Variability of behavior in complex skill acquisition

Niels Taatgen University of Groningen Carnegie Mellon University

Overview

Sources of variability
 How to model variability in skill acquisition: ACT-RX
 Example: dual-task experiment by Schumacher et al.

Illustration: CMU-ASP data

Sources of variability

Performance parameters
General problem-solving skills
Prerequisite skills
Ambiguity of the task
Noise

How to model variability in complex skill acquisition

- The current systems for declarative task representation are linear: the order in which to do things is fixed
- Variability is mainly due to parameter change or noise (e.g. model of the KA-ATC models individual differences due to WMC, speed of proceduralization and psychomotor speed)
- Need a representation that allows multiple orderings of instructions -> APEX (Freed)

ACT-RX Goals

Extension to ACT-R

- Make it easy to model skill acquisition of complex (or simple) tasks
- Make it easy so explore variability in task behavior
- Allow to reuse code between models

ACT-RX

 Hierarchical representation of "procedures"

- A procedure contains several steps that can be carried out in any order, unless an order constraint is added
- Each step is a procedure in itself, or a primitive action

ACT-RX

ACT-RX has been used to model complex tasks:

- Kanfer-Ackerman Air Traffic Controller task
- CMU-ASP task

But I will demonstrate it on the basis of a simple task: a dual-task experiment by Schumacher et al. (2001)

Schumacher task

Dual task paradigm, in which the participant may respond in any order (contrary to PRP experiments)
 Task 1: Visual-manual

Task 2: Aural-vocal

Schumacher task

Task 2: Aural Vocal

Representation in ACT-RX

(procedure main (step A attend-visual ()) (step B retrieve-fact (?visual finger) (precondition A)) (step C press-finger (?finger) (precondition B)) (step D attend-aural ()) (step E retrieve-fact (?aural word) (precondition D)) (step F say (?word) (precondition E)) (step G done () (precondition C F)))

Optimal order of steps

Can be ordered in 45 different ways, but the only one that avoids all dual-task costs is: (see also Byrne & Anderson)

Data from Schumacher

Property of optimal order: no dual-task costs

×

But look at individuals

Conclusion: Some (5 out of 11) individuals hardly have any dual task interference but some others have huge dual costs, even after 5 (long!) sessions

Model results

Individual differences

Model

Evaluation

- Model exhibits similar patterns of individual differences as participants
- Pure probability: 1 out of 45 with no dual-task costs (2%)
- ACT-R model: 9 out of 50 (18%)
- Participants: 5 out of 11 (45%)
- Utility learning produces the optimal order sometimes, but not always
- Solution: add dual-tasking strategies

Sources of variability

	Data	Model
Performance Parameters	Speed of proceduralization, ACT-R/PM latencies	X
Problem-solving Strategies	Multi-tasking strategies that utilize slack time	X
Prerequisite skills	Play no role in this experiment	
Task ambiguity	Multiple orders in which steps can be carried out	
Noise	Noise determines which order of instructions is tried first	

Conclusions

ACT-R can learn dual-tasking

 Same representation can be used for both complex tasks (ATC, CMU-ASP), and basic psychological tasks (dualtasking)

 Offers a more constrained theory than basic ACT-R

Future work

Make ACT-RX into a system for general use, not just to model variability of behavior, but also to make modeling complex tasks easier and more constrained

Performance parameters

- Individuals differ with respect to certain parameters, producing differences in behavior
- In ACT-R: manipulate architectural parameters
- Example: Working Memory Capacity (W)

General task-independent problem-solving strategies

- Verbal vs visual rehearsal strategies
 Strategies to multi-task
 In ACT-R: production rules that are independent of the task, and that may be present or absent
- Example: productions that exploit slack-time

Prerequisite skills

- Individuals may differ in mastery of subskills assumed in the task
- Example: mousing and other computer skills
- In ACT-R: manipulate whether part of the task representation is declarative or procedural

Task Ambiguity

- Operations in a task can often be done in several different orders, leading to different performance profiles
- In ACT-R: declarative instructions can be carried out in several different orders
- Example: In the CMU-ASP task, you can either do an EWS first to identify a track, or you can start by looking at the altitude and speed information

Noise

Noise can influence the order in which people do things, whether or not they have forgotten something, etc.
 In ACT-R: noise on activation and on utility