
Communicating with Something 
Outside of Lisp:

Some Available Resources and a 
Very Quick How-to

Dan Bothell
db30@andrew.cmu.edu



A Little Different

• We do a lot of re-implementing in Lisp
– I don’t have an example to discuss

• I have tied the internals of ACT-R 5 to an 
external GUI (the ACT-R Environment)

• I’ve helped others get it working
– If you need help feel free to send me email



The ACT-R Environment

• GUI written in Tcl/Tk
– available from the ACT-R web site at 

http://act-r.psy.cmu.edu/software

– Not an “external environment” from a 
modeling sense

• Connects ACT-R (Lisp) through a TCP/IP 
socket connection to Tcl/Tk

• Works in several Lisp applications
– ACL, MCL, LispWorks, OpenMCL, CMUCL



What can it do for you here?
• The important file is “uni-files.lisp” in the ACT-R 

Environment distribution
– Lots of comments to describe what the functions do

• Contains simple functions to:
– Open a socket
– Write and read lines of text
– Wait for a character
– Spawn multiple processes/threads

• Could be used as is, or at least provide examples of the 
functions you need to investigate for your Lisp

• Those using MCL should consult the additional slide at 
the end of this presentation for some extra details



Ok, that’s good, but then what?

• You have to convert the incoming state 
information to a representation the model 
can handle

• You have to convert the model’s actions to 
something that the simulation can handle 

• Now it’s time for the Device Interface



The Device Interface
• An abstract representation of the world built into 

ACT-R/PM
– Full details in the documentation at 

http://chil.rice.edu/byrne/RPM/docs/index.html

• Implemented as any Lisp class that has the 
appropriate methods defined
(defclass dans-world () nil)

• Create one and let ACT-R/PM know about it
(defvar *my-world* (make-instance ‘dans-world))
(pm-install-device *my-world*)



What are the methods necessary?

• For simplicity here, I’ll assume visual info coming 
in and keyboard/mouse data out
– Other interactions also predefined like auditory in and 

speech out 
– Also possible to define new abilities for the model 

• Build-features-for
• Output-key
• Move-cursor-absolute / move-cursor-relative
• Output-click



Build-features-for

• Called to generate the visible features for the model
(defmethod build-features-for ((world dans-world) vis-mod) …)

• Must return a list of icon-feature objects (a predefined 
class) or any user defined subclasses thereof 

• Those features are what the model can see (the visicon)
• The feat-to-dmo method will be called to convert icon-

features to visual-object chunks
– May be user defined for subclasses

• Also need to call pm-proc-display to update the visicon
when appropriate

• Collecting state info coming in and converting it to icon-
features is highly dependent on the simulation



The Output Methods
• Called when the model “does something”
• Output-key

– Called with the xy virtual keyboard position of the key
• Move-cursor-absolute / move-cursor-relative

– Called with either an xy position or radius and angle 
• Output-click

– Called with no extra parameters

• They need to send the appropriate command to the 
simulation

• Obviously not the only issues involved (as others are 
describing), but it’s the basics that you’ll need to start



For those using MCL

• The file called “mcl-fix.lisp” may also be 
useful

• The MCL implementation of OpenTransport
can be problematic out of the box

• The streams are locked on an access
– Either you can read or write but not both

• I’ve patched the pieces to fix that 
– Had a huge improvement on the performance
– Hasn’t caused me any troubles 


