

Memory for Multidimensional Stimuli

Todd R. Johnson, Hongbin Wang, Jiajie Zhang, Yue Wang University of Texas Health Science Center at

Houston

School of Health Information Sciences

Research Objectives

- Computational model of the architecture of spatial cognition
- Embedded in ACT-R as a spatial module
- Methodology:
 - Focus on screen-based tasks
 - Bottom-up approach
 - Spatial attention [Hongbin's talk]
 - Visual objects, features, locations [This talk and Cog Sci]
 - Object-to-object relationships [Cog Sci poster]
 - Map tasks: Screen based objects and relations as representations of objects around you

Evidence for Independent Encoding of Object Features: Illusory Conjunctions

- Typically brief presentation time (50-120ms) with mask
 - See:
 - Report: blue circle
- May be due to
 - Misperception
 - Binding errors
 - Error in recombining features from memory

Evidence for Independent Encoding: Memory Conjunction Errors

- Longer presentation times, no mask
 - Stefurak and Boynton (1986)
 - 5 colored forms for 5 seconds, no mask
 - 1 old or new target
 - Controlled for verbalization using mental arithmetic task
 - Found complete independence of color and shape

The Role of Spatial Location in Feature Integration

- Johnston and Pashler (1990)
 - Found no perception of object features without the perception of object location
 - but object location was known on 10% of the trials in which the feature was not known.

Nissen Task (1985)

- Stimuli:
 - 4 shapes
 - 4 colors
 - 4 locations
- Duration 60-190 ms
- Mask
- Replaced with cue:
 - Conditions:
 - Color cue
 - Location cue

Nissen Results

- Location cue
 - Correct recall of color and shape is statistically independent
- Color cue
 - Correct recall of shape is statistically dependent on recall of location
- Nissen argued that features were stored independently, but tagged or indexed by location

ACT-R/PM Predicts Dependence

- ACT-R/PM produces an integrated representation
- Predicts complete dependence of color and shape given location

ACT-R Model of Nissen Task See Cog Sci 2002 Conf. Paper

• Given correct representation Act-R can model data

Given Location Cue

Independent Retrieval of Color and Shape

Given Color Cue

Shape Depends on Retrieval of Location

Evidence for Integrated Feature Repr.

- Luck and Vogel (1997)
 - Visual working memory retains up to 4 objects where each consists of a conjunction of 4 features
- Monheit and Johnston (1994)
 - Found dependence of color and shape
 - Used the Nissen task with two extra colors to reduce the effects of guessing
 - Used 288 trials instead of 64

Modified ACT-R 5.0 Preattentive Objects

• Spatially tagged features placed in declarative memory

Attended Objects

• Attention adds associations among features

Implications for ACT-R

- ACT-R can model tasks with very brief presentation times
- Can model conjunction errors
 - Illusory conjunctions
 - Memory conjunction errors
- Can model recoding effects
 - Ex: Recode visual as verbal
 - "red triangle, blue square, etc."
- Positional encoding of visual features is similar to positional encoding of list memory
 - Could positional encoding be the result of perception?

Future Plans

- Features tagged by object
 - Object-based attention and visual search results suggest that features are tagged by the object that owns them
 - Object with features red, blue, vertical line, horizontal line

- Attention is required to determine the relationships between the features
 - Red vertical line, blue horizontal line
- Temporal tags
- Visual indexes