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Why You Should Not Go 
(Back) To Sleep Right Now

• We will offer an answer to an age-
old question
– “How many times should I run my 

model?”



Why You Should Not Go 
(Back) To Sleep Right Now
• We will offer the beginnings of a 

method to conduct statistical 
analysis on computational models
–A method for bounding a model’s 

predictions 
–Propose a “new” parameter counting 

strategy to assess the relative 
complexity (and potential for 
overfitting) of different models

–A reasonable strategy for model 
selection given these components



Lecture Map

• The Challenges to Model 
Comparison

• Bounding A Model’s Predictions
• Assessing Model Complexity
• Model Comparison
• Conclusions



The Reason For 
Model Comparison

• We have two potential models for 
a single phenomenon
–Which one better explains the data?
– Increasingly important to the ACT-R 

community
–Recent examples

• Lovett 2000
• Taatgen & Anderson 2002
• Byrne 2001
• Fum and Stocco 2002



Two (Broad) Approaches 
to Comparing Models

1. Find a new data set and see how 
well they generalize
– Gluck and Pew (2002)’s AMBR 

competition



Two (Broad) Approaches 
to Comparing Models

2. Compare models within original data 
set

– Roberts and Pashler (2000) argue that 
computational modelers do not pay proper 
attention to the number of free 
parameters (quantities allowed to vary 
during model fitting) 

– There’s some fairness in this criticism. A 
lot of attention is paid to goodness-of-fit, 
but is the model better or just massively 
overfit?

– The statistical community has model 
selection formulas that take this into 
account (Zucchini 2000, Pitt et al 2002)



The Problem With Traditional 
Model-Selection Formulas

• But these model selection formulas 
generally can’t be used without 
closed-form equations because it is 
difficult to
–Determine the proper number of free 

parameters 
(quantities affecting the results that are
allowed to vary)

–Get exact model predictions



Develop Closed-Form 
Equations?

• Some ACT-R modelers have 
responded to this need by 
developing closed-form equations 
describing their model’s behavior
–Anderson and Matessa 1997
–Koedinger and MacLaren 2002



Develop Closed-Form 
Equations?

• But this is extremely difficult for 
even moderately complex ACT-R 
models (Schunn and Wallach 
online)

• Koedinger and MacLaren’s (2002) 
model requires 55 equations with 
as many as 44 terms in a single 
equation



Another Solution…

• We propose a different solution…
• Instead of developing the equations,
• We will run the computational model

– And run it long enough to get a good 
approximation of the mathematical model

– And come up with a reasonably principled 
parameter count

– And then we will pretend we have a 
mathematical model

– And use model selection methods from the 
statistical community



Terminal Models

• For tractability, we will generalize this 
discussion only to “terminal models” of 
cognitive performance (Salvucci and 
Anderson 1997) 

• Involve learning of new chunks, but not 
learning of new productions or changes 
in production weights

• The methods presented here can 
definitely be generalized to models with 
full production learning



Lecture Map

• The Challenges to Model 
Comparison

• Bounding a Model’s Predictions
• Assessing Model Complexity
• Model Comparison
• Conclusions



Approximating the 
Mathematical Model

• When a computational model is run 
once, it gives an approximation of the 
mathematical equations that can be 
used to describe it (Simon 1992)

• By running the model a greater number 
of times (from the same initial state or 
set of initial states), a more accurate 
approximation of the solution of those 
equations is developed

• When the model is run an infinite 
number of times, the error of the 
approximations will reach 0



How many times should 
we run the model?

We can make sure 
each of the model’s results fall 
within a certain confidence interval 
of what the mathematical model would give 
a pre-selected percentage of the time.



Let’s Say…

• Let’s say we want every prediction 
in the computational model
–To fall within 5% of the prediction the 

mathematical model would make
–95% of the time
–Given a worst-case standard 

deviation

• Then…



Standard Equation for 
Confidence Intervals

Found in your favorite elementary stats 
textbook – mine is Rosenthal & Rosnow (1991)

d = (tn(α/2))∗ s / √n

The distance each result is allowed to fall 
from the value the mathematical model 
would give

The number of runs

The t-distribution value 
for n runs and α
proportion of the time

(wondering why the t-
distribution is ok? Ask 
me during the question 
period!)

The proportion of the time you’re willing 
to let each result be more than d away 
from the result the mathematical model 
would give

The standard deviation of each 
computational run from the result the 
mathematical model would give



Standard Equation for 
Confidence Intervals

Or, by algebraic transformation…

n = ((tn(α/2))∗s / d)2



Computing…

n = ((tn(0.05/2))∗√0.5 / 0.05)2

Via algebra…

n = 778



N  = 778

• n=778 is a magic number.
• It’s more principled than n=100 or n=1000 

(or n=1), but it’s still arbitrary
• It would vary

– With a more liberal estimate of deviation
– If you wanted bounds within 2% or 10% rather 

than 5%
– If you wanted to bound the variance of all 

predictions rather than each prediction 
• Nonetheless, I recommend that everyone

– Use n=778
– Cite me liberally and sometimes inappropriately
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A Rather 
Simple Heuristic

• In this talk, we’ll
– propose a “new” parameter counting 

strategy for counting free 
parameters, to help us assess model 
complexity

–offer informal evidence in favor of 
this heuristic



Free Parameter Count

• Like many ACT-R modelers
– Each ACT-R global parameter you allow to 

vary = 1 free parameter

• But also
– Each production that affects the results of 

the model = 1 free parameter
– Each declarative chunk that affects the 

results of the model = 1 free parameter



The Key to Counting 
Free Parameters

• What factors influence the 
mathematical equations that describe 
the cognitive model? 

• Some approaches to model selection, 
like MDL (Pitt et al 2002), take the 
relative influence of different factors 
into account

• More approximative model selection 
methods, like BiC (Raftery 1995), treat 
all factors the same but want to know 
how many there are
(which is what we’re doing here)



The mathematical equations
underlying ACT-R

• For any ACT-R model, the 
equations that underlie its 
behavior will be some function of 
the equations underlying ACT-R



The Probability of a 
Specific Behavior

• P (Behavior) = Σ P(all production chains 
producing behavior)

• P (chain) = Π P(each         
production in chain)



The Probability of a 
Specific Behavior

• So if behavior A is produced by 
production P1 followed by P2 or P3 
followed by P4, then

• P(A)=P(P1)*P(P2| P1) + 
P(P3)*P(P4| P3) 

P1 P2

P3 P4
A



Probability of a specific 
production firing

∑
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production Pi

The expected utility of each 
of the productions that could 
fire at this point



The probability of 
behavior A

• Is a function not only of the utility of 
productions P1-4 that can fire to produce 
behavior A

• But also the utility of each production 
P5-∞ that could have fired, preventing 
productions P1-4 from firing 

• So every production that fires or could 
fire during the model’s execution affects 
the equations and should be counted as 
at least one free parameter

• There are some exceptions
– Productions “yoked together”
– Productions that fire in every run



Chunks

• What about chunks?
• The same analysis applies, more or 

less…



Chunks

• The probability of retrieving a 
given chunk i, is:

∑
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The activation of chunk Ci

The activation of each of the 
chunks that could be 
retrieved at this point



The Formula for 
Spreading Activation

j
ijjii SWBA

Base-level activation 
of chunk Ci

Spreading activation from 
other chunks which have 
references to chunk Ci



So…

• As with productions, count as a 
parameter
–Each chunk that could be retrieved

• But also
–Each chunk that spreads activation to 

a chunk that could be retrieved

• Because both affect the resultant 
equations

• (With similar caveats as before)



What about chunks 
learned?

• Count them too
– Each unique chunk C* created during any 

run which can be retrieved or can spread 
activation will affect your model’s equations

– C*’s existence or non-existence during any 
given run will definitely affect the results of 
the run

• There are some considerations of 
what’s truly a “unique chunk”
– When one can be retrieved and the other 

can’t…

• This could be very easily extended to 
production learning…



ACT-R Global Parameters

• Any ACT-R global parameter 
allowed to vary will certainly affect 
the results of the equations
–Possibly more than any individual 

production or chunk
–So count each ACT-R global 

parameter you allow to vary
• I believe there’s consensus on this, so I 

won’t go into why you don’t need to 
count the other ones…



Free Parameter Count --
Summary

• With the clarifications noted before
–Each production that affects the 

results of the model = 1 free 
parameter 

–Each declarative chunk that affects 
the results of the model = 1 free 
parameter

–Each ACT-R global parameter you 
allow to vary = 1 free parameter



This can’t be used to compare 
ACT-R 4 and ACT-R 5 models

• ACT-R 5 models usually (and 
unsurprisingly) have substantially more  
productions than ACT-R 4 models.

• The parameter-counting method we use 
here only makes sense for productions 
of approx. equal grain size 

• But this is well upheld in ACT-R 5!
• And in the long-term, architectures like 

ACT-SIMPLE (Salvucci & Lee 2003), 
which directly compile between models 
of different grain sizes, may solve this 
problem



Lecture Map

• The Challenges to Model 
Comparison

• Bounding A Model’s Predictions
• Assessing Model Complexity
• Model Comparison
• Conclusions



Context of Use

• We were about to design a Cognitive 
Tutor (Anderson et al 1995) for 
Scatterplot Generation

• We wanted a good model of the 
behavior students displayed while 
performing this task

• 2 studies with 5 conditions showed 2 
frequent errors, which looked similar. 
Were they similar at a deeper level as 
well?

• What skills underlied the pattern of 
correct performance that did occur?



Comparing 
Model Variants

• We compared 5 model variants to 
one another to determine which 
knowledge components 
corresponded to a better 
explanation of the data

• This helped us to understand the 
sources of student errors and 
successes and design a better 
tutor



Finding Each Variant’s 
Predictions

• We ran Lebiere’s implementation 
of Iterative Gradient Descent 
(IGD) on each model variant, 
minimizing a function of  r2 and 
Mean Absolute Deviation (MAD)

• For each run during IGD and for 
final predictions, we ran the model 
778 times.



Statistical Techniques 
Used

• Extra-Sum-of-Squares F-tests
• Bayesian Information Criterion (BiC) 
• Both require

– A set of predictions for each model
– A parameter count for each model
– Which we have now!

• Both give
– Assessments of which model (among 2) 

explains the data better
– Assessment of whether the difference is 

statistically significant
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What we have now

• The beginnings of a method to 
conduct statistical analysis on 
computational models
–A method for deciding how many 

times to run a model to get known 
bounds on its predictions

–Some hand-waving proof that a fairly 
simple strategy for counting 
parameters is an appropriate way to 
assess model complexity

–A reasonable strategy for model 
selection given these components



Where we’re going next

• Come up with a better way of finding each model 
variant’s parameter values
– More verifiably MLE than IGD to minimize MAD/r2

– Petrov (2001) offers valuable suggestions for doing this

• Come up with a formal method for relating the 
uncertainty in the computational model’s 
predictions to the uncertainty quantified by F 
tests and BiC
– What we’re doing is probably valid but needs to be 

formalized

• Verify (or, if necessary, refine) our parameter-
counting strategy

• Offer a package, in LISP, to assist others in 
conducting these analyses
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The End

• Questions?



Productions You Don’t 
Need To Count

• Any production Ptagalong that always fires 
when production P1 has already fired
– Only true if it always fires… if nothing fires 

due to utility threshhold, this can’t be 
applied

• Productions which fire in every single 
run
– For book-keeping or initial goal-setting
– Each declarative chunk that affects the 

results of the model = 1 free parameter
– Each ACT-R global parameter you allow to 

vary = 1 free parameter



Each Production’s Utility

• Ui = πiG - Ci + ε

Ui
πi  

G

Ci

ε

Production i’s utility

The expected probability that 
choosing production i will lead to 
the desired result

The current objective’s value

The expected cost of firing the 
production

Noise parameter

If you allow both 
πi and Ci to vary, 
you may need to 
count two global 
parameters…



Chunks You Don’t 
Need To Count

• Any Chunk Cinfo used solely for 
information storage
– Cinfo’s retrieval never fails
– There is never a case where Cinfo is 

competing with another chunk for retrieval
– Cinfo spreads no activation

• Any chunk Ctagalong which is always 
retrieved after a specific production has 
already fired



Standard-Deviation 
Assumption

• What is the worst-case assumption for the 
standard deviation of each individual run from 
the actual proportion?

• This is when every individual run gives a result 
that’s ½ the range of possible values of data 
away from the actual value. 

• For example, if the results are expressed as 
frequencies between 0 and 1, then the worst 
case for data concerning proportions of events 
is when the actual proportion is 0.5. (and each 
event is 0 or 1.)

• So the worst-case standard deviation is √0.5



Global Parameters You 
Don’t Need To Count

• If you never allow a global parameter to vary
– If you leave it at 0, or ACT-R default, or a well-

known value from a previous experiment (as in 
Lebiere and West, 1999 and Lebiere, Wallach, and 
West, 2000) 

• Then it can be treated as a constant in the 
equations and not counted as a free 
parameter

• If you tweaked it, or tried different values, 
count it as a global parameter…

• This calls for honesty and clear reporting on 
the part of the modeler!



Standard-Deviation 
Assumption
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T-Distribution
Assumption

• The t-distribution will be an appropriate 
predictor of the deviation of each model 
run from the actual proportion

• Not valid for all ACT-R models (cf Young 
and Cox 2002), but transformations can 
be used

• And for large enough numbers of runs, 
Central Limit Theorem guarantees 
normal distribution will be a valid 
assumption



Terminal Models

• Terminal Models
– Involve learning of new chunks, but not learning of 

new productions or changes in production weights
– Are valid to use “in cases where the behavior under study is at 

some relatively asymptotic level or the critical factors being 
investigated do not change over the range of experiences 
encountered in the experiment.” (Anderson, Lebiere and 
Lovett 1998)

– “a typical assumption in much of the experimental research on 
human cognition”

• Many Recent Terminal Models:
– Tower of Hanoi (Anderson & Lebiere 1998)
– Fan Effect (Anderson & Reder 1999)
– Student Thinking After Instruction (Nokes et al 2002)



Model Variant 
Comparisons

• Model KNOW-QUANTITATIVES
– Students know how to represent quantitative 

variables properly
– r2= 0.976

BiC = 181.8

• Model KNOW-SCATTERPLOTS
– Students do not know that but
– Students do know that Scatterplots contain 

quantitative variables
– r2= 0.916
– BiC = 270.0

• “Very Strong” evidence in favor of KNOW-
QUANTITATIVES



Model Variant 
Comparisons

• Model KNOW-IT-ALL
–Students can (and do) read the 

question to help them figure out what 
variables to use

– r2= 0.972

• Model CAN’T-USE-QUESTION
– r2= 0.79

• F(26,2)=101.5, p=0.01



Student Errors in 
Scatterplot Generation

• Two errors where the student ends 
up with a nominal X variable, 
which is appropriate for bar graphs 
but not for scatterplots
–The “Variable Choice” Error

• The student places a nominal variable on 
the X axis

– The “Nominalization” Error
• The student places the correct 

quantitative variable on the X axis but 
treats it as if it were nominal



“Variable Choice” Error

Students asked 
to draw 
scatterplots

Used variables 
more appropriate 
for bar graphs, 
placing a nominal 
variable on the X 
axis rather than a 
quantitative one.

Used correct variables, but 
turned the X axis variable 
into a nominal variable (as 
if it were a bar graph)



Students asked 
to draw 
scatterplots

Used the correct 
variables, but 
turned the X axis 
variable into a 
nominal variable, 
as if it were a 
bar graph.

“Nominalization” Error



Data Set Features

• 5 conditions in the original studies 
(between-subjects)

• Different proportion of correct 
behavior and each error, as well as 
other behaviors, in each condition





Parameters

• 6 declarative chunks
• 3 ACT-R global parameters
• Between 19 and 25 productions in 

the different variants
• 28 to 34 parameters total



Model Variant 
Comparisons

• Model KNOW-IT-ALL
– Students’ prior knowledge of bar graphs 

influences some of them to mis-transfer bar 
graph features into their scatterplots

– r2= 0.972, 34 parameters

• Model DON’T-KNOW-BAR-GRAPHS
– Any student behavior that mimics bar graph 

features arises solely through random 
chance

– r2= 0.90, 28 parameters

• F(26,6)=16.94, p<0.0001



Model Variant 
Comparisons

• Model KNOW-QUANTITATIVES
– Students know how to represent quantitative variables 

properly
– r2= 0.976, 29 parameters

BiC = 181.8

• Model KNOW-IT-ALL
– Students know that, and
– Students know that Scatterplots contain quantitative 

variables
– r2= 0.972, and 32 parameters
– BiC = 194.1

• BiC Difference=12.3, “Very Strong” evidence in 
favor of KNOW-QUANTITATIVES
Smaller BiC values are better. A difference of 6 is 
“Strong”, a difference of 10 is “Very Strong” – (Raftery 1995)



Conclusions About 
Student Cognition

• Our modeling suggested that the pattern of 
errors students made
– Stems from understanding what kinds of variables 

go into bar graphs, and mis-transfering this 
knowledge to scatterplots

• Our modeling suggested that the correct 
performance we saw
– Did not stem from understanding scatterplots
– Instead, stemmed from a combination of

• Understanding what a quantitative variable is
• Knowing how to use the information given in the 

question

• This had implications for the design of our 
tutor. (Baker et al 2003)



Some Future Work…

• We currently give one BiC value 
(and one F-value), but given the 
stochastic nature of the model 
predictions, it might be better to 
give a range of values that BiC 
could be, or to adjust our F-values 
downwards

• We’re looking into this



How Tight Should  
Predictions Be?

• Look at the confidence intervals in 
the original data set

• If you make your bounds 
substantially tighter than these
–you may spend time during the 

parameter-fitting stage getting a 
tighter fit to the error in the original 
data set.

– you may end up choosing the model 
which best fits the error in the 
original data set



Model Complexity

• The more complex we allow a model to 
be, the more likely 
– it can fit an arbitrary data set just by chance
– it will overfit by going beyond fitting the data, 

by fitting the error in the data set 
• So it’s important to assess the trade-off 

between
– how closely a model fits the data (goodness-

of-fit)
– and how complex the model is


