
Rule refraction in Act-R, 25-27.7.03 — 1

Should Act-R Include

Production Refraction?

Richard M Young

Psychology Department

University of Hertfordshire

Talk presented at Act-R Workshop

Carnegie Mellon University

25-27 July 2003

Rule refraction in Act-R, 25-27.7.03 — 2

Conflict Resolution

and Instantiations

• Conflict resolution is the term used with production systems

to mean how, on each cycle, from among the possibly several

or many productions whose conditions are satisfied, one or

more productions are chosen to be fired.

• Act-R fires just a single production on each cycle. Conflict

resolution consists of computing the quantity E = PG–C for

each satisfied production, adding noise, and choosing the

production with the highest resulting E value.

• Strictly speaking, conflict resolution applies not to productions

but to instantiations, where an instantiation is a production

together with the data that are matched to its variables. In

many production system architectures, a single production can

give rise to several instantiations, perhaps only one of which

can be allowed to fire.

However, in Act-R from version 5.0, each production can give

rise to at most one instantiation, so the distinction (between

productions and instantiations) is less important.

Rule refraction in Act-R, 25-27.7.03 — 3

Importance of Conflict Resolution

• The definitive analysis of conflict resolution strategies is:
McDermott, J. & Forgy, C. (1978) Production system conflict resolution

strategies. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern-Directed

Inference Systems, 177-199. Academic Press.

• McDermott & Forgy point out the several ways in which a

well-chosen conflict resolution strategy can support the aims

of a production system architecture

— such as sensitivity to the environment, stability (i.e. focus

on a goal), learnability, and so on;

— although Act-R differs enough from the kind of

production systems McD & R were considering that their

conclusions need caution in applying to Act-R.

• The Act-R community has a long-standing culture of not

being particularly concerned with these points, instead being

content to work with hand-tuned production systems,

— i.e. where if the analyst makes a change in one

production, s/he adjusts the other productions as needed.

• Act-R models also tend to be over-programmed, in the sense

that the productions are carefully (and often ingeniously)

written to fire in a pre-ordained sequence.

Rule refraction in Act-R, 25-27.7.03 — 4

Importance of Conflict Resolution — 2

• Reasons why this is undesirable include

1) not get full advantage of potential modularity and

independence of productions, e.g. for “lesioning” or

adding individual productions;

2) makes learning harder (automatic acquisition);

3) over-programming prevents the architecture from playing

its role.

Rule refraction in Act-R, 25-27.7.03 — 5

Rule Refraction

• One of the conflict resolution methods McDermott & Forgy

discuss is refraction, where — roughly speaking — once a

production has fired, it cannot fire again matched to the same

data. Or more accurately: an instantiation cannot fire more

than once during its lifetime.

— Note that if an item of matching data is removed, and then

re-created, then the production can fire again.

• Refraction supports the independence and modularity of

productions in several ways, especially by making

unnecessary various kinds of fiddly housekeeping operations,

which in turn makes learning (automatic acquisition of

productions) more feasible.

• Look at a couple of examples …

Rule refraction in Act-R, 25-27.7.03 — 6

Example 1. Retrieval from Memory

• In Act-R 5.0, a standard retrieval from memory consists of a

request production followed by a harvest production. To

prevent the request production from firing repeatedly, a signal

has to be used to indicate that the request has been made.

Prequest: C, not-yet-requested, not-yet-retrieved ==>

+retrieval>cue, signal-requested

Pharvest: C, =retrieval> cue+more ==> A

With refraction, this could be simplified to

Prequest: C ==> +retrieval>cue

Pharvest: C, =retrieval> cue+more ==> A

• Note that one of the issues here, quite apart from refraction, is

that the memory buffer does not have an associated status

buffer to show when it is busy.

— others are aware of that point

But note that the role of refraction goes beyond what a status

buffer would do. Once Prequest had fired for a particular

(incarnation of) C, it will not fire again (on that same

incarnation).

Rule refraction in Act-R, 25-27.7.03 — 7

Example 2. Shifting from Compute

to Retrieve

• An interesting pattern is where, once a result has been

computed one or more times, Act-R begins to retrieve it

instead of re-computing it.

This is typically rather messy. To provide sufficient state

signals, the modeller may split the initiation of the

computation between the memory-request production and

the initiate-computation production, something like this:

Rrequest: C, not-yet-initiated ==>

+retrieval>cue, half-initiate

Rinitiate: C, half-initated ==> initiate computation

Rule refraction in Act-R, 25-27.7.03 — 8

From Compute to Retrieve — 2

With refraction, a much cleaner (and more interesting) model

can be written:

Prequest: C, answer=nil ==> +retrieval>cue

Pinitiate: C, answer=nil ==> initiate computation

Pharvest: C, answer=nil, retrieved result
==> set answer

Pcomputed: C, answer=nil, computed result
==> set answer

• Here,

— no artificial signals are needed

— retrieval & computation in parallel

* started in an order determined by the architecture

— process terminates when the first one finishes

— the retrieval productions can be added after the

computation productions, without needing to change them

in any way.

Rule refraction in Act-R, 25-27.7.03 — 9

Refraction and Parameter Learning

• Worth looking at the interaction between refraction and the

parameter learning mechanisms in Act-R.

• Take the basic pattern to be

P1: C1 ==> A1

P2: C1, C2 ==> A2

• Usual behaviour is for P1 to fire first, then when C2 becomes

true, P2 to fire.

• Parameter learning will cause P1 to be slightly less attractive

than P2, because of the extra effort of P1.

• That is correct, because if C2 already holds, we would

normally want the model to proceed directly to P2.

• Note that, unlike with some other production system

architectures, this mechanism resists being misused as a quick

& dirty way to get sequencing. To get cheap sequencing,

we’d need higher E (expected gain) for the earlier rules. But

Act-R will, correctly, learn a slightly lower E for the earlier

rules. So the modeller would end up fighting the architecture.

Rule refraction in Act-R, 25-27.7.03 — 10

Discussion/Conclusions

• Case that refraction would make a useful addition to Act-R.

• Specifically, it would

— simplify models

— lead to more independent and modular productions.

• This would

— make it easier to construct models, by adding productions

to the existing ones, without having to alter the existing

ones;

— make it easier to learn rules automatically.

• That said, the case is not as compelling as it is in McDermott

& Forgy’s (1978) analysis. The main reason is that OPS-like

productions systems tend to use a large, cumulative, internal

state based on a large dynamic memory that supports multiple

instantiations.

— Whereas Act-R 5.0 has moved to a small, configural state

that changes rather than grows.

• We should attempt to evolve Act-R culture, by encouraging

awareness and good practice in writing LHS conditions that

minimise the use of contrived signals, maximise the modularity

and independence of productions, and avoid over-programming.

