Using a simulated user to explore human-robot interfaces

Frank Ritter & Dirk Van Rooy
Applied Cognitive Science Lab at Penn State
Robert St. Amant
North Carolina State University

dvanrooy@ist.psu.edu - ritter@ist.psu.edu - stamant@csc.ncsu.edu
Simulated user to test interfaces

- Glean, EPIC, ACT-R/PM, APEX
- Interact indirectly with interface
 - Abstract copy (GLEAN, EPIC)
 - Special UIMS (ACT-R/PM, APEX)
- Results in part determined by accuracy of simulation of interface

ritter.ist.psu.edu/acs-lab/
Direct access to interface

- Cognitive model - ACT-R 5
- Eyes & hands - SEGMAN
- Allows direct interaction between cognitive model and interface
Segman v3.1

Sensor module & Effector module
- takes pixel-level input
- runs data through processing algorithms
- builds a structured representation
- generates mouse and keyboard gestures

ritter.ist.psu.edu/acs-lab/
Segman v3.1 Diagram

Scripts

Planners

Cognitive Models

Controller interface

SegMan substrate (lisp)

foreign-interface.lisp
wrappers.lisp
segmentation.lisp

segman.lisp
objectory.lisp

segman.dll (C++)

pixel-groups

pixels

Buttons, windows, string, etc.

Windows

ritter.ist.psu.edu/acs-lab/
ACT-R 5 and Segman demo 1

ritter.ist.psu.edu/acs-lab/
ACT-R 5 and Segman demo 2

riter.ist.psu.edu/acs-lab/
Introducing a simulated user

Quantitative tool to guide the design process of human-robot interfaces

Urban Search and Rescue robots (USR)

ritter.ist.psu.edu/acs-lab/
Urban Search and Rescue - 1

Teleoperated robots
Mixed-initiative HRI
3D Driving Game

- Direct interface
 - “Inside-out” driving
- Driving behavior
 - Real-time
 - Interactive environment
- Extensible code
 - Environment
 - Interface
- Works with unmodified 3D Driving

www.theebest.com/games/3ddriver/3ddriver.shtml

witter.ist.psu.edu/acs-lab/
Segman and ACT-R 5 integration

Segman
- position-in-lane information
- left lane + right edge of the road
- midpoint at 5.5 degrees below the horizon

ACT-R 5
- Takes Midpoint
- Steers right or left
- Brakes, accelerates

Buffer stuffing galore

[link](ritter.ist.psu.edu/acs-lab/)
DUMAS

- Driver User Model in Act-r&Segman
- About 30 production rules
- Restricted model of driving behavior
 - Does not use PM fully
 - Does not learn yet
 - ……
DUMAS demo

Click mouse to restart

ritter.ist.psu.edu/acs-lab/
Two demonstrations

✦ Speed and multi-tasking

✦ Speed
 – Three sets of 10 runs
 – High, medium and slow speed

✦ Multi-tasking
 – Standard condition = Slow speed
 – Worried condition

ritter.ist.psu.edu/acs-lab/
Figure 4. Speed Demonstration: Lane deviation (in degrees) and total driving time (in minutes) of DUMAS in function of speed. Slow corresponds to a driving speed within the range of 15-20, medium 20-25, and fast 30-35 as measured on the spedometer in the simulation.
Multi-tasking

Figure 5: Lane deviation (in degrees) and total driving time (in minutes) of DUMAS in the Standard and Worried condition.
Conclusions

- Quantitative tool for HRI
- USR tasks are difficult because
 - Multi-tasking, interference
 - Hard vision problems
 - Noisy, ambiguous, poor quality display
- Surprising parallels
 - Course corrections

ritter.ist.psu.edu/acs-lab/
Future

- Extend DUMAS
 - To include more PM theory
 - To include more HRI subtasks
 - Multi-tasking (multiple robots)
- Apply to actual HRI’s
- Develop theory of HRI development

mitter.ist.psu.edu/acs-lab/
Thank you

More on this can be found at ritter.ist.psu.edu/acs-lab/

dvanrooy@ist.psu.edu - ritter@ist.psu.edu - stamant@csc.ncsu.edu