
Interfacing ACT-R with
External Simulations

Eric Biefeld, Brad Best, Christian
Lebiere

Human-Computer Interaction Institute
Carnegie Mellon University

We Have Integrated ACT-R With Several
External Simulations and Learned Some Key

Lessons
• The applications

– UT MOUT
• A worst-case integration

– AMBR
• Better thought-out but still significant effort and speed

problems
– AMBR HLA

• Interesting process but suboptimal result
– IMPRINT/ACT-R (and CART/FRED)

• Development of general-purpose layer

• The lessons
– Most development time goes into infrastructure

(Zachary)
– General-purpose APIs can save orders of

magnitude of integration time

We Can’t Reimplement Large Simulations So
We Must Build Links From the App to ACT-R

• Reimplementation cost in time/$ is prohibitive
• Can’t modify: the simulation is always right
• Data must travel from and to both simulation and

model
– Communicating to the model the state of the simulation
– Local cache of the state of the simulation may be needed
– Communicating to the simulation the model actions
– Each new communication link requires an API

• The developer also needs links to both the simulation
and the model
– Existing ACT-R Lisp API provides link to model
– Debugging may be through either the model or the

simulation
• Time synchronization is tricky

– Real time vs. virtual time
– Event-based vs. tick-based

Defining and Implementing Links to
an External App Is Where the Time

Goes
• Protocol

– Data sharing: description of data structures (how?)
– Time synchronization: advance time (when & who?)

• General-purpose solutions (save future costs)
– HLA formalized the documentation and provides a

run time infrastructure
– General API for ACT-R?

• Special-purpose interface
– Various implementation instances in following

examples
– Optimal but cost-intensive solution

Example 1: ACT-R Agents for Urban
Combat Integrate with Unreal Tournament

• Realtime App with realtime
constraints
– Processing and network

bottlenecks
• Integration is more work

than the modeling
– Game does not provide

primitives needed for
cognitive modeling (no walls!)

• 2-layer API
– Designed to accommodate

change in simulation platform
– May not get desired changes

in next version

The Unreal Tournament
game engine / simulation platform
for MOUT

MOUT/UT Information Flow

Visual Inspection
of Game Screen

UT Console
Commands

Unreal Script
Commands

Game State Data

Lisp Listener
Output, File I/O

ACT-R
Command API

UT GameACT-R

Programmer

ACT-R/UT Interface

UT GameACT-R

Generic
MOUT API

Specific
UT API

(move-to-point =point
‘run)

(shoot-at-point =point)

etc.

(PLR
(ID DOM-
URB1.FRIENDLYMALE0)
(ROTATION 63536
57744 1)
(LOCATION -112.6
812.8 43.7)
(VELOCITY 0.0 0.0
0.0)
(NAME STAN)
(TEAM 1)
(REACHABLE FALSE)
(WEAPON
BOTPACK.SHOCKRIFLE)
(ALTFIRING 0)
(BOT-ID 1))

(chunk-type
other-player
id
name
team
location
reachable
visible
health
current-weapon
weapons
update-time)

runto (Location {x y z})

shoot (Location {x y z})

etc.

Unreal Script
Commands

MOUT Agent
Commands

UT Game StateMOUT
Sim State

ACT-R UT/MOUT Time Sync
• Realtime App… sort of.

– UT game time is the master clock
• May slow down or speed up depending on CPU demands

– UT sends game state updates at regular intervals
• Upon update, ACT-R model runs cycles until ACT-R time

is later than the UT time stamp in the update, then the
update is applied

– This prevents ACT-R perceiving events in the past: an
update at time t will appear at ACT-R time t or slightly later

– ACT-R must run much faster than realtime to keep
up

• The external app and other models may need to run on
the same machine

• Individual models must release control to allow other
models to catch up – no thread hogging

– Limits on how many agent models can be run in
realtime

Example 2: AMBR
The Theory

• ATC simulation for cross-
architecture modeling

• Communication protocol
designed jointly for model
and simulation

• Sockets: simple and easy

The Reality
• Too slow (250msec roundtrip for 50msec control loop: 5x RT)

• 2nd solution: run in RT as a human subject (funny side effects!)

• 3rd solution: run in same Lisp process as the simulation!

A sample protocol: Original AMBR
API

Data communication between simulation (Core-OMAR) and agent (ATC
Workplace)

Core-OMAR output to the ATC Workplace
(ATC::INIT-RADAR (string atc-name)) Initializes the radar screen for ATC model workplace and gives model name
(ATC::INIT-ATC (string atc-name) (double epos) (double npos)) Provides ATC name and screen position
(ATC::INIT-AC (string aircraft-name)) Identifies a new aircraft icon that is about to appear
(ATC::UPDATE-AC (string aircraft-name) (double epos) (double npos) (double evel) (double nvel) (double altitude)

(string color)) Identifies a new location and color for an aircraft icon.
(ATC::REMOVE-AC (string aircraft-name)) Identifies an aircraft icon no longer seen on the radar screen.
(ATC::COMMAND-PROMPT (string prompt)) Indicates the appearance of a new prompt in the command

line
(ATC::COMMUNICATION-MESSAGE (string speaker-name) (string message-content) (string panel-name))

Presents a new message at the bottom of the identified screen panel

Input to Core-OMAR by a Model at the ATC Workplace
(ATC::GUI-BUTTON-PUSH (string label)) Indicates that a screen button that has been

pushed
(ATC::GUI-OBJECT-SELECT (string icon-label)) Indicates that screen-icon for aircraft or ATC has been selecte

Time synchronization of simulator operation for multi-node distributed
simulation

ACT-R ATC
Workplace

Core
Omar

Example 3: HLA to the rescue

Live
Participants

Support Utilities

Interface

Interfaces to
Live Players

Runtime Infrastructure (RTI)

Simulations

Federation Management Declaration Management
Object Management Ownership Management
Time Management Data Distribution Management

C++
Ada 95
CORBA IDL
Java

• Nice support for development process
– Standard data exchange & time management schemes

• Complex system/process with own logic

• No Lisp hooks so we used Java gateway

• Result: 10 times slower than previously

Example 4: ACT-R/IMPRINT
• IMPRINT

– Discrete-event network simulation development tool
– Designed specifically for modeling human

performance
– Funded by ARL built by MAAD
– Can be used as a general-purpose simulation

engine
• Done about 8 IMPRINT/ACT-R

models
• Integration time brought down

from 2 to 2months to days.
• Working to generalize to other

simulations

NASA HEM: The first
application

• Pilot taxi errors
• MAAD built IMPRINT

model of aircraft
taxiing

• CMU built ACT-R
model of pilot
decision-making

First IMPRINT/ACT-R:
Months!

• IMPRINT has API based on COM
– IMPRINT initiated ACT-R’s decisions.
– LISP glue had to single step IMPRINT and

query IMPRINT’s external variables.
• Months to finish integration

– 300 lines IMPRINT’s COM API
– 1000 lines GLUE (one off)

ACT-R IMPRINTGLUE

CART: Next Application
• Air Force
version of
IMPRINT

• Model of
shootlist
management for
scud-hunting

• Runs on
Silicon Graphics

CART / ACT-R: Down to
weeks!

• FRED is a classified simulation of aircraft (JSF)
• Developed ACT-R HPM model from partial stub
• Used the External Macro Call (EMC) protocol
• Separated COM, EMC support from GLUE.

– Needed only 4 of IMPRINTS API (just data)
– Glue dropped to ~600 lines
– COM & EMC support ~300 lines
– Just weeks to build

ACT-R CARTGLUE COM FRED

Write Once and Reuse: LIA

• Link IMPRINT ACT-R
– Designed between projects.
– Subset of ACT-R’s API and Buffers
– Uses Excel tables maintained by IMPRINT

developer!
– Defines a defEMC which handles the RPCs
– About 400 lines with additional 200 for COM
– Translates integers into symbols and simulation

entities
– Support for TK demo windows. (Perl for speed)

LIATables

Logs
SIM State

COM

PERL/TK
LINK

ARL ADA
• Build human performance model of the operation of robotic scout
• Modeled the navigation through complex displays
• Simplify the integration of IMPRINT and ACT-R

IMPRINT/LIA/ACTR: Done in
days!

• Most complex IMPRINT model
• The basic integration done in days

– Glue down to 200 lines
– Debugged IMPRINT model from LIA’s logs

• Built GUI to show ACT-R’s decisions

ACT-R IMPRINTLIA

GLUE

DEMO

Lessons Learned So Far Suggest a
Future Approach

• Simulation is not going to change for us (we are not that
big yet but we can/should do education of simulation
community)
– Insufficient primitives can make development costly

• Modeling is modeling
– This aspect is no different in the context of external simulations

• Generate general-purpose API layer that solves the hard
problems (language translation issues, timing)

• Need a thin special-purpose client that is fast and easy to
develop (hours to days)
– Which side/language of communication to put the thin client on?

Simulation-specific?
• Cost/benefit of general/specific solutions (pay now, pay

later)
– The systems described took months, to weeks, to days of

integration time

Further Questions on What to
Provide for the ACT-R API?

• Should the simulation control cognitive
processor?
– ACT-R as cognitive server (or client)
– Or Peer-to-Peer (Federation view like HLA)

• Do we need a general API for a cognitive
system (popular enough to be a standard?)

• Is the ACT-R user API right for a simulation
communication API?

• Reusable TCP/XML layer for ACT-R
commands?

• ACT-R time rollback? (for TIME/WARP)

