Predicting Situation Awareness Errors Using Cognitive Modeling

Troy Kelley
Army Research Laboratory
ACT-R Summer School
Human Error Modeling

- Potentially a very important area for cognitive modeling
- Typical analyses in the past were descriptive taxonomies of human error with little predictive value
 - Types of errors don’t help much with prediction
- Can force simple hypothesis
 - So simple might not want to present to ACT-R workshop
Model of a Navigation Task

- Task: Navigate to waypoints and identify targets with as little deviation from a path as possible and answer situation awareness probe questions
- Equipment: Helmet mounted display (HMD) showing waypoint, target, unit and path information
- Model: Error data from probe questions*

Path screen would display the soldier’s position in relation to the current path

Display Information

Path

Right 12

Azimuth 87.9
Waypoint
Brg 90.7
Azimuth 87.9

Display Information

Waypoint
Rng 462

Path screen would display the soldier’s position in relation to the current path

Soldier Waypoint
Probe Questions

• Attempting to predict the likelihood of a correct answer
• 20 Questions total (one question was thrown out)
• Screens were blanked before answering the each probe question
• Yes/No format
 – Are you within 50 meters of your next target?
 – Are there friendly units only to the left of your path?
Format of Probe Questions

- Yes or no format of questions made additional analysis difficult
- Additional analysis might pertain to what factors might influence right or wrong answers
- Difficulty of being a data parasite
Hypothesis

- Memory for HMD screens would affect current situation awareness
- Decay of memory for HMD screens would cause errors in situation awareness and errors on probe questions
Memory Elements for ACT-R Model

- Screens
 - Path, Target, Waypoints, Units
- Unit
 - Separate memory elements for friendly and enemy
 - Specific unit information: (e.g., location)
- Pace Count
 - Technique used by infantry soldiers to calculate distances based on number of steps they have taken
 - A constantly updated memory element in model
- Auditory information pertaining to troop movements
ACT-R Memory Elements

• Strength of Memory (Activation Levels)
 – Subject to decay
 – Subject to spreading activation
 • Relationship between related memory elements
 – (Friendly and enemy unit information are related)
Probe Question: Is there a target before your next waypoint?
Data Analysis

• Models of each question for each subject (140 models) were run 40 times
• This produced retrievals of multiple memory chunks for each question, these were averaged.
 – This was done because the individual experience of each soldier was different, since they could retrieve one of the 4 screens any time they wanted
• Activations from 40 runs were averaged across runs, across memory chunks and across subjects to yield a single activation level for each question.
<table>
<thead>
<tr>
<th></th>
<th>Sub 1</th>
<th>Sub 2</th>
<th>Sub 20</th>
<th>Average</th>
<th>Average2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td>.770</td>
<td>.740</td>
<td>.781</td>
<td>.760</td>
<td></td>
</tr>
<tr>
<td>Pace</td>
<td>.540</td>
<td>.531</td>
<td>.530</td>
<td>.531</td>
<td>.645</td>
</tr>
<tr>
<td>Question 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friendly</td>
<td>.441</td>
<td>.440</td>
<td>.431</td>
<td>.440</td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td>.320</td>
<td>.352</td>
<td>.330</td>
<td>.332</td>
<td></td>
</tr>
<tr>
<td>Unit-movement</td>
<td>.470</td>
<td>.440</td>
<td>.451</td>
<td>.450</td>
<td>.406</td>
</tr>
</tbody>
</table>

1 Average for 40 runs of the simulation
2 Average across subjects and across questions
Results

- One tailed Pearson’s product moment correlation
- There was a significant negative correlation between activation levels and the percentage of errors for each question
- Higher activations levels resulted in a lower percentage of errors
- \(r(19) = -0.43, p < 0.03 \)
Conclusions

• Difficult to predict human performance
 – Multiple interacting parameters
 • (Why not turn everything on?)
 – Set values for variables

• The multiple models needed to predict individual performance was cumbersome, however individual models has been suggested by ACT-R researchers

• Difficulty of modeling acquired data
 – Yes/No answers to questions presented some difficulties
Conclusions

- ACT-R activation levels can be used to predict likelihood of errors in situation awareness tasks.
- Cognitive modeling can be used in a predictive manner instead of using as a “curve-fitting” simulation.
- Future research needs to be done on using predictions to generate interface design analysis.