Between the Boxes: Rensselaer Efforts

Michael J. Schoelles
Christopher Kotfila
Wayne D. Gray

Panel Questions

- What external systems?
- How was it done?
 - Network Traffic?
 - Info sent and received?
- What worked, and what didn’t?
- Time synchronization?
What External Systems? Where we are going

- Scaled World for Intelligence Analysts
 - Game-like look&feel as per SimCity™, WarCraft™, etc
- Separate machine required to implement simBorg
 (black-box module for this project uses AI-based Formal Logic System that is resource intensive)
- GUI-interface developed by Planet 9 Studios to use advanced 3D, multimedia, innovative features
- Purpose of the model is to provide simulated user for automated usability testing

What External Systems? How we are getting there

- Mac-to-Mac in MCL (proof-of-concept)
 - Argus Prime simulation & model
 - We built both
- Mac-to-PC (toy system)
 - ACT-R in MCL
 - Simulation in C++ under windows
 - We built both
How Was It Done?

Simulation Machine (Mac/PC)
- Simulation
 - Sends text descriptions of GUI objects to Commo Module

Commo Module
- Sends feature descriptions & mouse/cursor positions over TCP/IP (text strings) to ACT-R machine

ACT-R Machine (Mac)

How Was It Done?

Simulation Machine (Mac/PC)
- Commo Module (Mac machine)
 - Instantiates features
 - Updates visual memory

ACT-R cranks on
How Was It Done?

Simulation Machine (Mac/PC)
- Simulation
- Commo Module

ACT-R Machine (Mac)
- ACT-R
- RPM functions redefined to send messages to Commo Module

Commo Module
- Sends commands to Simulation Machine over TCP/IP

How Was It Done?

Simulation Machine (Mac/PC)
- Simulation
- Commo Module

ACT-R Machine (Mac)
- ACT-R

Commo Module (simulation machine)
- Makes OS call to execute RPM commands
What worked, and what didn’t?

- **Mac-to-Mac**
 - Model was more intertwined with simulation than modeler had realized
 - Separating the two helps to keep the modeler honest!

- **Mac-to-PC**
 - Line endings!!
 - Finding common ground with the developer
 - Currently in-progress!

Time synchronization?

- We avoid many problems with time synchronization because our simulations run in real-time -- hence we can use the real-time mode of ACT-R

- Running on separate machines avoids conflict of resources that would lead to timing issues
 - No degradation of resources due to simulation -- makes it easier for ACT-R to keep up with a dynamic simulation in real-time
 - Prevents ACT-R from locking out other processes