
SOS
A Simple Operating System

for modeling HCI with
ACT-R

Rapid Prototyping

• Used early in the design process for computer
interfaces

• System is often not well developed, most
functions not implemented

• Rapid, iterative testing of different designs
• Testing done on low fidelity mock ups with

limited functionality
• Testing is usually done on 5 to 7 subjects

• Testing 5 to 7 users is not enough
– Individual differences
– Interaction permutations

• Hard to find motivated subjects
• Problems with reusing subjects
• No theory development
• No way to check the validity of the results

• Solution
– Augment the process by testing simulated users created

with ACT-R

Problems

Advantages
• Virtually unlimited n
• Fully motivated subjects
• Subjects unaffected by mockup quality
• Can test longer term learning
• Can model experts
• Can test permutations

• Disadvantages
– Hard to evaluate visual/attentional characteristics, e.g.,

how intuitive is an icon, will something be noticed??
• Solution

– use real subjects to do this

Interface prototyping
• Characteristics of rapid prototype testing

– Task is usually not time pressured
– Errors are not catastrophic, easy to correct
– Visual elements are usually static, fairly

obvious, and often familiar
– Only limited functionality has been specified
– Prototyping and testing is time pressured

• Therefore, interface prototyping tends to focus on
easy to create, low fidelity mockups

SOS
• Stands for Simple Operating System
• SOS breaks all interfaces down into containers and

objects.
– Containers contain objects and other containers

and can be opened or closed
– Objects provide information (e.g., labels, text)

and can trigger actions (e.g., a button can trigger
the opening of a container)

• Designed to be easy to use for ACT-R
programmers

• We argue that most Windows based software
programs can be mocked up using this simple
approach

file edit
X

save-icon

file edit
X

save-icon
save

save as

file edit
X

save-icon
save

save as

save

Enter file name

cancel

Problem space
• More generally, SOS is a type of problem

space representation
• The current node is represented by the

contents of the available containers
• Operators are represented by the objects

that trigger actions (i.e., change the
available containers)

• Objects are simply triggered, but they’re
treated differently by the simulated user
based on the way they’re labeled

Finding and activating objects
• Objects and containers have locations
• The location is needed to trigger it
• The simulated user can search:

– A specific location
– Within specific containers
– Across the whole screen

• If the object is found a chunk with it’s location is
placed in the visual buffer

• If it is not found a failure chunk is placed in the
visual buffer

• Average times are used for finding and activating

Easy to use
• (sos:define-object-type button-holder (sos-container))
• (sos:define-object-type button (sos-object) type)

• (sos:add-sos

• (menu-bar
• isa-sos button-holder
• location loc1
• available t
• is-part-of program-window
• has-parts
• (file-menu-open))

• (file-menu-open
• isa-sos button
• type file-menu-open
• location loc6
• available t
• is-part-of file-menu-bar
• ;;; is-part-of icon-menu-bar ;;; not in the expected place
• actions ((sos::open-container file-menu)))

SOS relationship to GOMS
• Engineering/modeling approach applied to

learning a new interface
• Idea that using average times will provide a

reasonably accurate model of average
behavior (i.e., identify major problems,
identify most problems)

• Focus on top down, knowledge driven
behavior (i.e., as opposed to situated action,
affordances, etc.)

Simulated user relationship to
GOMS

• Usability testing conceived of in GOMS terms
– Instructions = unit tasks
– Unit tasks completed by applying methods
– Methods made up of operators (looking and activating)

• Attempts to build a GOMS model of the task in
declarative memory by adapting and adjusting
default methods

• Strategy and error correction based on production
system - i.e., an expert system for exploring

Extending SOS

• Vision
– Bottom up attention
– Object salience
– Hands
– Object based attention index
– Agents

Conclusions so far

• Exploring novel interfaces is a very interesting
and challenging domain

• Ultimate goal – to model the process from
exploring to expert user

• Building a working model tells you a lot about an
interface design

• SOS is also useful in other domains - objects and
containers are not limited to interfaces

• Large software companies should invest large
amounts of money into ACT-R modeling

