SOS

A Simple Operating System
for modeling HCI with
ACT-R

Rapid Prototyping

Used early in the design process for computer
Interfaces

System is often not well developed, most
functions not implemented

Rapid, iterative testing of different designs

Testing done on low fidelity mock ups with
limited functionality

Testing is usually done on 5 to 7 subjects

Problems

Testing 5 to 7 usersis not enough
— Individual differences
— Interaction permutations

Hard to find motivated subjects

Problems with reusing subjects

No theory development

No way to check the validity of the results

Solution

— Augment the process by testing simulated users created
with ACT-R

Advantages

Virtually unlimited n

Fully motivated subjects

Subjects unaffected by mockup quality
Can test longer term learning

Can model experts

Can test permutations

Disadvantages

— Hard to evaluate visual/attentional characteristics, e.g.,
how intuitive is an icon, will something be noticed??

Solution
— use real subjectsto do this

|nterface prototyping

» Characteristics of rapid prototype testing
— Task is usually not time pressured
— Errors are not catastrophic, easy to correct

— Visual elements are usually static, fairly
obvious, and often familiar

— Only limited functionality has been specified
— Prototyping and testing Is time pressured

* Therefore, interface prototyping tends to focus on
easy to create, low fidelity mockups

SOS

Stands for Simple Operating System

SOS breaks dl interfaces down into containers and
obj ects.

— Containers contain objects and other containers
and can be opened or closed

— ODbjects provide information (e.g., |abels, text)
and can trigger actions (e.g., a button can trigger
the opening of a container)

Designed to be easy to use for ACT-R
programmers

We argue that most Windows based software
programs can be mocked up using this simple

approach

- file Il edit |

- sav
save Enter file name

_save || cancel

Problem space

More generally, SOS is atype of problem
Space representation

The current node Is represented by the
contents of the available containers

Operators are represented by the objects
that trigger actions (i.e., change the
avallable containers)

Objects are smply triggered, but they’re
treated differently by the ssmulated user
based on the way they’re |abeled

Finding and activating objects

Objects and containers have locations
The location is needed to trigger it
The simulated user can search:

— A gpecific location

— Within specific containers

— Across the whole screen

f the object Is found a chunk with it’s location Is
nlaced in the visual buffer

f 1t isnot found a failure chunk is placed in the
visual buffer

Average times are used for finding and activating

Easy to use

(sos:define-object-type button-holder (sos-container))
(sos:define-object-type button (sos-object) type)

(sos:add-sos

(menu-bar
isa-sos buttorn-holder
location locl
available t
is-part-of program-window
has-parts
(file-menu-open))

(file-menu-open
isa-sos button
type file-menu-open
location loc6
available t
is-part-of file-menu-bar
;;; Is-part-of icon-menu-bar ;;; not in the expected place
actions ((sos::open-container file-menu)))

SOS relationship to GOMS

* Engineering/modeling approach applied to
learning a new interface

 |deathat using average times will provide a
reasonably accurate model of average
behavior (i.e., identify major problems,
Identify most problems)

 Focus on top down, knowledge driven

behavior (1.e., as opposed to situated action,
affordances, etc.)

Simulated user relationship to
GOMS

o Usability testing conceived of in GOMS terms
— Instructions = unit tasks
— Unit tasks completed by applying methods
— Methods made up of operators (looking and activating)
o Attemptsto build a GOMS model of thetask in
declarative memory by adapting and adjusting
default methods

o Strategy and error correction based on production
system - i.e., an expert system for exploring

Extending SOS

e Vision
— Bottom up attention
— Object salience
— Hands
— Object based attention index
— Agents

Conclusions so far

Exploring novel interfacesis avery interesting
and challenging domain

Ultimate goal — to model the process from
exploring to expert user

Building a working model tells you alot about an
Interface design

SOS s also useful in other domains - objects and
containers are not limited to interfaces

L arge software companies should invest large
amounts of money into ACT-R modeling

