Variability of behavior in complex skill acquisition
Niels Taatgen

Abstract

In experiments where participants have to perform some new skill, we usually see a much
higher variance in behavior than our current models of complex skill acquisition can
explain. Currently, cognitive models employ two ways to add extra variance: noise, and
the manipulation of architectural parameters that we associate with individual
differences, of which the goal activation (W) parameter is most well-known (e.g., Lovett,
Reder & Lebiere, 1999). These two sources of variance are probably sufficient in tasks of
low complexity in which participants are told exactly what to do, but even in mildly
complicated situation other sources of variance can play a major role. Apart from
architectural parameters and noise, we can at least identify the following sources of
variance:

- General problem solving strategies: differences that we can attribute to whether or
not a certain (task-independent) cognitive strategy is mastered or preferred (e.g.,
attempt to multi-task, verbal rehearsal or mental imagery as a mnemonic strategy)

- Prerequisite skills: some tasks assume that certain skills are already mastered, like
operating a mouse and a keyboard, or doing mental arithmetic. Individuals may
differ in their mastery of these skills, or may even lack certain skills.

- Task ambiguity: complex tasks can almost always be performed in several
different ways. The method that is chosen to perform the task also influences
performance, especially at a more fine-grained level (e.g., keystrokes, mouse-
movements).

In my talk I will discuss how we can model these sources of variance in ACT-R, but will
focus on the third: task ambiguity. I will show examples of task ambiguity in two
complex dynamic tasks (Air Traffic Control — KA-ATC, and Airplane identification —
CMU-ASP). To model task ambiguity, a representation of instructions is used inspired on
the APEX architecture, in which instructions are only partially ordered — allowing several
different orders of execution. Once these instructions are proceduralized, ACT-R tends to
choose the more optimal strategies (utility learning). It can, however, get stuck in a
suboptimal strategy. This is the case when a potentially more optimal strategy hasn’t been
practiced yet, and is therefore slower then the suboptimal strategy.

I will demonstrate these issues by showing some comparisons between model runs and
data from individuals in the CMU-ASP task.




