
Learning a Complex, Dynamic Skill

John R Anderson
Dan J. Bothell

Scott A. Douglass
Craig Haimson

CMU-ASP

CMU-ASP

Production Compilation(Taatgen & Anderson):
 The Basic Idea

IF reading the word for a paired-associate test
 and a word is being attended
THEN retrieve the associate of the word
 and note trying to recall

Recall Vanilla-7

IF recalling for a paired-associate test
 and an associated has been retrieved with response N
THEN type N
 and note the answer is being typed

Results in:
IF reading the word for a paired-associate test
 and “vanilla” is being attended
THEN type “7”
 and note the answer is being typed

Instructions for CMU-ASP

1. The task is to identify unidentified tracks. Unidentified tracks are half squares
with vectors emanating from them. One should hook (click on) such tracks and
then go through the sequence of identifying them. (To identify-tracks first look-
for a track that is "half-square" then hook the track then idsequence the track
and then repeat)

2. One way to identify a track is to confirm that it is flying at a commercial
altitude and speed and then record it as friendly primary id and non-military air
id. (To idsequence a track first altitude-test then speed-test and then record it as
"friend" "non- military”

3. The other way to identify a track is to request its EWS identity, and then
classify the track according to that identity. (To idsequence a track first ews the
track for a ews-signal and then classify the track according to the ews-signal)

4. To confirm that a plane is flying at the commercial altitude, look in the upper
left, search down for “alt”, read the value to the right, and confirm that it is
more than 25,000 and less than 35,000. (To altitude-test first seek "upper-left"
and then search-down for "alt" at a location then read-next from the location a
value then check-less 25000 than the value and then check-less the value than
35000)

Instructions for CMU-ASP

5. To confirm that a plane is flying at the commercial speed, look in the upper left,
search down for “speed”, read the value to the right, and confirm that it is more
than 350 and less than 550. (To speed-test first seek "upper-left" and then
search-down for "speed" at a location then read-next from the location a value
then check-less 350 than the value and then check-less the value than 550)

6. To request the EWS identity of a track, select the “ews” key, then select “query
sensor status” key, and encode the value that you are told. (To ews a track for a
ews-signal first select "ews" then select "query sensor status" and then encode-
ews the ews-signal)

7. To classify a track whose EWS identity is ARINC record it as “friendly”
primary id and “non-military” air id. (To classify a track according to a ews-
signal first match the ews-signal to "arinc564" and then record it as "friend"
"non- military")

8. To classify a track whose EWS identity is APQ record it as hostile primary id
and strike air id. (To classify a track according to a ews-signal first match the
ews-signal to "apq" and then record it as "hostile" "strike")

Instructions for CMU-ASP

9. To classify a track whose EWS identity is APG record it as friendly primary id
and strike air id. (To classify a track according to a ews-signal first match the
ews-signal to "apg" and then record it as "friend" "strike")

10. To classify a track whose EWS identity is negative treat it as unclassifiable. (To
classify a track according to a ews-signal first match the ews-signal to "negative"
and then mark-node the track)

11. To record a primary id and a secondary id select the following sequence of keys:
“track manager”, “update hooked track”, “class/amp”, “primary-id”, the primary
id, “air-id”, the air-id, “save” and then you have succeeded. (To record a
primary-id and a air-id first select "track manager" then select "update hooked
track" then select "class/ amp" then select "primary id" then select the primary-id
then select "air id amp" then select the air-idthen select "save changes" and then
success)

12. To select a key, find where it is in the menu and hit the corresponding F-key. (To
select a option first find-menu the option at a location and then hit-key
corresponding to the location.

13. To find where an item is in the menu, look to the lower left and search to the
right for the term. (To find-menu a option at a location first seek "lower-left" and
then search-right for the option at a location)

The Basic Plan for Learning from
Instruction

• Instructions are encoded as declarative structures
characterizing the sequence of goals that must be
achieved.

• There are a set of production rules that will interpret
any such sequence of instructions.

• Production compilation will convert this into task
specific procedures.

• As an aside we solve the mystery of task instructions
that has haunted Experimental Psychology.

Production Compilation: Applied to CMU-ASP

IF trying to retrieve a rule to achieve a goal
 and rule for achieving that goal has been retrieved
THEN retrieve the first step of that rule
 and note trying to recall the first step

The first step in recording an id is to select “track”.

IF trying to retrieve the first step of a goal
 and a step has been retrieved involving a subgoal
THEN change goal to trying to achieve that subgoal
 and try to retrieve a rule to achieve that subgoal

Results in:

IF trying to retrieve a rule for recording an id
THEN set a subgoal to select “track”
 and try to retrieve rule for selecting “track”.

Eventually production rules are learned like:

IF trying to retrieve a rule for recording an id
THEN set a hit F1
 and set a subgoal to select “update”

The model moves from taking over 100 seconds to classify a
plane to less than 10 seconds. Part of the learning
depends on production compilation and part of it
depends on location learning.

It sort of learns like participants but does their learning
really correspond in detail to the predictions of
production compilation?

Niels Taatgen’s Subsymbolic Model

1. Allows for more gradual introduction of rules
2. Based on Rescorla-Wagner Rule
3. More robust across a range of applications

EG =
n • priorEG +m • ExperiencedEG

n +m

 priorEG = priorEG +α(parentEG − priorEG)

n = 10; α = .05; egs = .4; control rate of production learning
Activation threshold = 1, Noise = .4; controls location
 learning

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6 Min Trials

M
ea

n
Id

en
ti

fic
at

io
n

Ti
m

e
(s

ec
)

Just Instruction Practice
Location Learning
Production Learning
Production + Visual Learning
Data

Time to Select a Track

The Anatomy of Track Identification

Hook F6 F2 F9 F4 Primary F7 AIR F1

 Execute

 Info Seek

Pre

End of the previous Unit Task

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6-Min Trials

La
te

nc
y

(S
ec

.)

Data
Model

Information
gathering

SaveInitiate Classify

F6 F2 F9 F4 P F1AF7Hook

Selection Search Execute

Time

Anatomy of the Identification Unit Task

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6-Min Trials

La
te

nc
y

(S
ec

.)

Data
Model

Information
gathering

SaveInitiate Classify

F6 F2 F9 F4 P F1AF7Hook

Selection Search Execute

Time

Anatomy of the Identification Unit Task

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6-Min Trials

La
te

nc
y

(S
ec

.)

Data
Model

Information
gathering

SaveInitiate Classify

F6 F2 F9 F4 P F1AF7Hook

Selection Search Execute

Time

Anatomy of the Identification Unit Task

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6-Min Trials

La
te

nc
y

(S
ec

.)
Data
Model

Information
gathering

SaveInitiate Classify

F6 F2 F9 F4 P F1AF7Hook

Selection Search Execute

Time

Anatomy of the Identification Unit Task

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6-Min Trials

La
te

nc
y

(S
ec

.)

Data
Model

Information
gathering

SaveInitiate Classify

F6 F2 F9 F4 P F1AF7Hook

Selection Search Execute

Time

Anatomy of the Identification Unit Task

Select
Non-Military

Select
Save

Find Save
on the Menu

Hit the F9
Key

Hit the F1
Key

23.321

23.471

23.621 24.909

24.28924.139

Look to the
Lower Left

Search to the
Right for Save

Press Key Press Key
23.571 25.309

ID Track as Friendly,
Non-Military

The First Interkey Press for Save

The Last Interkey Press for Save

ID Track as Friendly,
Non-Military

Select
Non-Military

Select
Save

338.586 338.786

Press Key

Press Key
338.836

339.136

Off screen

Scope

Info2

Info

f

MON

51% of all eye fixation times are not to relevent regions

Information
gathering

SaveInitiate Classify

F6 F2 F9 F4 P F1AF7Hook

Selection Search Execute

Time

Anatomy of the Identification Unit Task

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6-Min Trials

Pr
op

or
ti

on

Fi
xa

ti
on

Data: Scope Data: Info Data: F-Keys
Theory: Scope Theory: Info Theory: F-Keys

Information
gathering

SaveInitiate Classify

F6 F2 F9 F4 P F1AF7Hook

Selection Search Execute

Time

Anatomy of the Identification Unit Task

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6-Min Trials

Pr
op

or
ti

on

Fi
xa

ti
on

Data: Scope Data: Info Data: F-Keys
Theory: Scope Theory: Info Theory: F-Keys

Information
gathering

SaveInitiate Classify

F6 F2 F9 F4 P F1AF7Hook

Selection Search Execute

Time

Anatomy of the Identification Unit Task

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6-Min Trials

Pr
op

or
ti

on

Fi
xa

ti
on

Data: Scope Data: Info Data: F-Keys
Theory: Scope Theory: Info Theory: F-Keys

Conclusions

1. We seem to a a viable mechanism for creating
productions and learning from instruction.
Why did it take so long?

2. There still are open issues as to what the best
way to represent instructions and interpret
them are and how to deal with flexibility

 (a) My solution involves default seriality
 (b) Niels solution involves explicitly

representing ordering constraints
3. There are open issues about how to deal with

control
 (a) Inserting override instructions
 (b) Evoking the instructions upon condition

