
Statistical Techniques
for Comparing ACT-R Models

of Cognitive Performance
Ryan Shaun Baker, Albert T. Corbett, Kenneth R. Koedinger

Human-Computer Interaction Institute

Carnegie Mellon University

{rsbaker, corbett+, koedinger} @ cmu.edu

http://www.cs.cmu.edu/~pact

With help from Brian Junker and Rhiannon Weaver

Thanks: Chris Schunn, Hedderik van Rijn, Christian Lebiere, NDSEG Fellowship

Why You Should Not Go
(Back) To Sleep Right Now

• We will offer an answer to an age-
old question
– “How many times should I run my

model?”

Why You Should Not Go
(Back) To Sleep Right Now
• We will offer the beginnings of a

method to conduct statistical
analysis on computational models
–A method for bounding a model’s

predictions
–Propose a “new” parameter counting

strategy to assess the relative
complexity (and potential for
overfitting) of different models

–A reasonable strategy for model
selection given these components

Lecture Map

• The Challenges to Model
Comparison

• Bounding A Model’s Predictions
• Assessing Model Complexity
• Model Comparison
• Conclusions

The Reason For
Model Comparison

• We have two potential models for
a single phenomenon
–Which one better explains the data?
– Increasingly important to the ACT-R

community
–Recent examples

• Lovett 2000
• Taatgen & Anderson 2002
• Byrne 2001
• Fum and Stocco 2002

Two (Broad) Approaches
to Comparing Models

1. Find a new data set and see how
well they generalize
– Gluck and Pew (2002)’s AMBR

competition

Two (Broad) Approaches
to Comparing Models

2. Compare models within original data
set

– Roberts and Pashler (2000) argue that
computational modelers do not pay proper
attention to the number of free
parameters (quantities allowed to vary
during model fitting)

– There’s some fairness in this criticism. A
lot of attention is paid to goodness-of-fit,
but is the model better or just massively
overfit?

– The statistical community has model
selection formulas that take this into
account (Zucchini 2000, Pitt et al 2002)

The Problem With Traditional
Model-Selection Formulas

• But these model selection formulas
generally can’t be used without
closed-form equations because it is
difficult to
–Determine the proper number of free

parameters
(quantities affecting the results that are
allowed to vary)

–Get exact model predictions

Develop Closed-Form
Equations?

• Some ACT-R modelers have
responded to this need by
developing closed-form equations
describing their model’s behavior
–Anderson and Matessa 1997
–Koedinger and MacLaren 2002

Develop Closed-Form
Equations?

• But this is extremely difficult for
even moderately complex ACT-R
models (Schunn and Wallach
online)

• Koedinger and MacLaren’s (2002)
model requires 55 equations with
as many as 44 terms in a single
equation

Another Solution…

• We propose a different solution…
• Instead of developing the equations,
• We will run the computational model

– And run it long enough to get a good
approximation of the mathematical model

– And come up with a reasonably principled
parameter count

– And then we will pretend we have a
mathematical model

– And use model selection methods from the
statistical community

Terminal Models

• For tractability, we will generalize this
discussion only to “terminal models” of
cognitive performance (Salvucci and
Anderson 1997)

• Involve learning of new chunks, but not
learning of new productions or changes
in production weights

• The methods presented here can
definitely be generalized to models with
full production learning

Lecture Map

• The Challenges to Model
Comparison

• Bounding a Model’s Predictions
• Assessing Model Complexity
• Model Comparison
• Conclusions

Approximating the
Mathematical Model

• When a computational model is run
once, it gives an approximation of the
mathematical equations that can be
used to describe it (Simon 1992)

• By running the model a greater number
of times (from the same initial state or
set of initial states), a more accurate
approximation of the solution of those
equations is developed

• When the model is run an infinite
number of times, the error of the
approximations will reach 0

How many times should
we run the model?

We can make sure
each of the model’s results fall
within a certain confidence interval
of what the mathematical model would give
a pre-selected percentage of the time.

Let’s Say…

• Let’s say we want every prediction
in the computational model
–To fall within 5% of the prediction the

mathematical model would make
–95% of the time
–Given a worst-case standard

deviation

• Then…

Standard Equation for
Confidence Intervals

Found in your favorite elementary stats
textbook – mine is Rosenthal & Rosnow (1991)

d = (tn(α/2))∗ s / √n

The distance each result is allowed to fall
from the value the mathematical model
would give

The number of runs

The t-distribution value
for n runs and α
proportion of the time

(wondering why the t-
distribution is ok? Ask
me during the question
period!)

The proportion of the time you’re willing
to let each result be more than d away
from the result the mathematical model
would give

The standard deviation of each
computational run from the result the
mathematical model would give

Standard Equation for
Confidence Intervals

Or, by algebraic transformation…

n = ((tn(α/2))∗s / d)2

Computing…

n = ((tn(0.05/2))∗√0.5 / 0.05)2

Via algebra…

n = 778

N = 778

• n=778 is a magic number.
• It’s more principled than n=100 or n=1000

(or n=1), but it’s still arbitrary
• It would vary

– With a more liberal estimate of deviation
– If you wanted bounds within 2% or 10% rather

than 5%
– If you wanted to bound the variance of all

predictions rather than each prediction
• Nonetheless, I recommend that everyone

– Use n=778
– Cite me liberally and sometimes inappropriately

Lecture Map

• The Challenges to Model
Comparison

• Bounding A Model’s Predictions
• Assessing Model Complexity
• Model Comparison
• Conclusions

A Rather
Simple Heuristic

• In this talk, we’ll
– propose a “new” parameter counting

strategy for counting free
parameters, to help us assess model
complexity

–offer informal evidence in favor of
this heuristic

Free Parameter Count

• Like many ACT-R modelers
– Each ACT-R global parameter you allow to

vary = 1 free parameter

• But also
– Each production that affects the results of

the model = 1 free parameter
– Each declarative chunk that affects the

results of the model = 1 free parameter

The Key to Counting
Free Parameters

• What factors influence the
mathematical equations that describe
the cognitive model?

• Some approaches to model selection,
like MDL (Pitt et al 2002), take the
relative influence of different factors
into account

• More approximative model selection
methods, like BiC (Raftery 1995), treat
all factors the same but want to know
how many there are
(which is what we’re doing here)

The mathematical equations
underlying ACT-R

• For any ACT-R model, the
equations that underlie its
behavior will be some function of
the equations underlying ACT-R

The Probability of a
Specific Behavior

• P (Behavior) = Σ P(all production chains
producing behavior)

• P (chain) = Π P(each
production in chain)

The Probability of a
Specific Behavior

• So if behavior A is produced by
production P1 followed by P2 or P3
followed by P4, then

• P(A)=P(P1)*P(P2| P1) +
P(P3)*P(P4| P3)

P1 P2

P3 P4
A

Probability of a specific
production firing

∑

=

j

s

U

s
U

j

i

e

ePiP
2

2

)(
Noise variance

The expected utility of
production Pi

The expected utility of each
of the productions that could
fire at this point

The probability of
behavior A

• Is a function not only of the utility of
productions P1-4 that can fire to produce
behavior A

• But also the utility of each production
P5-∞ that could have fired, preventing
productions P1-4 from firing

• So every production that fires or could
fire during the model’s execution affects
the equations and should be counted as
at least one free parameter

• There are some exceptions
– Productions “yoked together”
– Productions that fire in every run

Chunks

• What about chunks?
• The same analysis applies, more or

less…

Chunks

• The probability of retrieving a
given chunk i, is:

∑

=

j

s

A

s
A

j

i

e

eiP
2

2

)(

The activation of chunk Ci

The activation of each of the
chunks that could be
retrieved at this point

The Formula for
Spreading Activation

j
ijjii SWBA

Base-level activation
of chunk Ci

Spreading activation from
other chunks which have
references to chunk Ci

So…

• As with productions, count as a
parameter
–Each chunk that could be retrieved

• But also
–Each chunk that spreads activation to

a chunk that could be retrieved

• Because both affect the resultant
equations

• (With similar caveats as before)

What about chunks
learned?

• Count them too
– Each unique chunk C* created during any

run which can be retrieved or can spread
activation will affect your model’s equations

– C*’s existence or non-existence during any
given run will definitely affect the results of
the run

• There are some considerations of
what’s truly a “unique chunk”
– When one can be retrieved and the other

can’t…

• This could be very easily extended to
production learning…

ACT-R Global Parameters

• Any ACT-R global parameter
allowed to vary will certainly affect
the results of the equations
–Possibly more than any individual

production or chunk
–So count each ACT-R global

parameter you allow to vary
• I believe there’s consensus on this, so I

won’t go into why you don’t need to
count the other ones…

Free Parameter Count --
Summary

• With the clarifications noted before
–Each production that affects the

results of the model = 1 free
parameter

–Each declarative chunk that affects
the results of the model = 1 free
parameter

–Each ACT-R global parameter you
allow to vary = 1 free parameter

This can’t be used to compare
ACT-R 4 and ACT-R 5 models

• ACT-R 5 models usually (and
unsurprisingly) have substantially more
productions than ACT-R 4 models.

• The parameter-counting method we use
here only makes sense for productions
of approx. equal grain size

• But this is well upheld in ACT-R 5!
• And in the long-term, architectures like

ACT-SIMPLE (Salvucci & Lee 2003),
which directly compile between models
of different grain sizes, may solve this
problem

Lecture Map

• The Challenges to Model
Comparison

• Bounding A Model’s Predictions
• Assessing Model Complexity
• Model Comparison
• Conclusions

Context of Use

• We were about to design a Cognitive
Tutor (Anderson et al 1995) for
Scatterplot Generation

• We wanted a good model of the
behavior students displayed while
performing this task

• 2 studies with 5 conditions showed 2
frequent errors, which looked similar.
Were they similar at a deeper level as
well?

• What skills underlied the pattern of
correct performance that did occur?

Comparing
Model Variants

• We compared 5 model variants to
one another to determine which
knowledge components
corresponded to a better
explanation of the data

• This helped us to understand the
sources of student errors and
successes and design a better
tutor

Finding Each Variant’s
Predictions

• We ran Lebiere’s implementation
of Iterative Gradient Descent
(IGD) on each model variant,
minimizing a function of r2 and
Mean Absolute Deviation (MAD)

• For each run during IGD and for
final predictions, we ran the model
778 times.

Statistical Techniques
Used

• Extra-Sum-of-Squares F-tests
• Bayesian Information Criterion (BiC)
• Both require

– A set of predictions for each model
– A parameter count for each model
– Which we have now!

• Both give
– Assessments of which model (among 2)

explains the data better
– Assessment of whether the difference is

statistically significant

Lecture Map

• The Challenges to Model
Comparison

• Bounding A Model’s Predictions
• Assessing Model Complexity
• Model Comparison
• Conclusions

What we have now

• The beginnings of a method to
conduct statistical analysis on
computational models
–A method for deciding how many

times to run a model to get known
bounds on its predictions

–Some hand-waving proof that a fairly
simple strategy for counting
parameters is an appropriate way to
assess model complexity

–A reasonable strategy for model
selection given these components

Where we’re going next

• Come up with a better way of finding each model
variant’s parameter values
– More verifiably MLE than IGD to minimize MAD/r2

– Petrov (2001) offers valuable suggestions for doing this

• Come up with a formal method for relating the
uncertainty in the computational model’s
predictions to the uncertainty quantified by F
tests and BiC
– What we’re doing is probably valid but needs to be

formalized

• Verify (or, if necessary, refine) our parameter-
counting strategy

• Offer a package, in LISP, to assist others in
conducting these analyses

Acknowledgements

Brian Junker
Christian Schunn
Christian Lebiere
Andrew Ko
Benjamin MacLaren
Adam Fass
Samuel Baker

Rhiannon Weaver
Benoit Hudson
John Graham
Hedderik van Rijn
Irina Shklovski
Atsushi Terao

The End

• Questions?

Productions You Don’t
Need To Count

• Any production Ptagalong that always fires
when production P1 has already fired
– Only true if it always fires… if nothing fires

due to utility threshhold, this can’t be
applied

• Productions which fire in every single
run
– For book-keeping or initial goal-setting
– Each declarative chunk that affects the

results of the model = 1 free parameter
– Each ACT-R global parameter you allow to

vary = 1 free parameter

Each Production’s Utility

• Ui = πiG - Ci + ε

Ui
πi

G

Ci

ε

Production i’s utility

The expected probability that
choosing production i will lead to
the desired result

The current objective’s value

The expected cost of firing the
production

Noise parameter

If you allow both
πi and Ci to vary,
you may need to
count two global
parameters…

Chunks You Don’t
Need To Count

• Any Chunk Cinfo used solely for
information storage
– Cinfo’s retrieval never fails
– There is never a case where Cinfo is

competing with another chunk for retrieval
– Cinfo spreads no activation

• Any chunk Ctagalong which is always
retrieved after a specific production has
already fired

Standard-Deviation
Assumption

• What is the worst-case assumption for the
standard deviation of each individual run from
the actual proportion?

• This is when every individual run gives a result
that’s ½ the range of possible values of data
away from the actual value.

• For example, if the results are expressed as
frequencies between 0 and 1, then the worst
case for data concerning proportions of events
is when the actual proportion is 0.5. (and each
event is 0 or 1.)

• So the worst-case standard deviation is √0.5

Global Parameters You
Don’t Need To Count

• If you never allow a global parameter to vary
– If you leave it at 0, or ACT-R default, or a well-

known value from a previous experiment (as in
Lebiere and West, 1999 and Lebiere, Wallach, and
West, 2000)

• Then it can be treated as a constant in the
equations and not counted as a free
parameter

• If you tweaked it, or tried different values,
count it as a global parameter…

• This calls for honesty and clear reporting on
the part of the modeler!

Standard-Deviation
Assumption

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0
.0
5

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

0
.9
5 1

Worst-Case

Standard Deviation

(all values are at

the edge of the range)

Actual Value/ Range
(Normalized where bottom of
range = 0)

T-Distribution
Assumption

• The t-distribution will be an appropriate
predictor of the deviation of each model
run from the actual proportion

• Not valid for all ACT-R models (cf Young
and Cox 2002), but transformations can
be used

• And for large enough numbers of runs,
Central Limit Theorem guarantees
normal distribution will be a valid
assumption

Terminal Models

• Terminal Models
– Involve learning of new chunks, but not learning of

new productions or changes in production weights
– Are valid to use “in cases where the behavior under study is at

some relatively asymptotic level or the critical factors being
investigated do not change over the range of experiences
encountered in the experiment.” (Anderson, Lebiere and
Lovett 1998)

– “a typical assumption in much of the experimental research on
human cognition”

• Many Recent Terminal Models:
– Tower of Hanoi (Anderson & Lebiere 1998)
– Fan Effect (Anderson & Reder 1999)
– Student Thinking After Instruction (Nokes et al 2002)

Model Variant
Comparisons

• Model KNOW-QUANTITATIVES
– Students know how to represent quantitative

variables properly
– r2= 0.976

BiC = 181.8

• Model KNOW-SCATTERPLOTS
– Students do not know that but
– Students do know that Scatterplots contain

quantitative variables
– r2= 0.916
– BiC = 270.0

• “Very Strong” evidence in favor of KNOW-
QUANTITATIVES

Model Variant
Comparisons

• Model KNOW-IT-ALL
–Students can (and do) read the

question to help them figure out what
variables to use

– r2= 0.972

• Model CAN’T-USE-QUESTION
– r2= 0.79

• F(26,2)=101.5, p=0.01

Student Errors in
Scatterplot Generation

• Two errors where the student ends
up with a nominal X variable,
which is appropriate for bar graphs
but not for scatterplots
–The “Variable Choice” Error

• The student places a nominal variable on
the X axis

– The “Nominalization” Error
• The student places the correct

quantitative variable on the X axis but
treats it as if it were nominal

“Variable Choice” Error

Students asked
to draw
scatterplots

Used variables
more appropriate
for bar graphs,
placing a nominal
variable on the X
axis rather than a
quantitative one.

Used correct variables, but
turned the X axis variable
into a nominal variable (as
if it were a bar graph)

Students asked
to draw
scatterplots

Used the correct
variables, but
turned the X axis
variable into a
nominal variable,
as if it were a
bar graph.

“Nominalization” Error

Data Set Features

• 5 conditions in the original studies
(between-subjects)

• Different proportion of correct
behavior and each error, as well as
other behaviors, in each condition

Parameters

• 6 declarative chunks
• 3 ACT-R global parameters
• Between 19 and 25 productions in

the different variants
• 28 to 34 parameters total

Model Variant
Comparisons

• Model KNOW-IT-ALL
– Students’ prior knowledge of bar graphs

influences some of them to mis-transfer bar
graph features into their scatterplots

– r2= 0.972, 34 parameters

• Model DON’T-KNOW-BAR-GRAPHS
– Any student behavior that mimics bar graph

features arises solely through random
chance

– r2= 0.90, 28 parameters

• F(26,6)=16.94, p<0.0001

Model Variant
Comparisons

• Model KNOW-QUANTITATIVES
– Students know how to represent quantitative variables

properly
– r2= 0.976, 29 parameters

BiC = 181.8

• Model KNOW-IT-ALL
– Students know that, and
– Students know that Scatterplots contain quantitative

variables
– r2= 0.972, and 32 parameters
– BiC = 194.1

• BiC Difference=12.3, “Very Strong” evidence in
favor of KNOW-QUANTITATIVES
Smaller BiC values are better. A difference of 6 is
“Strong”, a difference of 10 is “Very Strong” – (Raftery 1995)

Conclusions About
Student Cognition

• Our modeling suggested that the pattern of
errors students made
– Stems from understanding what kinds of variables

go into bar graphs, and mis-transfering this
knowledge to scatterplots

• Our modeling suggested that the correct
performance we saw
– Did not stem from understanding scatterplots
– Instead, stemmed from a combination of

• Understanding what a quantitative variable is
• Knowing how to use the information given in the

question

• This had implications for the design of our
tutor. (Baker et al 2003)

Some Future Work…

• We currently give one BiC value
(and one F-value), but given the
stochastic nature of the model
predictions, it might be better to
give a range of values that BiC
could be, or to adjust our F-values
downwards

• We’re looking into this

How Tight Should
Predictions Be?

• Look at the confidence intervals in
the original data set

• If you make your bounds
substantially tighter than these
–you may spend time during the

parameter-fitting stage getting a
tighter fit to the error in the original
data set.

– you may end up choosing the model
which best fits the error in the
original data set

Model Complexity

• The more complex we allow a model to
be, the more likely
– it can fit an arbitrary data set just by chance
– it will overfit by going beyond fitting the data,

by fitting the error in the data set
• So it’s important to assess the trade-off

between
– how closely a model fits the data (goodness-

of-fit)
– and how complex the model is

