =
. NEE

Endless rases of invariance, in perception, motor control, learning
and memary

0 H T 15 pi
Saniat Powion

Deta from Murdock, 1962; model fits using
SIMPLE {Brown, Keath & Chater)

i
N

. -

T

A

T
S S R e,

-

0o

_1

g

Bt}

Confusion in memory for serial order
(datz fits using SIMPLE)
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Memory retrievat over different time periods in
retrospective memory
l , (Maylgr, Chater & Brown, 2001, PBER)
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And prospective memory

b} Prospacive Memary
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B: Probabilistic modelling

Subjective probability Bayesian updating

w Uncertainty represented o Given evidence, £
as subjective degree of models, M
“belief”

w Miid normative a PriM|E) e
assumptions Pr{ E MPHM)

{a.g., Butch book)

= Herate, as new

. Probability catculus evidence arrives

Domains for probabilistic models of
cognition

Conditionals: Contrasting probability and logic

Inference dulditicnod Camliddote Logical Probabilistic
preaise 3 gauchirion validiey conipariim
AP Alachis Poncr # g Y PP 2 PED
BDA: Deviatof the pot-# Mg N Frsol-Ginol-P) 2
Ariecedent Pr{net-0}
AT Affirming the o P IS PR % PP
Camegurent
ST Afochs Tolles Hol- Not-f Y PrisouPinot-L) =
Priani-F)

Dol Topie Princzple Arferenipes
Rexnning Huenna anerriain reasening
in moddicd by
protalslity pal logiz
Conditianals WP e & P Canafort, Cuner & Qriger. 2000
Fedeciion ik Optiz:al dots acfestion Batafont & Lz, H9
Snflagisny Somed am 2 Prid 3720 | Choy & Qulefond, 1397
Caumbiy Reprezenting ol § Datvesian belinl ey Frael, T, Vemenbaiion, GrifTli,
iraming ntervenion m ' do™ “ﬁ:-'w"w“‘-ﬁmﬂ
eanisal opeTRli Pali:
knowled pn
Vition Senmty prosmaing ab Hosll 2 Richmndt; Wese; Volfic,
Bavexian spdsting Rampute ik
Languspr Foring Paring minp ssshatic avieg & Sahorre; ewnrmionat
grEmmu Fisgabtice
Mitor conteul Hayesiza aplims] eontrel Wudprrs

- Probabifistic predictions are graded
~ Degend on Pr{A) and Pr(Q)
~ Fit with ¢fats on argument endorsements




Varying probabilities in conditional inference
{Caksford, Chater & Grainger, 2600)
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Negations implicitly vary probabilities
(eg, FPr(Q)= 1; Pr{not-Q=.9)
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Extensions of the approach to:

x Wason's selection task
u Syliogisms

= Causal reasoning: A, Chater & Oaksford (muitiple,
inter-related condiionals; causal structure matters)

a A uniffied for understanding reasoning

s Integration with probabilistic perspective
across cognition

C: Simplicity

» Find explanation of “data” that is as simple as

possible

» An'explanation’ reconstructs the Input
» Simplicity measured in code length

» Mimicry theorem with Bayesian inference
(e.g., Chater, 1996, Pspoh Review; “deep” analysis by U &
Vitanyl, 1697)

Sirnplicity as “ideal” inductive method, when no
probabilistic model available

Mathamatics Statistics
» Deep mathematical » An ultra-general/neutral
theory: Kolrmogarov probabiilstdc model over
complexity theory all cornputable
{1 & Vitanyl, 1597} hypotheses
= Predicting using {Solomoneff, 1964)

simplicity converges on = Practical statistical

correct predictions Jmiachine learning

{Solomanoff, 1978) method: Minimum
description Jength
(Gritnwald et al, 2005)

Simplicity has broad applications

it Fevwcps Kefrrencer
A h ing that sttt | Kafila, 1933, Lormwrnberg,
1574, Anacive & Frun,
13
Taey virlow Effnitn oodig & womisikon | Blabemwes, 199 Dacdew, 1574;
Seivininm, Linghli
Comas] reasoring Fiond minimaf detic v work Wihfind
T larity Simdtackrr berwecs rrprreesticas | Cheo & Virierh, To0], Habet
meanrnl by cwie kg Chaer & Richardion, 70)
berwxen dhem
Cargestzaion Caurgerd ey Keros tn G ehonent £ Putia & Shodes, T002%; Fekimen,
e (high bl pervepnal =0
wrgaadzsiion}
Kipmory skaige Sheyrer ombes exzier 1 sy sy, | 177
Memary e Explafs Iberfircnss by chavmieme | Rackotsd foshiit i for
‘complealry 4 raciomsl ikl rekahs Eniadsie:
Todsticr fa# SIMPLE Hrvwn, Hask &
dhatiiciiroicas imabtls Cloat, 018)
o pngs I Fimd praioets thid bt explivs | Chirwialy, 1935 2 D, Fodat &
AN b Caxim; Thinet, 2004 Chaart
A Viieri, 2001
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Long tradition of simplicity in perception
{Mach, Koffka, Leeuwenberg); e g, Gestait laws

~
N
.\' .
ot
kvl
0l e
) ey
mﬂm 1]
641 6 x 2 vectors
vectors

But we focus instead on simplicity as a model of
.. language acquisiticn

» Quorgenaral grammars

» Undergeneral grammars predict thal bad seniences

predicl thal guod sentences are actually ok
ara ript akowad v Negd negative evidence——
» just wall il one wms up say & bad senlence. and get
coraciad

The logical problem of language acguisition
{e.g.. Homslein & Lighifocl. 1881; Pinker 1878)

» Wilhout negalive evidence can never eliminate overgeneral
grammars

“Mere” non-oecurrenca of sentances 15 not enough.

...bacaisse almost all acceptable sentences also naver
ooetr

Backed-up by format resulls (Gold, 1867)

s Argumnent for inhaleness?

But simplicity offers an alemalive

Specifying an "ideal” learning set-up

e Linguistic Fostlive evidence only:
environment rompuiabitily

= Measures of
learning
performance

« Statistical

s Leaming method » Simplicity

Prediction by simplicity

= Find shortest ‘program/explanation’ for
current ‘corpus’

e Predict using that program

« Strictly, use ‘weighted sum’ of explanations,
welghted by brevity

Prediction is possible (Sclomenoff, 1978)
Summed error has fnite bound

= log, 2
Y55 S K(u)
=

So prediction converges {faster than
1/ntog{n)}, for corpus size n

This Is an amazing, and fundamental, result
about the possibility of inductive inference




Overgeneralization Theorem
{Chaler & Vitanyi)

« Suppose leamer has probabilily 4, of erroneously
guessing an ungrammatical il word
z K
Z(AI) < (4
o log, 2
» Intuitive explanation:
« overgeneralization underioads probabilifies of

grammaticat sentences;
» Smiall probabilies implies longer code lengths

Absence as implicit negative

_evidence

« Overgeneral grammars predict missing sentences

= And their absence is & clue that the grammar is
wrong

This avergeneralization theoram makes this
intuition rigorous

Extensions and implications 1

= An ideal language learning can ieam. from positive
data, to
» Predict
« Make prammaticaiily judgemenits
» Produce language
« Relate form and meaning

¢ all to a high level of accuracy

» This does not imp!i( that the language leamer
converges precisely on the “true” grammar . but
arbitrarily close seemns good enough

Extensions and implications 2

» So (enough} posilive evidence can support ianguage
acquisition

» Also "scaled-down” information-investment
methodology. to assess which aspects of linguistic
structure are learnabie {Onnis, Robers & Chater. 2005)

Future guestion:
+ Mow far does simplicily predict empiricat data
» Relate lo other theories of acquisition. e g . Tomasedo.
Gulicaver

I, Where next?

Towards the re-integration of cognitive science?

« Further integration of . Othar candidate

general princlples + principles?
tving ¢l !
betweeh them . Reversibillty of
- cognitien (but
' Egi‘é?&tﬁg_ motor ireversibliity of the
erceptual production rule?)

judgement « Serlality constraints
» Models of dedsion (e.g. memory retrieval)

making (Db5} » Wide range of
« Memory retrieval— principles from ACT
distrinctiveness tradition; ideas from

meets simplicity? connactionism etc

&

o :

B

)

]

“m

Tiw

i~

it

And integrating with
computational framewaorks

» Connectionism

v Bayes nets

» Exemplar models
« ACT-R




S Comments on General Principles of
o Cognition
L 1= T John Anderson
- Department of Psychology
br | o Carnegie Mellon
B 1. Discuss the issues of general principles versus cognitive
L architectures.
N 2. Discuss two of Chater’s specific General Principles
i 3. Discuss how to integrate the msights of general principles and
1y cognitive architectures

|. Fragmentation and integration
o) e
) A single system (mind) produces all aspects of behavior. It is one mind
f that minds them all. Even if the mind has parts, modules, components,
GRS or whatever, they all mesh together to produce behavior. Any bit of
- behavior has causal tendrils that extend back through large parts of the
' total cognitive system before grounding in the environmental situation
o of some earlier times. If a theory covers only one part or component, it
- flirts with trouble from the start. It goes without saying that there are
o dissociations, independencies, impenetrabilities, and modularities.
“ These all help to break the web of each bit of behavior being shaped by
- an unlimited set of antecedents. So they are important to understand and
v help to make that theory simple enough to use. But they don’t remove
the necessity of a theory that provides the total picture and explains the
- role of the parts and why they exist (Newell, 1990; pp. 17-18).




What's wrong with
» Computational Architectures?

Architectures are no protection against specific assumptions as the
modules movement in ACT-R proves -- but the brain/mind seems

fundamentally specialized
Nonetheless the brain/mind is integrated

Chater: Architectures do not seem to lead to unique explanations --
e.g., multiple ACT-R models for Broadbent sugar factory, list
learning, task switching :

s Points to need to have principles of model acquisition

But inevitably this leads us down the road to dealing with specifics
- try understanding how children leamn to solve algebra and you
wind up having to reconstruct all of their past experiences.

What's wrong with

My experience with rational analysis: simply predicted behavior
under the assumption that is optimized to the environment
“minimal” assumptions about computational limitations

= Fall short of achieving integration and accounting for the real details
of human thought; better suited to characterizing abstractions about
human cognition than cognition itself.

= “The question for me is how can the human mind occur in the
physical universe. We now know that the world is governed by
physics. We now understand the way biology nestles comfortably
within that. The issue is how will the mind do that as well. The
answer must have the details. I got to know how the gears clank and
how the pistons go and all the rest of that detail. My question leads
me down to worry about the architecture.” (Newell -- Dec 4, 1991)

Comparing General Principles (GP)
and Cognitive Architectures (CA)

Chater and Vitanyi:

K(Complete explanation)
<K(Theory) K(GP)< K(CA) at least weakly (a.lw)

+ K(Parameters|Theory) K(Params|GP) < K(Params|CA) a.lw.
+ K(Data|Parameters, Theory)  Not Clear T -

_It is not clear because the GP approach tends to deal in abstractions that
ignore how the gears clank and how the pistons go.

Chater and Vitanyi: “every piece of data must be ‘accounted for’---even
if only be reproducing it verbatim”

Of course it s_hould not be a competition of approaches - the question is
how to combine GP and CA to get an optimal account of the data.

Serial position in immediate free recall

Praporlion Correct

T
3] 2 1‘{1 T|5 20
Serial Position

Data from Murdock, 1962; model fits using
SIMPLE (Brown, Neath & Chater)




Probabifty of Recslt
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Comparison of Models

1, Complexity of theories favors Simple
2. But ACT-R predicts
a. Rehearsal patterns during study
b. Recall order and dependency on rehearsal pattern
c¢. Recall latency
d. And every other detail

But what about

Study:

I. gamrison—GARRISON, LIEUTENANT, DIGNITARY.

3. vulture—VULTURE.. bird, there was a bird PRESENT .. VULTURE,
bird .. GARRISON.

13 lieutenant—LIEUTENANT is in the GARRISON. . and he is being attacked by~
a VULTURE that came through the window.

32. destroyer—the LIEUTENANT is an OFFICER, DESTROYER,
MERCENARY ..the LIEUTENANT is too much...he’s a DESTROYER.

Recall:
The LIEUTENANT.. lieu-ten-ant...is a MERCENARY with

SIDEBURNS. DESTROYER...OFFICER.. who's in the GARRISON...and is
being attacked by VULTURES

The logical problem of language acquisition
meets the past tense debate

m Note the past tense debate reflects a major abstraction and simplification from
1eal language acquisition

w But at least it deals with real data (well, sort of real data)
» Strategies in the ACT-R model (Taatgen & Anderson, 2002):
# Do nothing but pay communication cost

= Retrieve an example and use analogy -~ very costly but after production
compilation leads to regular rule

= Use regular rule(s)
= Retrieve answer (but must be frequent enough to be active)

w  Unlike most connectionist models it learns from a representative stream of
input (both in distribution of items and numbers of items)

@ Produces the U-shaped learning function --gradual onset of overgeneralization
and even more gradual disappearance




The logical problem of language acquisition
meets the ACT-R model of the past tense

ACT-R model requires no feedback

Hearing allows it to absorb the statistics of past tense in the language which are

embedded in the base level activations of declarative memory

Irregular past tense generations are preferred over regular because they are
more regular in the phonology

Explains why exceptions are both high frequency and phonologically regular
Indeed it explains why there are exceptions

Explains why the learning curves are gradual -- why one encounter with
“break” has virtually no impact on behavior

Tt is not clear that the ACT-R model contradicts anything that would follow
from the simplicity principle but it addresses detail that is not obvious from
that principle

If it really is cognitive architectures why do
general principles work as well as they do?

forced into operating according to general principles (could try to develop
this argument from the mere 30,000 genes we have).

One could take the view that general principles just provide good
“approximate” characterizations of human cogpition and from that
perspective maybe they should stay at the level of abstraction that they
usually address data.

However, an alternative is that they are actually deeply embedded in the
architecture because they reflect broad regularities in the universe -- “We

may look into that window of the mind as through a glass darkly, but what we
are beginning to discern there looks very much like a reflection of the world”

(Shepard, 1990, p. 213)
We have embedded some of rational analysis into the subsymbolic level of
ACT-R

Perhaps we should be looking at how to embed some of Chater’s principles.

I think this follows from the simplicity of science itself -- because the whole
universe is compressed by Kolmogorov complexity metric the human mind is

s |
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Learning Algebra in ACT-R
John R. Anderson

1. Give the system the abilities that a prepared student entering
Algebra 1 should have. These include the abilities to
perform basic arithmetic and to parse arithmetic
expressions. These are clearly not challenging abilities for

an Al system.

E\.)

Give the system a representation of the instructions that

O

appear in a standard algebra textbook. It should be stressed
that these instructions are only sometimes precise and never
complete specifications of how to do the operations.

3. Have the system learn by feedback on its solution efforts
how to solve the class of problems that appear in the

textbook.

4. Match on learning time, performance statistics, and brain

imaging.

Chapier 1 Expressions and Zquatons

l OPERATIONS WITH NUMBERS

A collection of numbers, opemetion signs, oad aymbaols of Incluslon (pa-
renthaser, brackels, visedlums) b ealled an expression. Findling the valus
of on expression ir called evajunting the sxpression. An expression such
11

HrInd+2
rin have differenl valyes, depending on how the oprrations are provped.

An operetion in mathematics i hing you do to numbsrs. such os
edding: subtracting. muliplying. or dividing For inuance. in
EE SIS

the opemtion of additon s pecformed on the purvbers 3 and 1L
Difficutties may arise if here are several different operations For exam
ple. whet number doas

34T}
represent? 1 you edd 3 and 2 Girst snd then muhiply by 7. yow gat
sx1=3

Bui if you multiply 2 %y 7 fiest. then add the result 10 3. you geta differ:

ent numben
I+14m17
Cem

Ta avetd this ditfealry, symholy of Feluskin—parentseses, {). of brack-

sts. [ jare uted to eH which operation to do frst.

EXAMPLE 1
Evaluate [{36 + 3) ® 4} + 2.

{36~ 3) % 4] +2
= (12 % 4] +2
=48 2
=2

Note thot you do whal is inslde the Dmermast symbols of inclusion firsr

EXAMPLE I
Evaluale [36 + (3 % &) + 2.
L 126 + (3 % 4} + 2
=36+ §2j+ 32
=3+ 2

=5
E]

Objective
Given as saxpression. be able w0 croluate it

At thown in the examples- you showid do the following (o evolenlt as
expression:

{3+ %7 means §%7. o 35
3+(@EXT means 3+ M4 or 07
124 2x3} means I2+6, or 2

1 Writz the piven expression

2 Do the innerranst operation and wrils e result. Use zn e sim w
ronncet the agw sapmssion (v Lhe oniginal one

Anther symbal of ichsion Is the bar wied In Ictions, called a vins
culam. For exampie. in

3

6+
XTI A

2
3
the operstions 6 + 7 and 2 % 7 are dope firse. giving
13

i

Then 13 Is divided by 1, giving obout 0,929,

3 Keep doing opzrations until you reduce the expression to 2 sinple
nurber. Use = signs lo coanset eath exprestion to the one befoe, a5
shown n e examples

L 4, Cleary Indicate the nnswer by undedining or boxéng it,

Now you watk Lz examples on the next page, Pot & piece of paper along
the dottedt Jines, This will cover the easwer, Izaving only e original ax-

peasion showing, {if Ute wiidng shows through, use mom sheats of paper
or an Index card.} Then evaluate Lie expression. Last, uncover tit saswer
In the book 10 make sure your work and your ahpwer o fight.




Issues and Progress

Can students learn with as little instruction as this?

What are the relative contributions of instructions versus

examples?

3. Problems with addressing this with the original Forester material -
- prior knowledge and population. We developed a data-flow
isomorph of the Foerster material for college students.

4, Shawn Betts developed a computer system that extends to most of
equation solving and tested with 10+ subjects. They could indeed
learn with this minimal instruction.

5. 'We have also developed an parallel system for teaching children
regular algebra but not tested

6. Model extends to first 4 sections including preliminary equation
solving.

7. The model illustrates many features in ACT-R 6.0 -- some of

which I will try to illustrate.

N o=

Evaluate a Diagrom

T evaiuate = dingram find an operation with ail numbers, wvaluate gha
oparation, copy the results according 1o the arrow, and rapaar until it
becomes a numbear

Follew the instructions above the problam w seolve it

Click the box peinted to by the orrow.

Last Diagram State Current Diagram Stata

pal|

w7l 1

-

i

Instruction Comprehension?

0.620  GOAL
.008  GOAL
@.208  SCREEN
0.050  PROCEDURAL
5.858  VERBAL

SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL
SET~BUFFER-CHUNK GOAL GOAL REQUESTED NIL
SET-BUFFER-CHUNK SCREEN SCREEN®
PRODUCTION-FIRED FOLLOW-INSTRUCTIONS
SET-BUFFER-CHUNK VERBAL VERBAGE®

(p follow-instructicns
=godl>
isa task
stote read-instructions
step read

verbals
isa verbage
command read-instructions
argl start
=goal>
step ready
state start)

"To evatuate a diogram find on operation with all numbers, evaluate the operation,
copy the results according to the arrow, and repeat until it becomes a number.”

-=>

(opl isa operator pre start action find-with-all-numbers argl box post all-numbers)
(op2 isa operator pre all-numbers action copy argl evaluated-results arg2 arrow post
start subgoal &)

(op3 isa operator pre start action test-lone-pumber post lone-number)

(op4 isa operator pre lone-number action go-on post start))

"To evaluate a diagram find an operation with all numbers,
evaluate the operation, copy the results according to the
arrow, and repeat until it becomes a number.”

oP1 0op3

ISA QPERATOR I5A -
PRE | START PR% START
ACT LON-—-FINB=WITH-ALL-NUMBERS ACT TEST-LONE-NUMBER
ARGl BOX ARG1 NIL
ARGZ _NTL ARGZ NTL
POST | ALL-NUMBERS POST |LONE-NUMRER
SUBGORT™NRTE SUBGOAT—NTT

Op2 0P4

ISA QPERATOR ISA OPERATOR
PRE | ALL-NUMBERS PRE | LONE-NUMBER
ACTIONCOPY ACTIONG=0N
ARGYI EVALUATED-RESULTS ARGl NIL
ARGZ  ARROW ARGZ __NII
POST {START POST| START
SUBGO AbmmFe—- SUBGUAT ™ NIT




Representation

op
isa OPERATOR

pre state -- both an index to operator and description of a
potentially recognizable external situation

action executable or action

argl argument -- referent either bound or to be bound
arg? argument -- referent either bound or to be bound
post -- both an index to operator and description of a

potentially recognizable external situation
subgoal t or nil -- flag on action

Similarities to list representation
positional rather than associational
list representation did not have pre and post

hierarchical

as list representation, allows one to begin in arbitrary position
suggests positional confusions

Retrieving Operators

,160  PROCEDURAL
142 DECLARATIVE
,192  PROCEDURAL
692 GRAPHICAL

.742  PROCEDURAL
.792  PROCEDURAL
1329 DECLARATIVE

Uiyt u

(p find-operaotor-external

=goal>

isa task

stote =state

step ready
=5Creens>

isa screen

state =stote
?verbal>

state free

=goal>
step retrieving-operator
+retrieval>
isn operator
pre =state)

PRODUCTION-FIRED FIND-OPERATOR-EXTERNAL
SET-BUFFER-CHUNK RETRIEVAL OP1
PRODUCTION-FIRED FIND-WITH-ALL-NUMBERS-BOX
SET-BUFFER-CHUNK GRAPHICAL BOX® _
PRODUCTION-FIRED COLLECT-GRAPHICAL-RESULT
PRODUCTION-FIRED FIND-OPERATOR-INTERNAL
SET-BUFFER-CHUNIC RETRIEVAL OP2

(p find-operator-internal
=goal>
isq task
state =state
step ready
verbals>
state free
Isafe-eval! (internal-state =state)
T
=goal>
step retrieving-operator
+retrieval>
isa operator
pra =state)

=abl

Using Retrieval Finsts

5.100  PROCEDURAL
5.172  DECLARATIVE
5.222  PROCEDURAL
5.772  PROCEDURAL
5.962  DECLARATIVE
6.412  PROCEDURAL

(p test-lone-number
=godl>
isa task
step retrieving-operator
=retrievals>
isa operator
action test-lone-number
post =post
7digital»
state free
o,
+graphicals
isa box
command test-lone-number
=godls>
step looking
argl result
post =post)

PRODUCTION~FIRED FIND-OPERATOR~EXTERMAL
SET-BUFFER-CHUNK RETRIEVAL OP3
PRODUCTION-FIRED TEST-LONE-NUMBER
PRODUCTION-FIRED FAILED-GRAPHICAL
SET-BUFFER-CHUNK RETRIEVAL OF1
PRODUCTION-FIRED FIND-WITH-ALL-NUMBERS-BOX

(p failed-graphical
=goal>
isa task
state =state
step looking -
?graphical>
state error
TevaET T
==>
=goal>
shepecebnleningzopenaror,
+retrieval>
isa operator
pre =state
rrecently-retrieved nil)

Processing Definite References: “the box”

5.682  GRAPHICAL
5.742  PROCEDURAL
5.792  PROCEDURAL

10.443  DECLARATIVE
10.499  PROCEDURAL
18.799  SCREEN

10.849  PROCEDURAL

(p collect-graphicol-result
=goai>
isa task
post. =post
step looking
argl =var
=graphical>
isa box
val =val
g
+label>
isa assoc¢
variable =var
value =val
OO
step ready
state =post
post nil
argl nil
arg? nil)

SET-BUFFER-CHUNK GRAPHICAL BOX®
PRODUCTION-FIRED COLLECT-GRAPHICAL-RESULT
PRODUCTION-FIRED FIND-OPERATOR-INTERNAL

SET-BUFFER-CHUNK RETRIEVAL OPZA
PRODUCTION-FIRED CLICK-ARG
SET-BUFFER-CHUNK SCREEN SCREENZ
PRODUCTION-FIRED FIND-OPERATOR-EXTERNAL

(p click-arg
=gotil>
isa task .
step retrieving-operator
=retrieval>
isd operator
action click
argl =var
pn:+ ~Pnc+
=1label>
isa assoc
variable =var
value =arg
fatgLtar>
state free

==>

+digitals
isa digitol
command click
item =arg

—_—




Confusion in Instruction Interpretation

One sort of confusion is semantic -- incorrectly interpretin_g @e
verbal instructions. It is not clear than there is much of this in

the first 4 sections.

Errors are substantially clicking extra boxes, failing to click
boxes, and hitting the wrong operation. '
The one semantic error would be converting 3 -x = l into x =
1+3 -- not clear how frequent it is. .
The other errors can be produced by allowing cqnfusmns among
adjacent operators through the positional conf-usmn mechanism
This then creates the need to respond when things do not turn out

the way they were expected to.

This can be achieved by looking at the external state and

retrieving an operator for it. o |
This also implies that students should be able to pick it up in the

midst of a problem.

Task is Action-limited

Minimal Effect of Production Compilation

o ~J o3
% o [ ) o
:

Time per Transformation {sec.)
b
o

30 -
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G ‘ . . . . . '
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RACE for retrieval: Competitive effects in memory retrieval

Leendert van Maanen & Hedderik van Rijn
Artificial Intelligence, Groningen Univers ity

When a question is stated such as *“What is the
capital of Australia?”, various answers start
competing for retrieval from declarative
memory. If a hint is given during this retrieval
process (“The name of the capital begins with
the letter C.™), retrieval may be facilitated, but if
a distractor is presented (“Amsterdam™), retrieval
may be inhibited. A well-known example of
these kinds of effects is Picture-Word
Interference, a task simiiar to the Stroop-task
(Glaser & Diingelhoff, 1984; Glaser & Glaser,
1989, Schriefers et al, 1990). In these fasks, it
has been shown that SOAs have differential
effects. For example, presenting a drawing that
depicts a concept 50 ms after a word-form: of that
concept has appeared, speeds up processing of
that word in comparison with a neutral condition,
whereas in other conditions SOAs might have a
negative effect.

The ACT-R Latency Equation as it is defined
now, RI;=F8'A‘ {Anderson er af, 2004),
cannot account for these phenomena, as it
suggests that retrieval latency only depends on
the state of the buffers and declarative memory
at the exact time of retrieval onser, both reflected
in 4, This is easiest demonstrated jn the
condition where a facilitating word is presented
at a short SOA after the picture is shown. Afier 2
retrieval reguest, the chunks that match the
request are identified and the one with the
highest activation is selected The Latency
Equation determines how long it will take to
complete that retrieval, and takes the curreat
level of activation at retrieval ooset into account

Thus, at present in ACT-R, the presentation of an
interfering stimulus after retrieval onset simply

does not influence the caleulated latency

Likew'se, when another stimulus is presented

before retrieval onset, retrieval latency depends

{in part) on the spreading activation from the

stimuius in 2 sensory buffer to the to be retrieved

chunk: higher levels of activation result in

shorter latencies. However, as this can only

explain a speed-up, this does not comply with

the observation that a condition in which a

distractor from the same category as the target

stimulus is presented has a larger retrieval

latency than a condition in which an wwrelared

distractor is presented (Glaser & Dingeihoff,

1984). The intuition at least is that concepts of

the same category have higher inter-associations
than unrelated concepts, which in ACT-R would

lead to higher activation levels and shorter
latency.

A solution to this issuze might be to regard the
refrieval process as an instance of a sequential
sampiing mechanism (Ratcliff & Smith, 2004)

Sequential sampling models follow the
hypothesis that a neural representation of a
stimulus is inherently variable or noisy, and in
order to retrieve the required representation,
enough samples of the stimulus representation
have to be accumulated. Thus, sequential
sampling models offer a2 mechanism that aliows
for a specification of the time course of retrieval

At retrieval onset, sequential sampling of
evidence will allow for the activation of chunlks
to increase, until at izast one chunk’s activation

has crossed a threshold. Using an adapted

version of the leaky competitive accumulator
mode! for perceptzal choice (an example of a
sequential sampling mechanism, (Usher &

McClelland, 2001)), we show that the ACT-R
activation function can be extended to account
for the time course of activation without
changing current mechanisms We wil} refer to

this new set of mechanisms as Retrieval by

ACcumulating Evidence (RACE).

In RACE, the time of retrieval is defined as the
time at which the activation of a chunk crosses a
threshold. We assume that after initiating a
retrieval request, the activation of matching
chunks is updated per time step The function
underlying this updating has two components. A
long-term activation component that is identical
to the current ACT-R activation formula
{kenceforth base-level activation), and a short-
term, more volatile activation component that
Tepresents  the cwrrent  context  {context
activation). The total activation is calculated by
ssmming both activation components, and
retrieval is finished when this summed quantity
reaches a fixed threshold {the context activation
threshold &°) As in the leaky accumulator
models, the context activation is based on
“evidence ticks™ At each time step, if positive
context evidence outweighs negative context
evidence, the amount of evidence increases This
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gyt different from OGCUTTERCES pf » chuns
icees of evidence cannot be considered having
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jmerferenes experiment

ExperimeptL
Numerous models it ACT-I bave ehyown that

gefult ACT-R. provides arumale predictions of

retrieval jateney (Anderson et ol 2004} TO

I
"
u

ensure that our approach does not invalidate
(hese fesults. we show that our model predicts
e same lutencics 38 the ACT-R Lawacy
Equation in 2 nan-competitive condition. In this
experiment W ficted the ACT-R retricval jatency
for dilferent nmed after the chunk @ be retrinved
is presented In other words, we wili predict the
ACT- hatznsy {or Gilferent pase-ievel activation
Jevess

We first chost reasopable parameiers for de
ACT-R Loszney Fquation These yalugs were niot
updated in the aptimization proeess- to snsure 2
fair comparisen hepween the madels. The crueiad
patzmeters in owr model were the context
activation treshold gomed gpd the evidencs
Sgeshoid 0 These indisate whether 8
chuwk is retrieved (e and whether evidence
moy be sampled (#™N The rvidence
hreshold was noisy with 3 sundard deviation of
=03 & umed out to be fess important i
\his condition because due 1o the absense of
other ghunks 1o inhibition was prasent, and
avidence Was sampled a1 atmost gvery time SIEP

However, breause the ape varisble in 1he comtext
sctivation fanction is in ms. the decay parameies

Figure 3 Tht retdeval proces 3t diffecent tme seps e

and the time step frequency e related; If the

frequency 15 high, so is e chance of sampling
evidense (more appurruniﬁcs). snd decay may be
bigher All paramelers a0 presented in Table 1

whle 1, Paramelers experiment ]

Far o fixed set of reuieval onsets We cafeulated
both the latenty predicted by ACT-R and the
prediction of our model The ferieval onsets
were chosen Lo ensuIe that different pase-fevel
activation lpvals were tegted (05,10 30,68
50,120,150 geconds after chunl prescntation)
The experiment wis p:ri'urmcd 30 ymes. and the
results Were averaged The regults ars SHOWD in

Figare 2

P

oy

f1) and associated lawnats (Aght). 1.ef the

groy doned Vines depict Jemisvol onsets. the lack doned lines dapiet predicted WCT-R. Intency, and

thie black soiid fines depict sevation The simulation
threshold

This simuintion shows that i 3 single chunk
retiaval task where similarity-based interference
dogs wot play @ prominent role, e model
predicts similar latencies 1@ the shagsical ACT-R.
remieval fatency function Thetelors. We A55UMIE
that this exiension does not Himit ACT-I i i

wan rminaicd e reaching the zearisval
ability o capmEe
pheoomena.

fxperiment 2
picture Word jmterference experiments

me alsady modeled

e

eharncterized by @ double stimulus paradigm. in

which o distracior stimutus i5 presenie

d at
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“The zddition of 3 shori-ierm component makes U1

possible 12 predict priming effects at shont SOAL

As spoT 85 2 secodacy stisnulus is

of the buffers.

the primary stimutis
inleefergncs  paLerms ;
Picturs word-like experiments
evidence hresbald of a

this stimuius wit} start infiuencing
and  thus  cAUSS the

buffer chunk is crossed,

bich case its prescrtation will :\:ﬂd:;piu;?;; o setve
wag set at a fixed Constant of 1.3 The
W owes set pigh enough that
samutation. evidence aampling
deeay was seb high enough that
spomancous evidence. context

14 guickly decay back o baser

a4 digtractof and wrget

preseot in one

further than

activation
evidence thrashe!
withaut external
was unlikely, 258
in the event of
aetivation wWou

Table 2, Paramelars

an upassccinted chunk, with s
resuls 2 highel rotrievnl lateney To ‘kucp the
and focus an ®e pehaviar of the
tion, base-level

periment 2

We fan ouf mode] through & series of retyieval

targel SWOULET when it is presented. A G or
positive SOAS. the influence of the diyzactor is
Jess as, on reieval anset of the target, it does not
have any already gethered cvidence. For the
concept songruent (facilitating) condition, 8
similar patiern is observed in the data, but for the
interfering condition G daty shows a peak at
50A=100ms, ond smalier vaiues &l Regative
50As The curtent version of pur model does nol
capruee this, but could easily be extended 0
explain this effect An sxplanation is that when a
chunk is retricved, sccumulation of evidence
stops, and the context activation quickly decays.
However. the chank jtsell is remiaved, and
therefore has @ higher pase-loved agtivation. If
the prior stimulus was category songrienh, this
higher bagerlovel slightly inhibits the targst
chumk, but pot as much as when the distracter
was  sull being procasscﬁ, Therefore, the
catcgory Gongrient sonditions 31 long negutive
GOAs will stifi show loager Iatencies then the
peutral condition. but not as fang a5 on positive
sOAs If the prioy stimulus was  concepl

madel can easily be expanded @ explain this
cffect. The expected incroased retrieval Tatency
in the incongruent distractor condition might be
cxplained by asuming  weak asgociations
between the target end the incengnicnt disgacior.
The same effect as in the calegory congruent
condition occurs, but 1o 3 Tesser extent Another
possibility  is \kat the aclivation of the
incongracnt concept is infisenced by the aumber
of competing chunks (i . the fan-effect). 1 the
acutral condition (doned line in figore 3). enly
one chunk is i the buffers In the other
conditions, more chumks are present in te
huifers. Al extra competitor would meas izt the
“igtal amount” of sctivation is divided by onc
more, having 2 negative effect on e astivation
of the chunks and thus on he fatency A third,
equivalent optioh would be 1o calouiate the Luce
Rato  (Luce, 1959, indicating  that e
probabiliy that a chupk will be retrleved
depends o s pant of the total activation. An
extra competitor would mean higher total
sotivation, and would in that way affecr the
Tatency of the trgel chunk, & mechenism which

evidenee 18 sampied  2nd contexl acxiv?tiuu experiments The model was set 10 e L congrusnt. e retrieval has fncreased e base- is implemented in the ACT-R competitive
increases. This ipcrease Jeads 6 @ hs_ghﬂ conospls  from emery ‘41_31 “""’d‘ﬁ’g Yl b a level of the concept that alse needs to be tatancy equation. We are planining to test these
probabifity that evidence of posidvely sssociated assoristed with the Pf“m‘;d ““;‘ébm :tﬂg:;) retrieved for the  target Thersfore. these hypotheses in 3 next implementation of the
1 be sampled. A higher coptext q0OAs (-400ms. .200ms, Oms, 2U0MS. conditions will stily show significantly shorter model

Z::iﬁio: “::ve'l of : chunk in declarative distraclor ems WETE presented, and the 2ensY L lateucies than the neutrd) condition In our

tremory Qrcreases in tum the likelihood ot the was reeorded. The results e preseated in figore e ' model, however, base-ievel notivation effects are Without much emphusis on pplinization. RACE
evidence resholds of competing chupks are 3 (right) aot twhen into account, but instead the comex! shipws the mast importan pheoumend ohszrved

crossed. Less v
reirieval atensy hES

dence feads © 89 increased
is procesd aceounts for the

activation  remains aetive. pmlungiug he
inter{ering sffeet

Figue 3 i the effect of e incongruent
distractor condition  In e left panel, this
condition shaws glower (eaction times then he

in Pierure-Word tike tasks: 3 facilisating effect
for the concept congrucat stimulus, and 2

5 FROM RACE
PIETURE HAMIS EXPERIMENTAL DATA cunmmwﬁmsmcmn_ﬂ““ E ! convergeage of the offects 12 e pewmal
L - Another difference between e swo paoels of condition a1 positive SOAs. Besides the

cxplanatory  powWer for thess  previously
uneaplainsd eifets. RACE is still compatible
with current ACT-R latency predictions

acutral condition {which is e condition in
which no distractors Me present) In oot model.

o
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Modeling how delayed intentions impact current intentions i a prospective memory peradigm

Renée Elio
University of Alberta

. s L B Lo

Praspective memiory is 2 1erm used to denote the process of remembering to do 2 particufar action ai some
future time, either afier some time period has elapsed or when some even: has accurred {event-based

prospective memory) The prospective memory literature also describes this process as setting and

F
u_—l

l executing “delayed intentions * The typical laboratory paradigm for studying prospective memory tequires

J people to remember to perform an infrequently peeusring task {the delayed intention) wherngver some

I event oceurs in the environment; otherwise, they are preoceupied with executing some on-going cover

task . When the event occurs, the ongoing task must be intesrupted, and the action associoted with delayed
! intention must be performed.  There are two basic types of explanation offered for event-based
prospective memory The attomatic-retrieval explanation assumes that intentions have a special
- representation that inciudss its cue, and the appearance of the cue triggers the retrieval of the intention. In

contrast, monitoring expianation argues that performance of delayed intentiens is never automatic, and

1
g requires ongoing preparatory and  capacily-consuming processes, cheracterized 25 non-gutomatic
I manitoring of the environment for the targel evenl Smith (2003) provides empirical evidence for this
- monitoring-explanation, which she argues cannot be accounted for by the autamatic-retrieval explanation
I In bricf, Smith found a reaction time cost 1o performing the on-going task, even when the prospective
memory task itself was not being performed  in my preseniation, I will describe a relatively simple ACT-
| R model of Smith's main results This model uses an additional “control buffer™ to effect a deliberation
decision, which is the retrieval of some cusrently unsatisfied intention, and its associated preconditions for
i execution. from declarative memory  The general wrends of the Smith reaction time data emerge from a
kind of competition among these intentions for the monitoring process Whether this is a plausible
1 - perspective from which to view these particular results is open to discussion. As o computational account
of the Smith data, the mode} provides some clarity about the descriptive characterizations of prospective
l: kY memary as remembering 1o perfornm delayed intentions My main interest in mudcﬁné this data, however.
I was to better understand what it means to ‘set’ and process intentions within the current ACT-R modeling
L - framework and its representational constraints My general goal is 1o relate the notions of intention
cucing and intention moniloring, as used in descriptive prospeclive memory accounts, 10 theoretical

L distinctions in intention theory and also 10 computational mechanisms within a modeling framework such
as ACT-R

Smith, R. (2003). The cost of remembering to remember in event-based prospective memery: investigating the
L capacity demands of defayed intention performance JEP L MC, 29, 347-361




An ACT-R Based Investigation of Test and Study Temporal pynamics

Phitip I paviik (ppavlik@andrew.cmu‘edu}
Depanmsnt of Psychology: Carnegic Melien University
pitusburgh- pA 15213 usA

1. Introduction

The quesﬁons to be answered here oTe somewhat long standing in the fieid of memory
and cognition The experiment grows out of questions ratsed in pavlik and Anderson (2005) In
this experiment, participants were trained in Japnncse-Eng,hsh word pairs oVer the caurse of
several hundred learning trials with a variety of spacing, repetition, and retention conditions.
This experiment used a drill procedure for training. In this drill procedurs, each item was
introduced witha presemat'mn of both members of the pair foliowed by spaced testing practic®
which included carrective feedback immediately afier 80 incorrect 1ESPONSES This procedure
was chosen because, according 10 ACT-R's pssuymption that test proctict and stedy practice are
equivalent: it should result in equal praciice for each p:esemmion regardiess of the correctness of
any particuiar response.

Of course, this assumption of equal effect for study and test practice is merely an
appraximmiun‘ A large variety of reszarch has ghown differences petween test and study practice
(Thompson: Wwenger & Bartling, 1978, Runquist, 1983; Stamecke & Watsaitd, 1988; Carvier &
Pashier, 1992; Cull, 2000) Though this work 18 interesting, much of it i8 incompiete oF suffers
from mcthodolagical flaws that make it difficult Lo come 1o clear conclusions about the
differences between tests and swdies The first issue 1 dhat many of these prior studies have not
clearly determined whether the advaniage 0 (esting s due 0 2 penefit to encoding of 8 reduction
in forpetting A second question 10 be addressed is to what extant varying the duration of study
capponunit'ses affects learning:

2. Experiment Design
1o examine the issues above requires 2 complex design. This design will use 2 spacing

conditions (& spaced practice will fellow gither 2 ©F 30 trials after an initial study): 7 retention
intervals (2 performance rest either 2. o7 60 trials after the spaced practice tsial), 5 practice types
for the spaced practicé (rccall-or-study, rest-ond-study, purc-studxes, pure-tests, of a0 practice), 2
study duration conditions o1 the spaced practics types {gither 3 or % seconds for studies in the
practice conditions that include study?} Initial studies in all cases Wele fixed at 3 seconds

gince, of the 5 spaced practice types: 2donot include study presentations, fsereare 2+ 2
s2+1+1=8 different study duration by practice tYpe cells Therefore, thereare 8x 27 16
study duration by practice TYpe by spacing ! terval cells Given the 2 retention iptervals, there aré
16+¢2=132 1otal cells within-subjects This design will be repeated using two items per el for
each subject. These conditions weee essentially delivered in 3 ports The experiment pegan with
20 buffer trials 10 reduce primacy effects. Buffer jtems were atways introduced with 8 study tigl
of § seconds and given recall-cr-s&udy trinis for subsequent practice, witha 3-second study
fecdback in the ase of failures 10 recall Eollowing these trials there Were 160 triats during
which the first replication of the design pecurved, and then 160 more trils in which the second
replication of the design occurred, Becaust the design itsedl required only 92 trials per
replication, {hie meant that 68 trials were used for buffers in each case A compuier ajgorithm
randomty intericaved e conditions with the buffers individuaily for each subject

The stimuli and buffers were 1001 npnnesc-Enghsh ward paits. English words were
chosen from the MRC Psychuhnguisﬁc dotabase such that 1he words had Famitiarity ratings

N

petween 406 and 621, with & mea of 547, and had imagability atings betwes 343 and 366,



with a mean of 464.

All studies (whether they oceurred a8 feedback or alone) and tests were cued with the
prompts “Study” or “Test” for 3 seconds Tests involved presentation of the Japanese waord on
the left side of the screen Parsicipants typed the English translation on the right If no response
was made, the program timed-out in 10 seconds. In the recall-or-study condition if correct the
respanse was followed by 2 0.5 second presentation of the word “Correct” and the next trial
began If incorrect in the recall-or-restudy condition a study presentation for the word {which
was introducad by the word “Study™) was given The and test-and-study condition was identical
1o the recall-or-restudy condition if the response was incorrect, however, if correct the response
was followed by 2 0.3 second presentation of the word “Caorrect” foliowed by a study
presentation for the word (which was introduced by the word "Study™). In the pure-test
condition, no feedback occurred following the test The pure-study and no practice conditions
were self-explanatory

The experiment used 160 subjects recruited from the Pinsburgh, Pennsylvania
community They were mastly college students responding te an onling advertisement. All
participants completed the experiment. Eighty participants ezch were randomly assigned to 2
strategy conditions (free strategy of mnemonic training), data for which is not reported here for
space reasons, Sessions fasted slightly less than one hour Only participants who professed no
knowledge of Japaness were recruited

3 ACT-R Declarative Memory Model

The model used and devetoped in this report, an extension of the ACT-R theery,
currently captures thres major effects in declarative memory The ACT-R model captures the
recency and frequency effects, i ¢ that performance is bener the more recently or frequeatly 2
memery item s practiced (Anderson & Lebiere, 1998) Anderson and Schooler {1591 originaily
developed this modes by showing that memory strength for an item matches what would be
optimal in the environment given the frequency and recency of usage of an item A recent
extension of ACT-R (Faviik & Anderson, 2603} captures the spacing effect

These effects are captured by an activation equatios that represents the streagth of an
Htem in memory as the sum of these differences and the benefits from a number of individual
memory strengihenings each of which corresponds 1o a past practice event (either a memory
retrieval or study event) Eqg. 1 proposes tiat each time an item is practiced the activation of the
item, mr,, receives an increment in strength that decays away 25 a power function of time

To deal with the spacing effect Pavlik and Anderson {2005} developed an equation in
which decay for the # trind, d, s a function of the activation 2t the time it occurs The
implication of this is that higher activation 2t the time of a practice will resuit in the benefit of
that practice decaying more quickly On the other hand, if activation is low, decay will proceed
more siowly It is important to note that every practice fias ifs own d, that sontrols the forgetting
of that practice Specificaily, | propose Eq 2 to specify how the decay rute d; is ¢alculated for the
i" presentation of an item as a function of the activation my.; at the time the presentation
occurred. Eq 1 shows how the activation mr, after n presentations depends on these decay rates,
d's, for the past trials

mlty )= ln(zrrd.) Eq i
i1

LT
d,{my=ce " +a Eq 2
in Eq 2. ¢ is the decay scale parameter, and a is the-intercept of the decay functien For
the first practice of any sequence, d; = a since mg is equal to negative infinity These equations

are’ recursive because to calculate any particular m, one must have previpusly caleulated all prior
'S 10 calculate the d)'s needed These equations result in a steady decrease in the long-run
retention benef_n for more presentations in 2 sequence of closely spaced presentations As
spacing gets wider in such a sequence, activation has time to decrease between presentations
decay is then [ower for new presentations, and iong-run effects do not decrease as much ,

4 Resubts and Discussion

The performance data were aggregated by condition and several repeated measures
ANOVAs were completed to examine main-effects and interactions in the data The first
5 ANOVA (retention x spacing x study duration X
trial type x strategy condition} compared the test-
and-study, recaii-or-restudy, and pure-spaciag trial
type performance after the retentien Intervak: Main
effects were as expected, with retention, spacing,

g . Practics Type study duration, and triat type all having significant
§ SN R effects [F (1, 158)= 1080, p <0 GOL, F (1, 158} =
z, \;*;. 581, p<00L, F{],158)=152,p<000],and F
| 7 Recat or Rextudy (1,158) =430 9, p <0001}

g5 ® Sty Onty Of primary impertance, this analysis

¢ showed no indication of a reteniion by trial type

imeraction if study practice |eads to a less
permanent memory encoding, such an interaction
should occur since forgeiting in the study onty

) ) condition would be faster than in these conditions
that inciude testing. See Figure | As tan be seen, there is no suggestion of quicker for ctling in
the study only condition s

Retention Interial {iriais)

Figure | Effect of retention interval
degending on trial type

- A second repested measures ANOVA was
zos I identical in design to the first, but only included the
o pgremstudy_conéitiun‘ Main effects were as expected,
2o r : w;]r.h retention, spacing , and study duration (3 or 7),
8.2 d i igni g a
e e all having significant effects [F (i, 158) =398, p <

0001, F(1, 158y=7 44, p <01, and F (i, 158) =
14.4, p < 0.001] Again the retention by spacing
interval interaction was significant, F {1, 158)= 10 8,
p<0.01 Figure 2 shows the 3-point study duration

y o . function (the no study point comes from the control
condition which included no practice of any sort afier the spacing interval)

Study Sty

Figure 2 Effect of study duration on
recali for study oniy condition

5. Modeling the Resulis

o The fits detaited here invoived capluring the aggregate results of the experiment. While
this is a fit of ageregate data peists, the model produces these aggregate data points by averaging
a t.nodel of each trial of each sequence of practice of each word for each subject OF course, since
this modet does not consider individual differences in abiiity between subjects, difference i’n
wimf the model predicts between subjects will come enly from different histaries of tests and
studies in those cases where scheduling is contingent on recali, and from the different time
values that oceur for faster or stower subjects

31 Tested Srudy Models
Twenty declarative memory equation models of al} the conditions of the experiment



.o
(except the test only condition which results in selection effects which can only be handled by 2 [ . . Rather then fising 2 values for v
more elaboraté version of the model) were tested and compared These vwenty models were = B2 which worls onty stightly Ecncr the mc;dei
configured ina 3 X 4 design with 3 Jifferent study models and 4 different combinations of € .- L T TRmA St assumed a simple precess expim‘mtiun to
and/or § being optimized In addition to the free pasameters optimized for each of the 20 cells ef L b os 1ain 1 .
¢ . 2 - - Ear ST— explain the value of v inlerms of the

this design, all of the models also fit a model of retrieval fatency (not repcrtad here) Forall of % 0s RenevatF sl stimulus In this cuﬂceptualimlion hevis
these models & nd 1 were fix 4 at Paviik and Anderson 2005) values, and in modeis where ¢ - d o2 ok L. .
ands sr\:?:rc ‘éxeg the wrcrclaiic fixed ::t these vaiues (003 r : Yy ds'\nded by the number of ETE the

Ust : ¢ and ) the mai & rameters allows thern 10 capture more accursiety the Lo~ FEF885 g8 $88¢ stimulus This componers of the model 23

sing ¢ and § 5 the main irEe PO meters & ptur Y A “hat during stdy trials subjects deploy &0

slopes of the pragtice and forgetting functions, while fitting the study functions capiures initial
practice betier. While the medel psed the 5pacing effect mechanisms gdiscussed in Paviik and Figure 3 Effect of study on the encoding
snderson {2003), they were not integral 10 the models of study duration Since study practice strength sealar parameter for best fiting model
had no significant offacts on the decay rate, the models worked by assuming that the sirength of
each ¢% in the activation equation (Eq. 1) chould be wel ghted to capture the effect of study trials
{Eq 3) Inall of these models, cetrieval practice was fixed at weighting of 1. Equation 3 shows
how the mOTE complex models use 2 value (b) to scale swzengths in the activation equation —

atientional resouree (typically in a strategic
fashion, but also through rote pmccsscs) 0
encode the stimuius being stodied Becouse
this resource is \imited, it must be divided among the components of the stimulus (in the model
{his is done by dividing the encoding raie by {he stimuius size ) This mechanism explains the
advantage of a study after o failed test cames from the opportunity to pre-encode the Cue

|y £
'

Because of this pra—encuding, during the following study ppportunity tie encoding of the single
f g E - response term proceeds twice as quickly. The exact function mapping aumber of stimuius erms
Aty a) ™ in Zb;t f Eq.3 to the value of v remains uncerain based on the following research, more research will certainiy
i=1 - be needed 10 determine its true form
Model | tested the standard ACT-R assumption that study practice also has a weight L

equod ta | This is the comparison condition with no aew parameters from which performance of " 52 Fit of Models
the additional processes and parameters in the foliow models can be judged. - To fir these models 1 simultaneousty found the best latency model parameters, study
Model 2 1ested the hypothesis that study weight is constans, but not equai to 1 This L model parameless, and ¢ andfor s 10 minimize the sum of zn overail fit statistic for the 20 models
model corresponds 10 the idea that studies may be simply weaker than tests and that study ested . Since fitting katency had very little effect on the fit for correciness, here 1 will ony report
duration does not matter much. {0 this case the b=m inEq 3} - values for the 44 df comeciness model Figure 4 shows the best model ( =66 1)
Model 3 tested the idea that study weight s a linear function of study duration This is L Table 1. Parpmeters and Madel Statistics
closely equ‘waient top one interpremtion of how to count the benefit of each study practicc: in w Table } summarizes the fit of the
ACT-R Uniike Model 1 in whick single study appertunity 0CCUTS whenever study practice of & Smdy Model € s mov 27Reall  models which varied both ¢ and §. models
stimulus is offered to 2 participant, in this conceplualizmion a study oceurs every 370ms The L gaol 0340 1009 wa 24577

ant, ; : 0312 0340 0908 o 11693 (varying only one of jess cfthasc.‘l
370ms figure comes from ACT-R'S perceptual motor assumptions (ROt discussed here) and 0373 0342 1968 =i 13438 perameters resulted in poor fis s> 160)

[PE VR

correspands to 20 estimate of the minimal time necessary to form an association While this - 9305 0333 1100 0 373 8481 As Table 1 shows, model 5 is cleasly
model Is suggested by ACT-R, it seems 1o be in direct conflict with the spacing cifect since this . 0344 b3y )217 0582 66.11 superior, with medel 4 performing fairly
model results in 0o penalty for 2 back-to-back study trials (e g on¢ 740ms study trial) in well
comparison o TWO 370ms studies spaced apart. (In this gase b=/l 0000 {time-370ms) inEq 3) - In cortrast, the other tWo variable study effect models (2 and 3} fit somewhat adequately
Mode! 4 tested the model where b= m(bef‘f’“"m"") ¥), where m {5 the maximur penefit L . because of the fact that they were ahle to count study practice s being less than test practice
of study and ¥ describes the rate of approach 10 the maximum. This simple model is intended 10 This is particutarly true in the casz of model 2 in which study practice hag about 90% of the
capture the fact that study practice has diminishing marginal returms and appears 10 reach an - effect of test practice rudy mode} 1, the current ACT-R assurnption performed particularly
asymplole (Metcalfe & K ornell, 2003). 1t {s used to compuie activation according 10 Eq. 3. L N poorly

Model 5 was formulated and added 1o the fist of hypothetical odels because of misfit of For the best fiting mode) of the 20, the study parameters a1 and v were 1217 and 582
Mode} 4 Model 3 was designed lo caplure the fact that study foliowing o failed retrigval had @ - These vaiues descrite the effect of study duration on encoding strengths shown in Figure 3
strong tendency in the data 10 proceed more effectively than study practice alone (siudy practice L . The £it to the mais conditions for this best Fitting modcl is shown in Figure 4, which
after o success 15 ROt 50 relevant since the high decay in this case Wipes out gain). This model includes ali 44 data points modeled The fir i5 clearly rather good and captures ali the main
1ests the assumption that after & failed test feedback-study pmcecds more quickly due to ptior - affects and significant interactions
cue encoding by using 2 values forvinthe Eq 3 L .
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6 Discussion
The results here show that the differences petween tests and studies €30 have important

imp’l'\catiuns for recall ‘Eormnma\y, these differences seem o
ihe contribution of each praciice This anelysis does pot discuss the origit of these functions

Certainty subjects Call engage ind variety of gtudy process during any pnﬁ’\culnr sudy event, and

the results here Average aver {lese process and differences by subject 10 arder to capture &0

sbout the underlying strategies sulpjects use Fortunately

'y ividual sirategies

ysi ined for space teasons) shOWS that anemanic training

arameter {indicating slower encoding) 8nd 2 pigher m parameler (indicating
Thi deiailed fiting Apes pravide jsteresting

5, howeves the large amount of seerningly arbitrary trial to wial

variability inthe srrategies subjects gxhibit may make it impossible 10 do more han fit 2 different

apEregate study function for each subject
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e Gelavkin, Juby 11,2005

GAMMA NOISE nOm.‘:?:md.v

o The uncertamty about the utility ca® be nsed directly
controt the yananee from ?oanwﬁ.&_ distribulions.

e The sme component of the cosl can b estimated USIAE
Posson distribulion P = 1 — g~ H? (Belavkin, 7003)

Efforis

), = PG~ Gamma{fi), where f§ = Tiszesses

o The OVPTIMIST pveriay (Belavkin & writter, 2004} for
ACT-R 1S avatlable al

Ee.._._;ﬁﬁ,__.nm.Eax.nn.:ﬁm_umcamnm_fg_

.

man Hetavkin, July 1L, 2005

THE ALLAIS PARADOX (GAINS)

Due to Allms 1953). Also studicd by Tversky and Kahneman
(1974} in many nterpretations. Consider bwo follenies Amnd B

£300 1 £100

X

$0 0 $0

e

1 2
3 - $300 4 £ 0 == $100

i .m:uo,w.a.maamaw

About 80% of subjects eXpIESS preference A=D

r <k © 3 4 5 o H 3 H =

[ A — T e T

Lt ol W G N QW { Sl .
anon [elavkin, July i1, 2003

PRECISION MAKING IN ACTR

1n ACTR {Andesson & Lebiers, 1998), the choce helween
geveral alternptive deeistons fie- ules) 18 Ei_ﬁnﬁinm by the

canflict resolution mechamsm. A rule with the highest wtiliby 18

selected: 1 =2 BTG max Uy, where

U, = PG - C;+ aosels)

reidt Danibearens af PLtieL geit avtel
rule's ﬂnaunqznm

— Ml Fe

Fi- ?avﬁw_rz ab suceess P

€y ~costiep time}

pinbat paramelers {constanty)

G - gonl walis

g - pontrofs noise vananec o ¢

Y=ro-c

avkin, Juiy 14 2605

owman Bzt

ACT-ILAND EXPECTED UTILITY

» Foreach decision, WO outcomes: Suecess V Failure

o Lot U° = U [Success) and U! = [ (Fatlure). Then

[

prus + P!
= ?%+:n?éb
= ?EF§J+%

E{U}

e G =07 ~Ul and U ﬂiOL:n:m:b =PpPa-C

o ACT-Ruses the expreted wiitity and shercfore 15 pIONE to

all the parndoxes.

faman Deavkin, iy 19,2005

THE ALLAIS PARADOX (LOSSES)

When the gatns o8 chonged o 108508, five preferences FOVETSE

2 50 $0
: 0
C D
5 -§300 1 -$100
2 1
m.olmagoutfav 0.5~ 15100 = ~$100

About 80% of subieots CXpross preforence G- P

-/

Raman Talavkin, July 11,2005 1

FRAMING or DECISIONS

o Tversky and Kahnemon (1974) suggested decision Sframing

theory of using @ function #(P)of the probability.

« In ACT-R, OBE guggests 1o st G asthe *framung’ giobal

parametes
Loftery Aand B W.Dlmo < 1-G-%
rimns_nusad W.lem - 1o G- 5100

« Howover, e above formulac are mcorvect as € should
aiso be relative to goal value . The correct formula 18
P - G)

Nele piso that net 100% of subjects preferred as above.

-

foman Belavkin July 11,2003

THE RATIONAL DONKEY PARADOX

2

N

TicA]  (AayscD

« max EU theoty fails when there 15 00 unigue Max.

o ACT-R uses OISE (:egs) which ensures {his does not

happen

« How large should be nosE varunce?

o There arc other poradoxes reiated to max BU.

Rt Blavkin, July L 05

PYNAMIC EXPECTED GAIN NOISE

« Dynainic NOLE vaniance has been discussed recently (8.8
Belavking 2001, Taatgen. 2001)

. mszoﬁwldum& method to conlrol :egs Was ?ogemna in
Belavkin and Ritter { 2003)

Retative Envopy pf Suczest




atman Belavki

RANDOM UTILITY IN ACT-RR

Tach ruie 1 hs history of successes and failures
P{Outcome § 1). For a set of conflicting nves, the followsg
scheme 15 used to generate random utilitics R

P{Outceme } I} Suceess V Failure

RU; = Ul
- c+ulvul
= G-CV-G

where Cs 18 the cost. We ean also nse Gamma noise

R =G — Gammal{8;} v _Gammaéf;)

./

oman Delakis, fuly i1, 2005 16

PROPERTIES OF RANDOM UTILITY

o The cxpecied value of random utitity

m..:ﬂc.& = »U_.AQ - O.L s ﬁw - muw«ﬁ.._
BG-Gi

il

» Alows o model the Allus paradox

o Thc use of Gamma no1sE implements the featuses of the
OpriMisT conflict resokution: Ruje specific and dynannc
notse varance a2 = 07

—t

) T L [ Tk % 1 :

1l

eman Belavkin, suly th piiad

RANDOM YTILITY

For each deeiston b the oulcome 15 sampicd from its
distribstion P({Cutcome 14} conditionat 1o e 1. The utility of
this ouiceme 1S catled random weitity RU;

Dects10a1 = arg Max RU: , where RU; = P(Outcome 11)

Here P {118 probability digtribution of successes and
fatlures for o given rule, and 718 the ntility of eacii puteone.

Sampling ca8 be ,Em_a_znm_am gy the mverse PDT method

Cutcome = Py, where Peidl)

qukin, July 1 1, 2008

pntan Tiek

RANDOM PTILITY vsmax fL!

o Tested on agents with Bayssian leaming of MarkeV
. e I
Pecision models fLe. wansitional probability tables P

o ‘The random uhility agents pre 28 good s tie mox B
agent, andt often oEﬁanwoﬂdnm them 201 (Belavkin, 2005)

Poos pattetn

Rewarnds

vl fregnel

g, July L1, 7005 15

P

Kaman Relavkin, Iofy 1 §, 2003

THE ELLSBERG PARADOX
Due to Eilsberg {1961} Cousider two lollenes Aond B, and
probabililies of outcomes for A are gven

1+ $100 (1,0 $100

A B
.—. .
3 30 (0, T~ 80
BULA) =550 EU(B) = 550
ArB
—

Romas Belavkin, Juty t1, 2003

cznﬂﬁ‘iz.ﬁ. (810 ﬂZﬁOWE\«EOz
pPUt (- Jalig

Although the expected wlilities are the spme: the procedurss
snvolved it choosing Ak clearly diffesrent

i ag
) . m&.msc.«ﬂa.wo
pu— - 1 -~
5 100+ 5 50 &

205100 + i 50

Using random utility would involve deawing two samples
\ottery B {enc for P and ene for ) while anly one sample 15

nected for lottery A, and moy be perceived as fess risky.

L.L”LL,L_L_L.‘L

Roman Belavkin, Ty §1, 2085 i

[NVERSE PDT (A and B)

POF Lottery B

Fun pDF Lotery I8 Fiii

Lty thitiyy Aand B

Uility = F P P

10

gl s B
b t

RUA < RiJg Zout of J 1imes, whiclt

supperls nxﬂn::,nmi evidente
"

13 e uy
A= B Probabilin

foman Belsvkis, Juty 2605

INVERSE PRF (Cand )

Fiit eDF Latiery ]

Fil} POF Lotiery C

[l e -
Rit] 55

U

Liitity Utilisy € aud D

i

EAL]

Utitity = F~H(P)

Rtz > Alip 2 gut af 3 nmes. Agos,

330

comesponds 10 nuwnzana_nm Tesulls

a n w
Q > m Probabifity
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CONCLUSIONS

The Expecied ulility theory 15 probably not a good model
of the decision~making 18 {he bran.

Cognitive architcctuses and ACT-R need 1o congider the
paradoxes ansing from the max EU prneipte.

The rangom utitity method has been supgested as 2
cost-cfective somtion i6 {he problem.

The sole of uncertamty 1 decision-making 15 not well
anderstood (e.g. Elisberg, 1961).

Roman Belavkin, July 14,2005 §9.1
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The Result

o Cognitive Metrics Profiles that

» Reveal the dynamic changes In interfoce demands on the
users cognitive. perceplual, and miotor resources

#
Rensselaer|Sits W

Examples

o Temple of the Sun
o Blocks Warld

+ Focus en memory demards

Rensselaer|Same

Example: Temple of the Sun

& Temple of the Sun (To5) is a synthetic task
environment designed to study
intelligence analyses in a non-classified
envirenment

Rensselaer|@gme

Example: Temple of the Sun

Rensselaer| @

CMP of ToS

Tirepfinr: Eazs iy Myt
o AT MR A Rw A gmen
N E] 1 1 t

L1l ]

|n-ln.nun:l-;;snmn-.hwnmnnrlumltm:uu L]

2raiadn micei g g R 1 1B A

EN B B LmE b

B W E AL A R

FLOET R R LR, T R ey ey e DR CIETAR TS DL

RN T ST L IR L o eNsirEE coRatho o0

Rensselaer @

Blocks World

e Used to Hustrate some of the features of cognitve
mecrics profiling

s Easy to explain Blocks World task in a short talk

Rensselaer|Smme {:}

A

§

Cognitive Metric Profiling Reveals Hidden
Worldoad

Encode Blocks Retrieve & Place

Rensselaer|$ate

When to Profile?

& Asin software development: Profile before
Optimizing
o Befora changing the interface to reduce workload
® Profiic the model to see where it's actuaily spending i
time

o Focus on the few high-payoff areas and leave the rest
afone

Rensselaer|Camive

When to Profile!?

e Mot during initial design

o Designers should not try w second guess how a design
stresses visual attention. memory, or whatever

¢ Focus on designing consistent systems that are
e Pieasurable to use
o Easy o lagm
® Easy to recover from errors

e & chat meet the general performance requirements for
which the system is being designad

Rensselaer|@yative

Results of Profiling

o Profiling focuses on the dynamic changes in workload
that the interface imposes on the users

e In o multitasking world ony one tool carnot be
permitted to greedily hoard the users cognitive
resources

o CMP is the fMRI for applied modeling

Rensselaer| &g

Advances Required to Extract CMP from
Computation Cognitive Models Data

o Extend 6.0 by adding CMP module

* Write cognitive metric logfile into format that is
directly importable into MacSHAPA™

Rensselaer|Qagiive

Cléi

Wi irks

Questions?

Rensselaer|Soge
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{nformative Failures on the path 1o a Theory of Degraded Cognition
restriction, and circadian
e dramatic effects on human

1e mechanisms in

h effort underway 10 identify oF <63
dict) changes in performance ot reslit from
and the current set of

ade some Progress:
itive Science Society

Factors such s extend chronic sleep
desynchrony reduce copnitive
erformance. We have a researc
ACT-R that agcount for (and eventually pré
these degraded cognitive states We have 1
described in 2 paper o appear in this year's Cogmy
hvious o Us initially and wert

mechanisms i
proceedings The current mechanisms Were ot 0
1y after other approaches failed They ige include varying parameters that
i Hiry threshoid) This begs the question: what

dered fixed (e 2, utlity
mechanisms did we try that pro [

This prcsenmtion will focus of
degraded cognition



The effects of pr raisals and

caffeine on cognition: Dat? and models

Frank . RTLEY & Apacew Redert
ey L Ko, Coutnr urast
B Tomebid, Raten QHF
aroe Alet # P Sipis, WL DUAARIL

prrpkanarpRrdd

st e bt 2, vt g OV

Ty e e T,

et L et e S B e
e

]
\

o rr2

Motivation for Studying Moderators

pelavieral moderatars 3ppes 1o inflgence
cognition
{maybe they donn we jutt remember (HERLS aitferenuiylt
» hieal
- affect
w wEresd (muluple causes}

orrant fof understanding BpeaLs
of upan-CoTpues. hwrnan-object interactions
@ Language €0 be muddled: affect. emotions.
oS, arous
Work in this area ias not combined physiolegy
and cogrition that often (C4- porformance on
cuunmve-suussor not racorded)

revlous Apprcaces to

Stress/emotions and Cagrition

m Physiology studies

-~ prampiest fascavich- Kletn- Lazans Lieberman
wAl & Cognldve Science

- Examples: Sloman. picard. Seif £l Nessar
Noshing & Riaer

 Human Factors
~ Examphes: woods. Rancodk. and in overiays
= Cognigve Seience
-~ Belavkin. Gunzelmann. Chong Jongman
g Perhaps need for several approaches

4 (mpaci
« Toeuifecael greas and calfelne oA gnkion
- s calleine & cortisol mAmpliTALOn: far ket

u Overview of 6ar seseazch ling
T, Lakarus, 3nd renes wat shart ewen
a Tasks, madeit snd data. Gafetiay Project

- approsthanmil /et [ A

", tafeltie s study PRt 4343, prevee o el
« GaltravArpas F0dy {ondae 8743+ i
" pmpnicaee Galtupe madmatt ezt

w Caistne remien « &1
Jinpsuon: Calfne e aeisget
w Cantlutians and futute work

Motivation for Modeling Moderaters

o Modeling hehavioral mogerators that
influgnce architecture processing

- Development

-~ Affact
.Stress {multipit causes)

z Imporiant for modeling aspects
of hurnan-computer interacyons
g Sxending applied models from Quake 0

ModSAFE

o Pampie validated model nead affect

Qur Approach

2 or pakLaEaEATT- I RE pozar, awnsmaan b Epedte 36T

o Cognidve archizecture
(g ACT-I COIACRY etz S04

o Blopsychology models and data
o Vatidaton of modal's behavio?
= Specificaily

. Task appraisal
l"challzns!ni' ar "Theeatening’*
- Caffaine
w Duplayite explaie mode o
- amalysts
W readers



1. CafeNav Measures 3
m Heort 1t P73 mih. Cortisol, A DHEA
TimeE freantenh mood, .’apprﬂ.\s.ﬂ
m Visual signal degection ask
Relen, ik adel 5, K
u Simpie gpaction Ume sk
mulm.us\-— model 5, aemple f31
mWorking memory sk (MODS)
ilm:x-mﬁﬂvl,:‘.:wrc. (att, medel £
(a1 serial subrraction task
{gafes, valee rask & Leybgard ik rpdet tn 5. KT erratsh

() ATEUS Prime
{Lchoeiled, sk, maddel 3 ot b mersures]

ACT-R (4} Mode! of gbiraction

aCreate goal 10 serial subtract
~Subpoal 10 do current colunin

=Two steatapios: gount-dowh and subiract
wGet columa answel
»Repeat ALT0SS ¢oplumns
»Raport resull
2B rules
515 siaie chunks + 230 math facts
(~250 toral chunks}

odel of gubtraction

pCreate godl 10 gerial sublract
~ulizes & Rorrowing sub-goal
~flepeating subrgoal ACTesS columns
~Repart resuit

134 rules

10 chunk ypes

m318 original ehunks of DM

nd Tasks (a5 +0/135)

(o) Argus Prime = pual task .

¥

Seral Subtraction
Lpsprts T wieprod

predicted and Actual
on Serial gybtractions

syt e 1L
(3 det, B B e, 25 St B S cprgey, bt 1200

mHNead complete datd

aheed more overlay theories

&0ther lessons not reported here
[sue HFES paps )

w(ther modais will need the s1me
resting

m Recording User lnputl (U
software e s accepted. BRMD

fa

o

The effect
of Caffeine

Lessons from Café Nav |
& More control and caré of subjects

aTasks work, €0 aition, stre
caffeine effactsg 5

1 Reuse, because We have to

tpuse; B, HR, cortisol, mood, Lime-tazk time-
o ime-modell, working memo! task,
TodelT, Argus tash and model, AC?»R. Fidl]
Hews vsi;n:mcc-usi'- & madel. soptai-sub
Todel, ovarlays

oModerate caffeine ma be more
helpful i

aCaffeine and stress effect on
corrisol needs o e kept in mind -

Fe] Summary of Stress theories

o Stress thearies are incompleie—da not couch enuugh
Tezhaniams Lor ooy maneiing zrise thrpagh WMl
 Sary aflec the cEntis proceso!
» P afTECH penphery fIrRCTALAs pad proceTies
£.¢. Ho motsr
 Te trick Wil be FAKIRT iR dynaml
o Andt then 0WyHAL dynamic datd
“Tuese theoticd 3T urikely @ be ampiete
e ho witl mental arthinetic be Influeneed by
prrc:::wll narrowing thearyl Whers 1y trembt!
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Simple Object Systemn (S808) for creating ACT-R environments: A psability test, 8
test of the perceptua! system, and an ACT-R 6 version

Robert L. West l,ruhenﬂ_w‘st@ carleton.ca)

Degartment of Psychotogy. Institute of

Cognitive Science: Carleton University

Ottpwa, Ontario. Canada

Hruno Emond (brunu_,cmund@uq:xh.uquebenm}
Institute for Information technology
Nationa Research Counci) Canada- Ongesva. Canada

Josh Tacoms: (foshun .mcnmn@gm::ilmm) -

Institute of Coppitive Science- Carleton University
Crrawa. Ontario, Conata

505 {Simple Object System) for ACT-R 5 is sysiemi for
creating environments that ACT-Rcan interact with, 505 is
meant as a low fidelity, mock Up syster. Tht is, i is
Gesigned o be easy 1o learn and guick to Use $05 uses an
object-based spproxck 16 cremte worlds composed of
cbicats, simiter 10 AC-T_R chunks Iteanbe used 10 mock up
apy sort of cnvironment and can aiso B2 ysed 1o crenle
menta) objects that unction as the contess of modules (in
(he ACT-R 6 sense of module)

ACT-R6

The ACT-R 6 arcliitecture appears © e well seited for
505 Hoptfully. w6 will have 2 fully funciional version of
506 for ACT-RE svaitable by the dme af the watkshop

Usnbility Test

To evnlusle oWl claim that SO5 is easy to learn. we ran &
ssability test using graduate studenis sarolled in a one-
semester seminar 0B ACT-R at Carleton University Neneof
\he students had previoasly used ACT-R, Near the end of
the course, four stdents were identified a5 being competent
a1 building basic ACT-R models (i.c.. simple models with
no  crvironments) Al four had previous computer
programming EXperience and one hod previous Lisp
exporience. They autended ans class on SOS (about 2 houts}
and thes atempted Lo create an $0§ envisonment for the
model they wers developing, All four were oble o create
tasig SOS environmenls for their models wills no Assistance.
Two cromed com lex models. Qne of these featured
commpler initeractions between objects in the world; the other
featured  comiplex processing of objects by 2 module.
Another swdsnt the third author {and Lisp ptogrammc:).
augmented the Lisp code it anbanes the perceptual abijities
afferded by $0OS, secording 10 iGeas discussed in the coUrse
but nol implemented.

Perceptual System
In previous versions of SO8 e ACT-T agent had perfect
crceptual commund over i cavironment. Al objects that
matched its etrieval sequests were found, Lf there wak mere
than one ot matched then one of Ihem was chosen t
random. 508 now altows e user te det the salience of

ohjects 10 2 pereent chanee that they will be found By 2
retrieval reguest if more thon one ohject i selected then
$08 chiposes ane 2l random. This mukes SO§ seasitive 10
hoth the number of distracting lems and the similarity of
the items, Te 1est the system we modelled the dat from
Fleatwood tad Byne (20023 on lcon cearch. The resuks
show that the 508 system i5 guile powsrful in terms of
matching shis ype of dota.

Figure § displays {he eriginal data from Fleerwood &
Byree (2002} showing the effect of sel size and iv0a quatity
on search tmes Each set of icans has 3 warpet icon. One
thirg of the disracter icons visually mateh it but hive
different =X The other two thirds differ visually The
visual differences were turge, medivm or smatl This
corresponded o good, medium apd poor quality ieons.
Figure 2 shows datn generated using (he S08 perceptul
sysicm. In \his case a single safience fagtor was assigned o
cover the entire distracter set for cach conifition (i &, WE
cambined visual and text differences) The 1arget sutience
was set 10 | and the good, medium ani poet iGon distraeier
conditions were set {0 overall salience levels of 25,.35. and
5 respectively Figure 3 shows seme refinements 1o this
model in this ¢hse, S in the origiaal experiment, one Usird
of the icony in 2ach condition weze sct 10 the samc salience
teved ay the 1argst jcon, To get the curve We also assurned
that jncreasing e aurnber of distrastess increased the
salience of the visunlly distinct icons. We modeled this by
increasing the satience factor by, o coesiant for every Six
jeons that were added The factor was set \0 §%, 0% and
15 for the high, mediugn, and oW icons Otherwise. We
used the same saliencs levels ns above In theory, the
change in saHenee €aR be expiained by subjects adapting
differans search strategies for different s&t sizes.

Although this sysiem i5 quile fiexible in terms o fitting
the dala it was il constrained in this cass by using
reasonnble estimates of how leng it takes 10 click a {arges
withy 2 mouse and how frequensiy e visual buffer can bs
cheeked {constrained  bY the production firing  Tite}
However, withoul haviag previeusly esiablishied the salieoes
valucs, this system is mot capatle of making detailed
prediclions 1t mnin vatue is that it ca use stmple detestion
dats (or reasanobie estimales) 10 sel up an ACT-R S80S
percepiual systern that can caprere (e stochastic properties



of peecepilan cross time for B pasticular pask This 8
apprapriate when the stochastic propertics of a pcrc:pnml
tack are important for & model, but (e datails of how those
properties arise is pol. 1f it is important oF desisuble 10
understand the ote of sirascgic By movements andfor
attention shifis thes the ACT-RPM visual system {BYTRS &
‘anderson 2001 and the EMMA model of visuat augention
(Salvcet. 201} should be used {see Flectwood & Byrne. in
press, for an example using 1his dath)-
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Figure 1 The original data from Fleatwood & Byroe (2002)
showing e effcce of et size and icon quality o search
times.
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Python ACT-R: A New Tmplementation and a New Syntax

Terrence C. Stewart <ypstewas@eonnect carleton. ca>
Robert I. West <robert_west@carleien £a>
Carletan Cognitive Modciling Lab, tnstitute of Cognitive Sejence, Carleion University
1125 Colonet By Drive. Ouawa. Ontario. KIS SBG. Canada

We present 2 revimplementetion of ACT-R and 3 new symiax
for the creation of ACT-R models.  This Hlows for casier
development of new sorts of modules and & more gradual
fenrning curve. This short {800 tine) implementation provides
for all of the cot functionatity of ACT-R (including
production compilaion, optimized  and son-optimized
declarntive  memary \caring, 4nd basic cnvironment
interaction).  This process Yios alsn affowed us 0 invastipuie
\he distinction Detwezn the theery of ACT-R. and the details of
(g, standdard Lisp implementation

ACT-R i5 the most extensively developed, widely used, and
carefully examined architecture  for maodelling  human
cognition that we have  lis sucoesses e broad and
siantling, and it is 3 exemplar of the soft of theory that
cognitive scicnice strives toward, However due 1o various
factars, ACT-Rhas 2 rather harsh barrier 1@ eniry. Some of
this difficulty is due 10 is compiexisy: Iearning any systemn
that attempts (0 describe human cognition i naturally going
1o involve & certain degree of effort  Howsver, depending
on the user’s packground, the architecture iself can have an
impact on how understandable it is In particulat, people
with 2 strong backgrennd in Lisp rypically have a much
easier tme, especiaily when Tunning experiments with
ACT-R, or callecting data fom muitiple runs of an ACT-R.
mode! Thus, one way 10 make ACT-R. accessible 10 a wider
audience is o implement it in other languages

Qur projest is camplete functional reimplementation of
ACT-R with this in mind., We have ke fellowing genls: {1}
To confirm that ACT-R {5 doing what we think it is doirg.
A vompitie seimplementation oF software is often used in
industry to senfirm functionality in \his way. {2) Te
investigate the distinction between the theary of ACT-R and
an implementation of ACT-R. 1t is passibie that ceriin
aspests of ACT.R arc due more 10 the implementation
choices than 0 the theeretical commitments {3) To moke it
casier for ACT-R resparchers 10 jnvestigate modifications
snd additions o it This is one of the gosls of ACT-R 6 but
it stll requires af extensive knowledpe of Lisp Mrking
ACT-R svailable in more 1snguages will lielp this process

In creating this new version, we also have an pppanumity
o chanpge lhe Symax of ACT-R. The current symiax is
heavily embedded in its Lisp roots, and this can be 3
significant barrier to cutry {7 new User Therefore, we are
taking this opporiunity 10 develop an lternaie syatax which
fitg well within the new implemensation. and will be more
familiar to  peopie with 2 procedum”ub]etl—orientcd
programuming prckpround (& & (b, Java)

Implementation
Our reimplementation is in the Python langunge [1 was

chosen due to the first nuthr's sURCESS using it in 0 graduate
course ta teach non-programmers 10 develop connerticnist

and evolutionary computational models  of cognitive
systems {Stewart, 2004) The language is oficn deseribed as
‘executable psusdo-cade” dua 1o its goal of having a syntaX
that is as clear s possible both for writing aad reading
Significant effor has gone intd making it suitable for both
beginner and expert programmers, and il suppors &R
ciegantly subtle \ransition from procedural. 18 functional
programming. It iy also freely wvailable, Opens Source.
widely ported. and has 3 comptenensive puilt-in library
Impartantly, Python wgupports 3l of Lisp's essential
featares cxoept macros” (Morvig. 2000) This gives the full
power of Lisp. but 2 caopstrained syniax This syntax has
besn carsfully designed for fast deveiopment. clariry, and
ease of learning. For a fill discussion and camparison
between the two languages, see (Morvig, 2000).  Our
expetience has heen that academics with ro ;:rogr.zmming
packground are able 1o read and understand Fython code,
and that this accessibility mazkes them more likely 10
devetop computationat models within their own yesearch

Syntax

Unlike the JACT-R projest (Harrisam 2005), which uses
Java Lo process madels writen in the swndard ACT-R
syntax, We write ACT-R. models as normal pythan code
This mukes it seamless 10 inierast with other Pyibon
sofrware for defining experiments. NEW modules, and other
models Tt also leads us to a different. but identicadly
expressive, Syntax

As a sample, bere is the Lisp version of the increment-sum
production Fom the additian madel in ACT-R Tutorial 1.
followed by the Pythen ACT-R version:

(P incremennoium

wgoal®>
iaa add
count =gount
qum aum
azetrieeal?
taa gountweIder
tirat LET
second ELLEE ]
.
»goal>
aum HpwWILm
szerriovaly
iasa count-orger
first mEount

}

def tnc:cnmntsmlqnalv’ndu nppuRt 7AWR -
rct:ievnl'-‘cnun:'u:der agum tmawsum b
qcalinw‘nmnﬂwsm!
:nttlcval(':uunc»-o:dur 7epunt T



Left-Hnml-Sliic Syntax ; “ i To do mare " .
. ) where Lisp A CT-R uses e P " e :;: h Jéﬁhzl:ﬁ mzich on the same siot, you can i?‘:-;ofssohda‘lc buffer changes ¢=) and module requests
'ﬂ"le. 251 Ta Tines zf x:{:ylhg; \;}:rgu:l dcéi;:; u?tigi'\ jdentify what bufler we are referring 0 o0 the LHS, Pythen [ (+7)into B single type of RS request.
which matches on B0 e r ond the & i i ]
puffer.  The tast two lines %ﬁc the RHS- and show the ACT-R uses aseries of default funcion ssguments " - L‘si’ ACT-R Python ACT-R Creating 8 Full Model
modification of & ot in e goal buffer and & rerieval : . " . wm WO The fotiowing is 1
request From the pywon paint of iew, this i3 3 function Llsi‘:ﬁf R Frt qg::_CT R’ [ awm cuotoun: thzee BLaETOENET Tutarial Un'ngi ciunl:sengm;:.ﬁﬁmvﬁfzg; gor_mlmh;n{;cT-R
gefinition, and the argy nd defaust values for the ey - oum  Thees ACT-R Yibrasy, oisich gives Pyten uccmym ic ‘AE.;?‘{
functien ar® used as the LHS while the body of the function ocatpiavals pouzievale’ . ] - swn obaRt syetem we bave writien g
3o used as the RES, Our Python ACTR system XIS this * . - gun  oEher
;';fmﬁ:g:fmﬂt vfﬁf;:fﬂﬂ A uses the malching RieS wunntaves> shatevest ‘_ - Right-Hand-Side Syntax import 2SEF
python ACT-R supports the same functionatity 35 the = 1 In python  ACT-R, e RHS of 2 production_i8 The model definition is contained within 2 SinglS pythen
and "= (and the 18 ACT-R 67 matehing 67 e LHS, To sprcify ® matching patem or a buffer, we Ut . 'mFlﬁmm‘cdﬁ“h!'bﬂdY of the function being defined. Tws cless This class can then be gsed to create multiple
and the =" [POFEE ALY commands o7 the RHS ilar YRR 05 whon we d fined e cnks. This s 3 1ext [ ) g;asns iTm any arbitraly Python code can b writter for the  instances of that medel 1t exphicitly specifies what modules
Lacinp (hat uses Spacss 1o separate the slots. Since there re ‘-\ N iy A&wcfcﬂ' 13 wauld be the equivalent of s9UES of  exist within this model, 20 whst ey 2¢e calléd. Note that
Chunl Syntax oo slot names. order maters. Python Al o R a T Rf-l% shuu-li; .cgz-_cm:;rnnnd S, fgr normal models, the 1L 18 completaly passible 1o fove mulipte dacharative
The most conroversial chanBe is thar chunks N python  indicat® variabtes (mach ke Lisp ACT-R-USeS [ l " d module © ’w:m o commands which a5 2l buffer  memory systems, if desired. Adding 3 new uifer/module is
ACT-R. do oot have amed siots  The rain reason for this " e ‘h:“g‘;{s X as simpie A dding o new line in these declarations 175
i5 to reduct 3 confusion we have frequertly encountered Lisp ACT-R pythan ACT-R \ var‘mlb'ie e o }1’?!:;5 nv_;:_h sccess o all of the bound alsp possible (@ design new modules and ndd \hem here, 35
Many people \earring "R have Gistcuity femembering wqoats ppale 84 st 70 e Hs’ i m the - pse W weated exactiy Ike  lopgRs e modute conforms 1o 2 basic 50t of rules (it must
dhat sict names o ol Ve cmantic volue Fu n.hcrmo:;. Tos ad l nocmal Python vand jes h;;xbiu 10 indi::i:\tc the contents of its buffer, and it must be
deteemining & zond name for o siol €80 be aemeuit if the arql wousi S . abic to respend 10 requesis} Mot that we have chosen 10
slat is used i & fferent ways in different productions. argl oo \ L"fp ‘_\CI'R Python ACT-R have exactiy one puffer per module
Since slot names are apt part of the \sory of ACT-R- but gun nil (pucpunt L=auntd print oo
are Tather ther® for the convenienee O e adelier. We [ Modifyi cicaler slat i , \ claag Count!
have chosen 1o investigate what happens i we identify 5ot gince order MRS, glots that &8 wnimportant ot the : w - D;:mg! : b “:“:r 5;‘ in o buffer 38 done WSS goatmacty BRLies
wy positian, rather {han by o stot pame We have found twe mmch cannot be 1eft out. Ingtead- 2 <97 is used o indichte o rgfr.r g fhc 1{1:;:1:]&5 mny ‘.’““]d variabie can alzo be used revciayemaenr Boatetlemary
imertsiing positive wenefits of whis appronch First, it thot this slot i5 umimportant. [ o eie Fn“il‘ at _c;‘;\nnbcss pound o BY setting 2 proguctionTaETE aaglebreduztion
cfiminates the need 10 keep track of baoth slot names o L. . ) v this variable. ¢ actully modify the $16¢ o
variphle naimcs (whigh 18 confusing i \he commen Lisp ACT-R Python ACT-R \ g X Te SWI;}lfg' ﬂ;:: imitigization. of geclarative memory. A
situations where the siot pame an the variable name are wgoal? czie add R0t 7 pdl’ . . arge set of chul 5 can be crepted fike thist
identical, 25 in sumething%ikc':s.:n werrat’) Instead. W& 3,-,; add ! L Lisp ACT-R Python ACT-R
use bound variaplss 2 \emporary siot RAMES within & azglL =owat L . tp setosu dug serEwnl neparye" Taount 8 3o 90N 12
particuley production qum bl l ~goal gualm add 209808 73um’ b3 eounr 2 1. covat 34
Secand, it mIKES the ereation of churks with many slots i 52 fdd goal aurmEouatd coune § 9. cowst 3 6
much less copvenient. though it fas beeh argued that 1f o variabie ig used i 10 (or more) sigts, then that forces L gouns =CeURS cagnt 6 7. GOURT T %,
there should be onty T %2 slots in 8 chunl, it 18 sill  both siols it use He voriohle to have the same conicnt Loy ow s =30 counc & §. caunt 9 18
comman 10 et models with 2 jarger HMMBETS This is ot (exactly a5 in Lisp ACT-R) : -
casily poticeable when one exarines just the productions. ' ~goat? Next, e productions re defined  Thiey make usc of the
sinee cach pmducﬂon moy only ust 2 few slots. Howeverh Lisp ACT-R: L aum TOURT named u_mduls created prcviuus’u)' For each pmducﬁnn.
in Python ACT-R. singe slots Are identificd bY position. yoU ~goal? =@ ! we_speoify s mome, (he EHS Tiatching ruics, nd e
must explicitly 52 in the producl‘mn that cestain slots 15H add i To puta EW ks into 3 o ! acticns 1o take on the RHS Note that the RHS is simply the
Foutd B 'igmn:d s seems 19 T 30 | eresting SoR o S ‘ ) mudlﬁc i c“: k"‘ in u.:;' : »er&or 1o make a reguest ofa bod_)' of o normal pyihon function, which means shiat any
consiraint on (e pamber of stots 15 pracrical 10 use count gOUNE 1, LHS Hound - 1‘:; specified in tie S30KC manper ¢ I the  valid Python code can be used (such s the peint
ks in python ACT-R als0 o ot have chank-ype. weonpievals y o "d' ound varisbles can o used. and 2 9" in a reguest commant)
or a name There 15 thus o0 nieed for the (chunk-type - 15A counz~6IeL ; indicates siots thet 47° not important 12 mateh af
declarations fnstead. chunks are 30 ordered st uguaily tirss maum \ des swarcl
represenied 35 3 line of text With spaces separaing the secand R L . f‘“f ACT-R python ACT-R " pai couns-taen 1A e stazting’ i
elements (ahhough they cal be sy arbitrary ist) Ppythan ACT-R: fmf » . geall add anunl 07} rut:iuvvz(':oun: 7atart ent’)
a1 add 7590 pguRT - i iad s goal (' gount~£Eos Jarars Tent counting '}
Lisp ACT-R mr.:ieval-’cnunt~e:de: 25um TREWIUR \ - i
{ehunk-T¥Pe count-nzRel 325t aegondd bad L] eount 0 det 1“‘5:"“’“5lﬂﬂll"ﬁﬂunt‘!tcm 1R sogunting’
{a 15h counc-order LAERE 3 segond 3 To indicate that 2 siot showid not match, Bython ACTR J— . ceczieve= count 3% ettt
pythen ACT-R: wses ' t' Thiscan b combined with the ' 7 for variables- - “:‘_:“w"b . carrievaliTomder 7equnt P pEint ¥
coent-ogder © giving the {ollowing pnssibilhicﬁ: L J‘: . count-aTdes Cerriqel count MeRE rpexeiext
. lrat e OUNT qoaltxunule
lfs;;u‘:c’r ::.vm P:{th:::sﬁ::ﬁf ] \m 02(-. open qu:‘s.c.ion is '«.Vhathcr thig synptax should slse e ded sapigoale counET from % 1% counting 1!
- gum RUT [RESES L used for modifying giots in buffers if50. it may be possible print x
L gosl t count-tzom ¥ 9w stop !
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Now that the modet hias bees defined, we cgn credte why  Current Status 1 - a retrieval request and a match on that request, he retsieval
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From Lmotion to Memory:
An ACT-R view on the Somatic Marker Hypothesis

Andrea Stocco (stocco@unils it
Danile Fum (Fumi@units i1)
Departnent of Psychelogy,
University of Trieste, ltaly

Introduction

The Somatic Marker Hypothesis (SMH; Damasio, 1994) is probably the most
important contemporary thecty of emotions According to the hypothesis, the
neyroiogical substrates of the erotions are the perceived immediate bodily
reactions 10 environmenml stimuii, which can be censed threugh internal
rcprescmmions that are continuousty updated in the sensory regions of the brain
These somatic rcpresemations are conveyed, through sensory pathways, 0 3
convergence Ared in the arbitofiontal cortex Within this region, they are
associated with other represantalions conveying contextual information In this
way, the emotional reactions become gomatic arkers for the previously
encountered stimuti that elicited them.

Once formed, somatic markers may be reactivated when the organism
faces situations girilar to the ones that induced the markers The organism is then
already prr:»nlerlad and pre-dispcscri to react properly, and unconsciously biased
towards certain pehaviors

The Jowa Gambling Task

Most of the empirical gvidence suppotting the SMH comes from experiments
pcrformed with a paradigm known &5 the Towa Cambling Task (hereafier 1GT:
Bechara, Damasic, Damasio, & Anderson, 1994) This task was developed 1o
capture within & laboratory situation, some important aspects of real-life decision
making: uncertainty abeut the future, lack of perfect information, and the wade-off
between immediate and postpuncd rewards.

In the fowa Gambling Task, participanis aré asked o repeatediy select &
card from an a8y of four decks, iabeled 4, B Cand D Each selection always
results in an immediole positive outcome Decks A ang B carry bigger wins, while
C and D lead to gmaller monetary rewards .

Unpmdictably, however, 4 win may also be immediately followed DY 2
subsequent pegative outcoms These penalties aré arranged so that selecting from
Aond B (“bad decks™) wiil produce a0 overail joss of money Therefore, the
advantageous SURMEEY is to select from ¢ and D ("gocd decks™, that yield an
eventual profit

Normal participants usually start selecting from the bad decks, but end up
performing significantly moTe selections from the good ones More imerestingly,
selections from {he bad decks are prcdicted by greater anticipatet increases in the
skin conductance response (SCR) than selections from the good oRes (Rechara et
at, 1996, 1997) Singce these rteactions appear before participants acquire
conscicus Lpowedge of the task (Bechara et al, 1997}, they were originally taken



a5 evidence for an implicit mechanism of somatic markers that was sensing the

gy Pl
Conversely, patients with lesions in the erbltofrcntal cortex (OFCY do not

show any gCR. increase while performing ihe tzsk, and, correspondingly, they
rernain srack to the bad decks, unobie 10 switch to the good ones

researchers The main point of the debate 15 how exactly emotions affect higher-
jevel cognition Tomb, HaussT, Deidin & (aramazze {'2002} pomtcd gut that SCR
[ESpOnses may be digsociated from bad decks by varying the schedulmg_ of losses
gimilarly, Maia & MeClelland (2004) chawed that good perfurm:mce in the task
is accompanied BY explicit xnowledge of the underlylng structure, casing de?uf:ts
on the supposedly unconseious ynowledge cartied by e rna_rkers The suiking
difference between healthy subjects and patients, powever, 1% harder 10 fr*txma,
gince it im lies 2 specific decision—making jnshility in 2 cat_egory of patients
whage cognitive skills are reported 10 be prescwed (g, Eslinger & Duamasio,
1985).

) Recently, Fellows & Varzh (2005) have pfuposed_that the caust of
patients’ impalrment may be a5 inability 1o acguire NEW 5umu§us-fcw;1rd iinks
once preliminary associations have been teamned They west succcssful' at
showing that patients’ impairment disappears when 0o reversal of previous

expectation is required
A computat‘mn:\l maodel

In Fum & Stpcco (2004) we proposed a revision of the Somat':c Marker
Hypothesis {hat was gsounded ong functional imegraﬂ.on of en}otmﬂ and memory
We put forward 2 model that could replicate the basic expenmcntal ‘resuifs. K:hc
core of the model was the ACT-R. declarative memory syster rewrﬁnen in .L-}sp
and pmvidcd with special routines 0 ipplement 2 memory-samphng decision
process within the 16T

LEmotion and memory

The main tenet underlying the ACT.R. theery s that human cogpitions is adaptive,
and that the rewrieval of information reflects the probabiliry of oceurrence ©
events inthe environment (&g Anderson & gchooier, 1591)

However, sormnenmes uncommon evenis need to be recalied fast a]}d n?t ]
pe forgatien in spite of their Tarity This is vital when sgch .informauon. is ©
valuable biclogical importance Gince larger paseline activation mle_rfercs w?th the
learning of new gacts, the most rational solution is 10 have vu_nl information o8

environmental cues: Guch strengths should reflect the biclogical vaiue Qf the
information itself As 2 result, televant cvents may b€ recnllec% promptly in th;l
context they af® more likely ¢ occur, without cluttering working memory as i
they were constantly active ‘ '

The represemmions of the organism inner state ptOV.idi‘. an effective W&y of
encoding the immediate biological value of end event, Whlc!’? can be also x_;scd 10
evaluate it ausociated Cues. 1n this sense, Damasic’s heory is both attractve and

convincing
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In our model, neither intemal somatic states not gmotions are modeted
directly . Their computuﬁona! counterpart, however is their emotional impact,
which is calcuiated for each oulcome, stored, and eventually used to reinforce
immediate associations between cues and gvents

This associative value is added to the interasseciative strength Sy between
chunks, which i cajculated according to the frequency-based Bayesian estimates
as described in e equations of Anderson & Lebiere {1998}

This additional associative factor is mediated by the orhitofrontal cortex.
which is also thought to play 2 role in the active maintenance of somatic
information in working memory The contribution of the orbitefrontal cortex 15
expressed through & new parameter, 7

Core fealures of the model

In ACT-R, when the proper goal 18 attended, the activation of related chunks is
given by the sum of their base-level activation and the spreading component

A= B+ Wi

We simply ndded 2 third factor that was propoﬁional 10 the experienced emotional
value of the event encoded inj:

A= Bf * I‘Vsj'j + H;"'t

The term ¥i is the smotional appraisa! of the fact encoded in chunk i, and i8
the output of the processing of different subcortical regions—TnOst notably the
amypdala and the basal ganglia These regions B xnown to be censitive to the
magnitade and frequency of rewards, and anatomjcally project 10 the OFC Incase
of mongtary values, the emotional impact is obviously related to theif nurnericat
magnitude, and was caleulated as ¥i = log(i}/ log{max(i))

It may be noted that the two contextual components look similar Indeed,
they both refiect the activity of two prefrontal  areas (du:snlateml and
ventromedial) and perform similar functions OVEr different contents, following &
general rule in the prcfmmai corteX (Goldm:m—Rnkic. 1996; Schoenbourn &
Setlow, 2001} -

Other computational madels

Computational approaches 10 emotion have been attempied several times. Most
notably, Roils (2000) has proposed an mutoassocialor network model af the 1ole of
orbitoftontal eoriex in dealing with emotiomlly-cha.rged informmation This
appreach is functionadly very cimnilar to OWrS Wagar & Thagard (2004} have put
orward another aeural model of cognitive-aﬁ'ect’we integration It is much
detailed in mimicking existing neural circuits, but we regard some of ils mappings
as questionable

Within the ACT-R. community, Roman Belavkin has previousty deatt with
this topic (€ & Belavkin, 2003} Belavkin explicitly Linked the role of emotion
with goat value (G) and noise in goal activation {r} in ACT-R. Qur approach is
rather different, bul W& certainly share the commen view that the main



computational sole of emotion is to allow further processing of relevant
information, although we prefer 10 obtain this by means of impiicit retrieval of
associated declarative information Furihermore, We also share the view that the
pasic mechanism is to be recoilected within the subsymbolic parl of ACT-R,
although its effects may be manifest on the symbokic side

Simulations

Because of the term n¥, normal participants &r¢ more likely 1©© recollect negative
oulcomes that foliowed that own choices, When the 7 parameter is set to zero, the
model mimics the hehavior of orbitofrontal patients (see Figure 1) In this
damaged version it is completely stiracted by positive cutcomes, wWhose baseline
activation shadows the negative drawbacks and hinders the Sponianeous process
of recalling (and re-experiencing) the aversive results

a 100 B @ 00 R L L
25 pormal gasicipants b 3 Debiictrontsi patisnts
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& 0 0

= Dala (atter \adel & Duta {oller taode!

fipchara o o 15894) pechara et al. 1994}
Figure 1: The model reproduces data both from healthy subjects (a) and, when the
n parameter {5 st to zero, of OFC patients (0

Implicit and explicit processes

Bechara et al. (1997) argued that the effect of somatic markers is eatirely implicit:
they drive pehavior without humans being awart of their action

We take a different stance Inour model, an automatic and implicit process
is required 10 associate choices with their outcomes, and automatic and irnplicit is
the activation of such information when & particulas choice is being attended for
evaluation. Howeven once it has been resrieved, that piese of information is fully
explicit and available to COnSCIOuS prncess'mg This makes possible for a person 10
select certain options even when they @e associated with largest penahies-«»-a.nd
farger SCR Increases, as in the experiment by Tomb &t gl (2002)

More simulations

1n addition 1€ itg declarative memory siore and the arbitofrontat linking
mechanism, our model requires other componeats pecforming computations A
common way of testing the hypot.hesized functions of such modules is to disable
{hem and compare O impaired model's performante with that from patients
having 8 functionally corresponding lesion

The amygdala is know to play 2 role in the appraisal of frequency and
magaitude of rewards (Zaila et al, 2001}, and, in p:micula:, 10 be invoived in the

processing of fear In our model, this inmediae appraisal of outcomes 1S

i}

perfnrmed by the fuction remurning the ¥ value We altered it 1o Teturm zero for any
of the pegative GULCOMES, and were abie 10 obtain a pattern of ¢choices that is
cimilar to what was sbtained by Bechard ot ol (1999) Results are reported in
Figure 22

Emotion and working memory in decision making

Bechara et al {1998} reported an apparent Gouble-dissociation: QFC patients
pe:formed normally on working memery tacks but poorly on the IGT, on the
contrary, patients with fesions in e dorsolaterai part af the prefrontal costeX
exhibits severe impairments in working memory but scored normally on the 1GT
The authors suggested that decision making may rely on emotional circuits only,
and be dissociated from working memory

Although based on & functional integration of emotion and mermory, ouf
mode} could reproduce this exact pattern of results A working memary disorder
was introduced by reducing the W parameler, and then having (e model nun the
Gambling Task Cur simulated Tesults closely resemble the original data The
rationale underlying our results is that 1GT is not an intensive working memoty
tack A limited amount of attentional reseurces is required 10 samnple outcemes
from memory but, eves if this resource i5 limited, theis refative differences on tie
¥ value are sufficient 1o correctly estimate the possible drawbacks from the risky
cards
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Figure 2 Performance of two domaged versions of the model compared with
performance from patients with lesions in the amygdala {2} and in the dorsalateral
prefmni:ﬁ cartex (b)

Conclusions

With our model, we have zddressed the issue of the celation hetween emotion and
cognition within the ACT-R approach of {he adaptive eharacler of human
cognition. We have shown that it can reproduce the basic experimental findings
reported bY Dumasio and co-worker  Finally, we have further test our proposed
medel, and shows that it can aiso account for other neuropsychoiogical
imnpairments
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Fxecutive Control in Sentence Comprehension:
An ACT-R Model of Agrammatic Aphasia
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Introduction

Current hypotheses about agrammatism refer to different frameworks. Withia the framework of the
Government and Binding theory, Grodzinsky's Trace Deletion Hypothesis {TDH) states that
agrammatism results from a damage to a specific mechanism conneeting the antecedent 10 15 trace
(Grodzinsky, 2000} in opposition 10 the TDH, Pifiango (2000) postulates that a processing deficit is
at the core of the agrarmatic comprehiension style She put forward the Siow Syntax Hypothesis
(S5H), which drives attention on the effects of the movement of the grammatical constituents of 8
semience, and focuses on atype of movement that provokes a deviation from the canonicai order of
thematic roles in the surface represenmicn of the sentence According to this view, lexical
activation in agrammatic patients is slower than normal, and therefore they are unable 10 build the
gyntactic structuré of the sentence quickly enbugh to prevent semantic linking from emerging and
dominating the meaning derivation process Pidzngo provides evidence for the 4SH exploiting the
case of the psycho\ogicaﬁ verbs of the “F rightened " 1ype also cailed Dbject-Experiencer (OE) verbs
since they show the spontaneous fenture of reversing the order of the thematic sole in their active
version, showing the Defauit thematic grid of Experiencer-Theme only in the passive form. The
behavior with this verbs is the opposite to that with Subjeci-Experiencer (eg. “Love” Like"etc ES
verbs) verbs in which the thematic role of Experiencer shows up as the subject of the sentence In
active form, the verbs of this group have 2 default Experiencer/Theme thematic construction. As
reported in Grodzinsky {2000}, apramipatic patients perform well with the active form of Subject-
Experiencer verbs ond with the passive of the Object-Experiencer verbs whereas chance
performance is found with passives of Subject-Expertencer and with actives of Ohject-Experiencer

A computational model

We postulated that the cause of the slowing of the jexical activation process is an inahility to inhibit
intrusive lexical information  'We tested our hypothesis within the simplified domain of
psycholegical verbs The model tries © reproduce in the most detail the parsing process, basing it
on a previous ACT-R model developed by Lewis (1999)

The crucial step in the model is the retrieval of a thematic grid, which triggers the assignment of
roles to the epcountered noUNS. This retrieval is cued by the processing of specific words, which are
either nouns, verbs or words denoting 2 passive form

Thematic grids, tike ony other piece of declarative inowledge in the model, have an associated
activation value that expresses their availability 10 retrieval and reflects {he past history of the chunk
itself This base-level activation may be overcome by a contextual comgponent, which spreads from
the amount of attentional resources gevoted to 2 specific lexical cue This amount is ruled by 8



single parameter, W By maintaining sustained activation of a few elements, this parameter enables
working memory and goal-directed behavior {Altmann & Trafton, 2002}

Since the default argument order is Experiencer/Theme in the sentences we used, this information is
sore active Contextal activation is required to overcome it and retrieve the opposite structure, 2s
is in passive forms of ES and active forms of EO verbs With an abnarmally lower value of . the
contribution of contextual activation is insufficient t0 enhance the Theme/Experiencer grid, Jetling
the default one compete for retrieval This interference increases the time needed to complete it and
the probabiiity of assigning the wrong roles in the semantic representation

Resulis

We tested our model’s syntactic comprehension in a simulated experiment The model was first
presented with study set of 12 sentence, made of six SE verbs and six OF verbs In each category.
half of the sentences were in active, end the other palf in passive form. The model was iested on a
second set of other 12 sentences, made with the same materials of the first ones As predicted by our
account, in the normal version, with a W value of 3.0, model's performance was errorless for each
sentence (Fipure 13 whereas in the damaged version, with a Wof 2.0. model’s performance was at
chance when the study of the test sentence Was gither o passive ES or an active EO sentence  An
exarnination of model’s semantic representation showed that in both cases there was o 50% chance
of misrepresenting thematic Toles

LA Franhe) ES (Actned ES (Ponshol

£0 (AcUm)

Figure 1: Mean performance for the normal simulation in {he comprehension of
gifferent seatences with psychoiegécal verbs.

Discussion

We presented 2 computational model that postulates agrammatism as disorder stemming from the
inability of using on-line texical information to overcome interfercnce amongst compeling syntactic
elements. This approach i3 consistent with the time course hypothesized within the SSH. Computer
simulations shawed that, in virmally damaged conditions, the model could correctly reproduce the

behavior of beth participants and aphasic patients

[ JE S

L+

| N

-

ED [Active) £0 (Passiv) £5 (Acthe}

ES (Pastie) J

Figure 2: Mean performance for the aphasic simulation in the comprehension
of the same materials Results are averaged over 200 simulations in the “aphasic”
condition
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. Left hemisphere vs. Right hemisphere
-ACT-R

Future Work

- ACT-R Modeling

— Diagram Configuration Model
- Koedinger & Anderson. 1880
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ACT-R6
Official Release

Dan Bothell
Camegie Mellon University

Brief History

Proposed at the 2002 Warkshop
- Concurrently with ACT-R 5's release
* Initial descripfion at the 2003 Workshop
~ Early prolotype
- Claimed a 2005 Workshop release
+ Diseussion session after ICCM 2004
- Fieshed oul some issues with syntax
« Here itisl T
- Fully functional
- Used it for the 2005 Summer School

What is ACT-R 67

+ The same theory as ACT-R 5
- Rewrilen implementation
- Eliminate unnecessary legacy code
— Unify/standardize the buffer mechanism

- Better integration of ihe Cognilive and
Perceptua¥Motor components
+ Only one lime malnienance mechanism
— Make the whole system medutar
= Easy o add new compenenis
= Easy to remove/repiace exisfing ones

How similar is it to ACT-R 57

« Very similar

+ Most of the commands are still there
— resel. clear-adl. sgp, p. add-dm, fun.

* Medels look basically the same

Same equations

~ Procedural

~ Declaralive memory

» Witk basically the same parameters

« Same defauits and usage

Same Percaptual and Maotor modules

Why should | use it?

It cleans up some issues thet can make
ACT-R 5 tricky to work with
It has new features
—To make things easier for modeling
- To add some requesled capabiilies
- It is easier to extend and modify
- Easier to distribule and combine exiensions
- in many cases it is faster than ACTR §

Things that were cleaned up

-

Overall structure
Buffers

Declarative memory
Productions

Vision module

Module states
Production compilation
Available commands




Basic structure

+ A central event scheduling system
— Independent of the theory iself”
« A set of modules
—~ Ali freated equally
— Should each be independent
- May have one or more buffers as an interface
~ Responsibie for scheduling ils own events

Buffers

They ail work the same

-~ Can hold one chunk

~ Relay queries and requests loffrom a module

* The chunk is & copy

- Doesn'l exist cutside of the buffer until & is cleared
- Changes are not reflected back to the criginal chunk
Essentially chunk creation scratch pads

Chunks

+ Not just for Declarative memory
+ Any module can create/use chunks
+ The set of all chunks does NOT equal DM!

Declarative Memory

Holds only the chunks that are added explicilly
or those that come from the buffers

+ When a buffer clears the chunk merges into DM
— True for aff buffers

Those merges are the references for baselevel
learming

— Mot he LHS usage as in ACT-R &

« Because buffers hald copies DM chunks can't be
changed from within a production

- Previcusly it was a recommendation

-

General Production Changes

+ No LHS Reirlevais

+ Gan'tuse levall in the sfol value posilion
= More rgorous syniax checking

~ LHS ordering not impertant

this will work:

{piest
=goair
isa god
- vaiue = vakia
=retriovil
Isa fact
slot =value
EE S | n

Productions LHS

» Only four possible conditions available
=huffer>
+ Tast the chunk in the buffer just like in 5
evall or lsafe-evall
loind! or Isafe-bind]
» Sarme as in ACT-R &
» Safe-versions accepted by production compilalion
?huifers
» Query the buffer or its moduie

T

A

[

Buffer queries

~  Reptaces the ~slate buffers
© Syntax

Rhutlprs
{14 guery valos)*

- Either e or false

- Mo bisdings
- dust all be e for production lo match
-+ Exmnples
Iretrievei> Tvisualr
stale  buny - siale  emor

buffer ampty buffer  =chack

Queries continued

» Every buffer/module must respond to
- Slate
» Values: busy. free. or error
- Buffer
» Vaiyes: full. emply. requested or unraquested
— Others can be added by a module wriler
* Madelly for the current #M modules for example

Production RHS

Essentially the same operators asin 5
Removed the obsolete cnes
- tpapl, ipushl, lrelrievel, eic

Standardized the mechanism for alf
buffers

Possible RHS actions

« =huffer>

» -buffer>

- +huffer

+ levall and lsafe-gvall
+ lbind! and isafe-bind!
» loutput!

- istop!

RHS actions

=huffer>

vall and It afe-evall

Ibind! and safe-bindl

lputput!

— All the same as In ACT-R 5

— The sale versions de not inhibit the production
compllation mechanism

istop!

~ Mol actually new, bt does work now

«~ Generales a break evenl In the scheduter

- Terminates the current “run” command

RHS —buffer>

-huffer>

Clears the chunk from the buffer

+ That's jt!

Does not result in any action by the
module

- Unlike ACT-R 8§ where that couid also cause
the corresponding module 1o resel/clear




RHS +huffer>

+huffar> isa chunk-type
{imadifier fslot | request parameter] value)”

o1
+huffer> chunk-reference

. Sends a request to the module
- Implicity clears the pufer a5 well
— Essenlially lhe same 85 ACTR S

. Remoeved the atlended siot fsom visual-docation chunks
+ Replaced with

- Good becaise ROW visuai-{ocallons can merge properly

- The guery can match nit 1o new but a LHS siot test couldnl

Vision Module

~ @ RHS raquest pammeler
- location>
Isa visual-localion
sattended o
— ALHSquery
“wisunl-location>
attendad nil

without Ihe changing aitended stol

bl

Vision Module cont.

. Atention Shifts changed from
+yisual>
tsavisual-object
To
+Vvisugi>
isamovealiention
- No longer need the scale siot in visuai-objects
. Easier lo read in productions
_ The old systerns analogy lo declarative didn 't seem
ali that helplul

Production Compilation

+ The same general theory 85 5
~ Combine conseculive productions into one
~ incorporate requested chunks and remove tha
request
. Mechanism Is now spli into two distinct sleps
and applied on a huffer-by-bufier basis
_ Chack for possibility of compesition
.. Perform the compaesiion
+ More robust than the mechanism ins
- Slightly more resiricied than the 5 mechanism

- |

Production Compilation cont.

Applies to all buffers (even user created)
Basic mechanism is that there are 4 styles
of buflers

- Goal, retrieval, percepiual, and motor

+ Any buffer can be set o any style

» New styles can be added

+ Existing styles can be modified for both
steps

Commands

Removed some duplicate commands

- {set-generahbase—leve%s, set-ail-basedevels, set-base-
iovels, selgeneralbaselevels, selalibaseleveis.
sethaselavels) o5 set-base-levels

. The PM commands have had the *prv” removed

. For exarmgle pm-poc-dispiay is now proc-display

+ Comrmands referencing obsolete items ramaved
- In particidar anything that included wme

+ Sgp sets parameters for alt medules

g

g - da._.
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New Features

+ Request parameters
» Declarative finsts

» Sources of activation
» Mudtiple models
Strict Harvesting

P* command

Request parameters

Buffer specific parameters
- Valid no matter what the chunk-type

- ':tl:\gfaylssﬁ: Seywcrd {which dislinguishes it from an
« Examples
+visual-localion> +retrieval>
isavisual-location isa awy -chunk-ype -
:attended nil recenily -retrieved nil

-

2

.

Declarative Finsts

Canno! maodify chunks in DM in a production

Maijor reason for changing ch i

unks in D
mark them to prevent ratr?eval Muwas to
Now !he:el are automatic markers just iike vision
They are limited in time and number
- seliabie wilh parameters

I{r;(t}rlgcéa;}gdd with the request parameter :recently-
+refrievil>

isafact

recently -relzieved ali

r

Sources of activation

+ All buffers are polential sources now

« Each buffer has a separate parameter like
:ga for the goal buffer
- :ga defaulls to 1
— All others default to 0

+ :mas now alse used to enable/disable

_spreading activation since setting :gato0
is not sufficient

Multiple Models

Out‘nf the box ACT-R 6 supporis multiple
modals
Any number of modeis can be loaded

Each has its own set of modules
and parameters - chunks

Can be run synchronously or
asynchronously

— Determined when loaded
— Not adjustable afterwards

bt}

Strict harvesting

» New mechanism of productions

» When a buffer is matched on the LH
production it is autoratically clearedsogftge RHS
unless there is an =buffer action to keep it around

— Parameterized so thal one i
Poramelaiized so it can spetify which buffers

~ Cut of the bux s bul the goal buffer do
» Cleans up issues with

— References for BLL

~ Preduction comgpilation

- Micro-maneging perceplual buffers




Experimental addition: P*

+ Exactly like p except slot-names can be
variablized
—0On both the LHS and the RHS

+ Limited variability (for now at least)

-~ Wilt not do any binding — the variable must be
hound sisewhere

- Only one ievel deep per buffer {est

Example P* uses

{p* search (p* check
=gogh> =goal>
Isa search isa check
=redtieval> whichsict =3
isa siralegy which-value a2y
censiraint =c =relrieval>
vajue =v isa mernory
mm oy wy
+visual-ipcation> ==
isavisual-location )
=g =y

a

Extending via new Modules

All modules are buill the same way

— including the defaulis

Can remove or repiace any module*

Placing a fiie in the modules or tools directory
with a lisp name will cause it to be loaded
Evenjually would like to have a dalabase of
avaliabie modules and fools that people can use
No “how to" does right now, but the current
modules serve as examples and there is an API
doc lhat describes the available functions

.

.

2

Modifying the base modules

+ Declarative and Protedural modules are now more user
configurable

~ All the equations have “ovarride” hooks like similarity did
previcusly
— BL-HODKX

SFREADING-HOOK

PARTIAL-MATCHING HOOKR

NOISE-HODK

'Si-HOCK

BdI-HOOK

UTILTY-HOOK
- UTIUTY-C-HGOK
— UTILTY-P-HOOK

~ Should refieve people of reeding lo hack 11e maln code

E I T T T N 4
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Performance Evaluation

+ Has not been highly optimized yet

+ Used lhe tulerial models as a benchmark
because they touch all the main companents

» Used ACL & 2 on Windows XP and MCL 5 0 on
Mac OS X 104

— Need lo increase the MCL heap under OS X
{ectuset prefered-Size-Meseurce Heap-size-in-byfes}

» Basic speed and size comparison
~ Using the bme fenstion

pL]

Comparison
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More Information

+ The {ulorials show the new system in use

+ The test models in the distribution are the
commented conversion of the ACT-R 5
{utorial models

+ User manual included with the docs
— Still a bit rough, but it is being worked on

+ Can aiways look at the source code
- A little more struciuredfspraad out
- Slightly more commented

Where can | get it?

The ACT-R website
hipfsct-r psy crmu edy
- Updated when there are significant changes

* Via Subversion

- Always the most up o date code
- Version control software avaliable from
htip/isubversion tigris.orq
~ All files are under version ¢ontrol
- Incuding the tulorial. docs. and the envirgnment
~ Availlable from our server at
svriiatba psy cmu edu/ussfocaisvrroot/acts




