Augmenting Interactive Genetic Algorithms Through the Integration of ACT-R

Nathan Brannon & Carl Lippitt Sandia National Laboratories

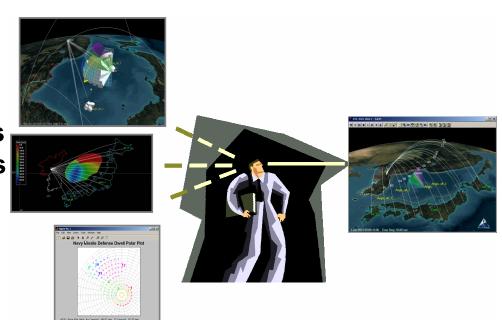
Randy Stiles Lockheed Martin – Space Systems

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Overview

- Need Facilitating data exploration
- Introduction to interactive genetic algorithms (IGAs)
- Search space problem
- Role of ACT-R
- Example application
- Path forward

Need


- Exploit complex data and information sources
- Decisions based on complex information should be consistent, thorough, and objective
- Breed tailored representations of information
- Minimize the training necessary to leverage computational tools
- Ease the expression of expert knowledge

Interactive Genetic Algorithms

- The human is the fitness function
 - User preferences, selections, or rankings dictate which variables "survive"
- Iterate until the user is satisfied
- Variables can be at many levels of granularity

Examples

- Kim & Cho (2000)
 - Dress design
 - Variables include skirt length, collar styles, colors...
 - User presented with panel of dress designs to rank
 - Rank subsequent panels until satisfied
- Other applications
 - Mug shot searching (Caldwell & Johnston, 1991)
 - Fitting hearing aids (Ohsaki & Takagi, 2000)

Search Space Problem

- Takagi (2001)
 - Excellent review paper for IGAs
 - >20 iterations, users become apathetic
 - Reducing the number and range of variables
 - Based on what?
 - Maintaining consistent, thorough, and objective analyses?
- What if you had a system that could provide a plausible first cut?
 - Incorporating cognitive, perceptual, and task factors

ACT-R Function Allocation

- Task Model
 - Incorporate known features of the task
- Perceptual Model
 - How do we turn sensory input into something meaningful?
 - Trafton & Trickett (2001)
- Cognitive Model
 - Leverage subject matter expert knowledge to critically analyze search space

Application – Generative Visualization System

- Interface
 - Panel of x visualizations ("beauty contest")
 - Selecting two for breeding
- Variables
 - Colors, asset position, trajectory, launch position(s)
- Task
 - Missile defense planning
 - Configure meaningful representation
 - Strategic exploration

Application – Generative Visualization System

- Process highlights
 - ACT-R simulation populated with task, perceptual, and cognitive models generates an initial set of visualizations
 - User selects two for breeding
 - ACT-R provided characteristics of selections to update parameters
 - IGA (Python) runs with the selection
 - Conform to common features while continuing to explore search space
 - Next set of visualizations presented
 - Iterate until user is satisfied
 - TMVS broadcast network (Java)

Current Focus Areas and Opportunities

- Improving utility
 - Process flow
 - Degree of interaction
 - User interface
- Additional tailoring mechanisms
 - Individual differences
 - Experience
 - Historical performance
- Perceptual model development
- Cognitive collective

•

Summary

- Consistent, thorough, and objective exploration of complex information
- Less reliance on software experience while leveraging computational power
- "I'll know it when I see it..."
- Central concept
 - Integrating ACT-R and IGAs
- ACT-R subsystem

Thank You!

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

