ACT-R Landscapes

Hedderik van Rijn Carnegie Mellon University

How to make pretty plots without having to buy an expensive scanner

Hedderik van Rijn Carnegie Mellon University

Chapter 7, '98 book

•Ratcliff, Clark & Shiffrin (1990)

• "Recognition memory for individual items deteriorates as the list has more items (the list length effect). It also gets better as items are studied more (the list strength effect)"

 Chapter 7 presents a model of these effects that shows a reasonably good fit d' distance between the mean retrieval time for distractors (foils) and targets (smaller d', worse performance)

2.0

1.5

5

10PS: 10 items studied 4 times 16PS: 16 items studied 4 times 16MS: 8 items studied 4 times 16MW: 8 items studied 1 times 16PW: 16 items studied 1 time 40PW: 40 items studied 1 time

Parameter Estimations

•Four parameters:

•F (latency factor): 2 (set/copied from other model)

- •s (noise): 0.55 (estimated)
- •P (partial matching penalty): 1.5 (estimated)
- •r (threshold): 1.8 (estimated)

Ľ,

1

2

enalty

i.

14

5

1

12.4

認知

10

Ľ,

enalty

i.

12.4

認知

ant Cur

1

23

enalty

i.

14

5

1

2.2

2.4

10 20

10 10

-

Ľ,

1

23

enalty

i.

14

5

1

5

12.4

認知

2.0

0.47

NOUS!

0.41

0.4

0.45

15.0

0.49

0.53

0.55

0.57

0.59

0.61

0.42

0.41

noise

0.43

0.44

Recommendations

•Optimizing won't give you more than an idea of what in "what area" the right parameters are

After optimization, create a parameter landscape

 I will post the code I used to create this presentation to the ACT-R mailing list (August)

•Then, find the best fit to stun others...

•However, make a note to yourself that his single best fit is just one fit of a "family of fits"

