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We propose an approach to the cognitive engineering of integrated task environments by the use of
simulated cyborgs (simBorgs). SimBorgs combine high-fidelity computational cognitive models with low-
fidelity artificial intelligence (AI) based reasoning components. This combination of cognitive modeling
with AI enables the creation of intelligent agents, simBorgs, that will work tirelessly to perform usability
testing on various combinations of tasks and interfaces.

For a simulated human user to be useful in
testing interface designs how much of human
behavior must be simulated in a cognitively
plausible manner? For those interested in
interface design, the problem is that task
knowledge and even cognitive processes
(Ericsson & Kintsch, 1995) are very task-
specific. Do we need a cognitively plausible
model of an expert architect to evaluate the
interface of an architectural CAD-CAM system?
Do we need a cognitive model of an Air Traffic
Controller to evaluate interface features of ATC
software?

It is certainly the case that if one is not
interested in cognitive fidelity, it is often
simpler to model human performance by a
mathematical equation, statistical techniques
such as multiple regression, or an AI-system
than it is to build a high-fidelity computational
cognitive model. For example, Deep Blue beat
Gary Kasparov at Chess. However, Deep Blue
was not a model of human chess playing
expertise. Designing an AI system that will beat
the world’s best human at chess has been done.
Designing a computational cognitive model that
will play world-class chess in the same manner
as the best human plays chess has not been
done.

We argue that it may be possible to finesse the
expertise issue by turning the reasoning
component of a model over to a black-box
module that makes few, if any, claims to the
cognitive fidelity of its processing. Whether this

module uses machine-reasoning algorithms,
statistic models, or other formalisms will
depend on the needs of the particular project. In
effect, we are advocating the building of
simulated Cyborgs (simBorgs).
SimBorgs and a Three-Tier Architecture for
Interactive System Design

Cyborgs are science-fiction creations that are
part human and part machine. We see the
creation of simulated cyborgs as the solution to
building models that interact with a variety of
software tools in a manner that requires domain
expertise. Like the sci-fi cyborgs, our simBorgs
combine human and machine components. Our
simBorgs consist of high-fidelity models of
human interactive behavior, knowledge schemas
derived from expert humans as they perform
realistic tasks, and a black-box module.

A three-tier architecture for interactive system
design emerges from this vision. The interactive
behavior tier interacts directly with the task
environment much in the manner that people
interact with it. This is the level of highest
cognitive fidelity and represents an off-the-shelf
use of ACT-R 5.0 (Anderson, Bothell, Byrne, &
Lebiere, 2002). These models adopt the hard
and soft constraints approach that is the focus of
our basic research efforts. This tier has two
subtiers. Tier A1 – is the microstrategy tier. This
is the hard constraints level. There are only so
many ways that a given interactive device can
interact with an interactive object. These “ways”



are typically constrained by the toolbox of a
given operating system. (See, Gray & Boehm-
Davis, 2000 for an elaboration of this issue.)
Tier A1 is the level of the greatest reusability of
productions; that is, the core productions for
interacting with interactive objects should be
common across models and, as an article of
faith, should be reused.

Tier A2 is the unit task level. Unit tasks are
more task-specific than are the microstrategies.
There may be multiple methods for completing
any given unit task – this is the soft constraints
level where least-cost considerations influence
the method chosen to implement a unit task.

Like the humans, the Interactive Behavior
Module will interact differently with different
scenarios in the same task environment. It will
also interact differently accomplishing the same
scenario but with different task environments
(i.e., different configurations of tools). Having a
family of cognitively realistic models of
interactive behavior will enable us to quickly
predict the influence that various “designed
environments” have on human performance.

Success at designing better task environments
requires more than models that interact with
their environment the way that people interact.
The models’ activities must be directed towards
the same information acquisition goals as
people’s and the information collected must be
used for reasoning, problem-solving, or
hypothesis generation and testing much as the
human. These requirements strain the limits of
current computational cognitive modeling.
Although modern cognitive science understands
much about expert reasoning, complete and
cognitively plausible models of expert reasoning
are research projects unto themselves. At
present, developing the families of high-fidelity
cognitive models required to account for the
range of human reasoning across multiple task
environments would be a separate and daunting
line of research.

To finesse this problem, tier B consists of
knowledge schemas that guide interactive
behavior using sets of scenario-specific
schemas. These schemas are derived by
knowledge engineering techniques (primarily

protocol analysis) from human experts as they
solve a given scenario. The schemas will guide
information acquisition activities and cache the
results. (Developing these scenario-specific
schemas is, in itself, a major knowledge
engineering effort.) As used here, the schema
framework has its origins in the Project Nemo
work (Gray, 2003).

Schemas may be considered the knowledge



structures that Ericsson and Kintsch (1995) refer
to as long-term working memory. There may
well be multiple schemas for the same task.
(Note that it is probably more accurate to think
of sets of schemas rather than one large schema
per formal method, but we will talk as if there is
a one-to-one correspondence between the
methods in the black-box reasoning module and
the schemas.) Different schemas may enable the
use of different black-box methods.

The third tier, Tier C, is the black-box module.
This module may contain a variety of methods
for problem solving or reasoning in the task
domain. Depending on the domain, the method
chosen may be a machine-reasoning algorithm,
Bayesian network, multiple regression model, or
algebra equations that simply compute an
answer. (Indeed, we can envision writing simple
arithmetic Lisp functions that compute different
decision-making algorithms; i.e., compensatory
versus non-compensatory ones, etc.) The
essence is that the black-box method provides
an answer that a human might give, but the
process by which the answer is derived bears no
resemblance to human information processing.

The black-box method may be selected based
on PG-C considerations. This arrangement
would have implications for how we design the
black-box module. We may want the black-box
method to be fired by Lisp code on the RHS of a
production rule. The arrangement we use needs
to facilitate two things. First, it needs to
facilitate the assignment of credit to the black-
box method. Credit determines the cost and
probability of success. Second, different black-
box methods may be considered at different
phases of the data gathering. Rather than having
3 methods that compete at the same time, it may
be the case that Method 1 is enabled with less
data than the other two methods. In this case
Method 1 might compete with a unit task that
gathers more data. Method 2 becomes enabled
with more data (or different data), it then
competes with both Method 1 and a unit task
that gathers more (or different) data. In this
scheme of things we may want to hardwire an
estimate of C for each method and assign each
method a given P based on the effectiveness of

the method.
Unlike human decision-makers, the black-box

methods will always work perfectly. The caveat
is GIGO (garbage-in garbage-out). If the first
two tiers feed the black-box method old
information or wrong information, the black-
box method will accurately compute the best
answer that can be obtained from the
information provided. Hence, this approach
promises to provide a general way of exploring
how differences in interface design lead people
to tradeoff effectiveness versus efficiency in the
strategies they use. The goal is to be able to
separate the low-level information acquisition
and interaction processes from the higher-level,
problem-specific expertise required to do a
particular job.

The need to support the black-box module will
require us to extend ACT-R by the addition of a
black box buffer. In operation, this buffer will be
similar to the other buffers of ACT-R 5.0 (e.g.,
motor, visual attention, and memory retrieval
buffers). Indeed, to the extent that the
established ACT-R buffers are grounded in
neurocognitive data (Anderson et al., 2002), the
addition of a buffer enabling the sending and
receiving of information to a black-box module
can be conceptualized as a simulated brain
implant.
From ACT-R to simBorgs: Cognitive Science to
Cognitive Engineering

The idea of building simBorgs is a bold and
challenging extension of the current state of the
art in computational cognitive modeling.
SimBorgs represent a marriage of artificial
intelligence algorithms to a high-fidelity
embodied cognition capable of interacting with
a variety of interface designs and making the
same least-effort tradeoffs as human users.
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