Exploring the usability of adaptive menus with a simple object system

Bruno Emond,
Institute for Information technology, Computational Video Group, National Research Council Canada.

Robert L. West,
Department of Psychology, and Department of Cognitive Science, Carleton University.

Overview

• The ACT-R simulation tool space.

• Simple Object System - ACT-R/SOS.

• An example: Modelling user interactions with adaptive menus.
The ACT-R simulation tool space

• Interaction with external applications or environment
 – ACT-R/IF, sim-eye, sim-hand, SegMan, VisMap, ACT-R robots, and Intelligent Human Computer Interfaces

• High fidelity simulated task environments
 – ACT-R/PM

• Low fidelity simulated task environments
 – ACT-R/SOS

Simple Object System - ACT-R/SOS

• What is it?
 – Tool to build low fidelity simulated environments to run against ACT-R cognitive models.
 – Assumes a perceptual index mechanism.
 – Definition of object classes and declarative chunks
 (define-sos-object-class class2
 :inherit-from (class1)
 :chunk-slots (c1 c2 c3)
 :application-slots (a1 a2))
Simple Object System - ACT-R/SOS

• What is it?
 – Buffer based
 (defparameter *perception* nil)
 (define-perception-function find-object
 :selection-function
 #'(lambda (finst-ob found-obs)
 (if finst-ob finst-ob
 (nth (random (length found-obs)) found-obs)))
 :cost-function
 #'(lambda (finst-ob found-obs)
 (if finst-ob 0.05 (* 0.05 (length found-obs)))))
 (define-buffer perception *perception*
 :plus-rhs find-object)

• Why bother?
 – Cognitive modelling and simulation development through successive refinements.
 – Minimize development time.
 – Make mechanisms of perception and motor action as explicit as possible in the model.
 – Learning ACT-R.
 – Link to ACT-R/PM as a device plugin.
 (yet-another-task23
 isa to-do-list-item
 list to-do-list45
 description sos-as-an-ACT_R/PM-device-plugin)
Simple Object System - ACT-R/SOS

• Who would be interested anyway?
 – People who want to learn ACT-R.
 – People who want to generate some hypothesis based on simulation results.
 – People who want to explore buffer computational properties.
 – People who want to use simulated users for usability testing.
 – People on the rush, they just want to get going.

An example: Simulation of adaptive menus

• Motivation for the simulation
 – Are adaptive user interfaces usable?
 – Adaptive menus must be better.

• Adaptive menu options
 – Random: it says it all, never the same
 – Fixed: it says it all, always the same
 – Stacked: last chosen goes on top, pushing down the rest
 – Frequency: Sorted based on frequency access
 – Activation: Sorted based on activation (frequency and time)
Distribution of menu items

• A simulated subject sees 10 successive sets of 30 targets in the four adaptive menu conditions.
 – Random targets 1-30: ("t08" "t08" "t08" "t08" "t11" "t11" "t02" "t02" "t05")
 – Early targets 1-15: ("t07" "t07" "t07" "t07" "t10" "t10" "t10" "t01" "t01" "t04")
 – Late targets 16-30: ("t09" "t09" "t09" "t09" "t12" "t12" "t12" "t03" "t03" "t06")

• The model is reset for each menu condition.

• Parameters
 – Subsymbolic Computations, Randomness,
 Base level learning 0.5

• Productions.
 – get-new-target, retrieve-target-position (with success or failure), scan-
 menu-for-target (upward or downward), test-target-success, add-
 target-to-menu.

Simulation results

![Graph showing average number of scans to find a target over learning cycles]
Current research

• Usability testing with simulated users.
 – Robert West and COGNOS.
• Modelling media player usage while viewing video content related to self-performance of ensemble music playing.
 – MusicGrid: NAC, CRC, School boards, NRC Canada.
• Modelling quality of experience judgments and person-person interaction.
 – Advanced collaborative environments: NRC, CRC, NewMic.

Thank you :)”

Bruno.Emond@nrc-cnrc.gc.ca