Communicating with Something
Outside of Lisp:
Some Available Resources and a
Very Quick How-to

Dan Bothell
db30@andrew.cmu.edu



A Little Different

* We do a lot of re-implementing in Lisp
— | don’t have an example to discuss

* | have tied the internals of ACT-R 5 to an
external GUI (the ACT-R Environment)

* I've helped others get it working
— If you need help feel free to send me email



The ACT-R Environment

e GUI written in Tcl/Tk
— available from the ACT-R web site at

http://act-r.psy.cmu.edu/software

— Not an “external environment” from a
modeling sense

* Connects ACT-R (Lisp) through a TCP/IP
socket connection to Tcl/Tk

* Works in several Lisp applications
— ACL, MCL, LispWorks, OpenMCL, CMUCL



What can it do for you here?

The important file is “uni-files.lisp” in the ACT-R
Environment distribution
— Lots of comments to describe what the functions do

Contains simple functions to:

— Open a socket

— Write and read lines of text

— Wait for a character

— Spawn multiple processes/threads

Could be used as is, or at least provide examples of the
functions you need to investigate for your Lisp

Those using MCL should consult the additional slide at
the end of this presentation for some extra details



Ok, that’'s good, but then what?

* You have to convert the incoming state

information to a representation the model
can handle

* You have to convert the model’s actions to
something that the simulation can handle

* Now it’s time for the Device Interface



The Device Interface

* An abstract representation of the world built into
ACT-R/PM

— Full details in the documentation at
http://chil.rice.edu/byrne/RPM/docs/index.html

* Implemented as any Lisp class that has the
appropriate methods defined

(defclass dans-world () nil)

 Create one and let ACT-R/PM know about it

(defvar *my-world* (make-instance ‘dans-world))
(pm-install-device *my-world*)



What are the methods necessary?

For simplicity here, I'll assume visual info coming
iIn and keyboard/mouse data out

— Other interactions also predefined like auditory in and
speech out

— Also possible to define new abilities for the model

Build-features-for

Output-key

Move-cursor-absolute / move-cursor-relative
Output-click



Build-features-for

Called to generate the visible features for the model
(defmethod build-features-for ((world dans-world) vis-mod) ...)

Must return a list of icon-feature objects (a predefined
class) or any user defined subclasses thereof

Those features are what the model can see (the visicon)

The feat-to-dmo method will be called to convert icon-
features to visual-object chunks

— May be user defined for subclasses

Also need to call pm-proc-display to update the visicon
when appropriate

Collecting state info coming in and converting it to icon-
features is highly dependent on the simulation



The Output Methods

Called when the model “"does something”
Output-key

— Called with the xy virtual keyboard position of the key
Move-cursor-absolute / move-cursor-relative

— Called with either an xy position or radius and angle
Output-click

— Called with no extra parameters

They need to send the appropriate command to the
simulation

Obviously not the only issues involved (as others are
describing), but it’s the basics that you’ll need to start



For those using MCL

The file called "mcl-fix.lisp” may also be
useful

The MCL implementation of OpenTransport
can be problematic out of the box

The streams are locked on an access
— Either you can read or write but not both

I've patched the pieces to fix that
— Had a huge improvement on the performance
— Hasn't caused me any troubles



