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The Issue

• A critical aspect of most human behaviour is the 
sequential generation of actions/responses/outputs

• Examples:
– Language production
– Routine action
– Serial (and free) recall
– PRP, task switching, and related RT tasks

• Key question:
– How is sequential behaviour generated/regulated by the 

brain (cf. Lashley, 1951)?
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Sequential Control and ACT-R

• ACT-R embodies a particular computational 
mechanism for sequencing behaviour
– Production system control

• Alternative mechanisms exist:
– Recurrent network; Turing machine, …

• Are there phenomena that may discriminate 
between sequential control mechanisms?

• If so, what challenges do they pose for ACT-R?
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Subsidiary Questions / Strategy

• What computational mechanisms are capable of 
generating sequential behaviour?

• What kind of evidence might inform the debate?
– That is, what evidence might discriminate between the 

possible mechanisms of sequential control?
• Does the evidence support/refute specific putative 

sequential control mechanisms?
• Aside: Similar debates within cognitive science:

– local and/or distributed representations
– single and/or dual route mechanisms
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Plan / Overview

• A review of a variety of putative mechanisms
• Where does ACT-R fit in?
• Modularity: A subsidiary issue
• A catalogue of relevant effects

– Overview of data
– Relevance to control debate
– Existing models and adequacy of control mechanisms
– Issues for ACT-R

• Modularity revisited
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Computational Mechanisms for 
Sequential Behaviour

Several distinct computational mechanisms may
support the generation and regulation of sequential
behaviour:

1. Turing Machine (e.g., Wells, 1998)
2. Von Neumann Machine (e.g., Frawley, 1997, 2002)
3. Production System (e.g., Newell & Simon, 1972)
4. Operator Selection / Application Cycle (e.g., Newell, 1990)
5. Interactive Activation Network (e.g., Rumelhart & Norman, 

1982)
6. Recurrent Network (e.g, Elman, 1990)
7. Others: the dynamical approach (Port & van Gelder, 1995)
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Turing Machines:
Structure and Process



August 2nd, 2002 8th ACT-R Workshop 8

Von Neumann Machines:
Structure and Process
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Production Systems:
Structure and Process
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Operator Selection / Application:
Process
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Interactive Activation Networks:
Structure and Process
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Recurrent Networks:
Structure and Process
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Where Does ACT-R Fit In?

• Production system control with a twist:
– Activation-based selection of production instances
– The activation-based substrate is similar to interactive 

activation control, but … 
– there are no layers of representations, no inhibitory 

connections, no competition between units …

• An aside:
– Unlike Soar, ACT-R does not dictate use of an operator 

selection/application control model
– Instead, constraints on ACT-R productions come from 

the activation-based substrate
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Two Straw Men

• Few (if any!) serious cognitive models make use 
of Turing machine or Von Neumann machine 
control

• They are straw men used by:
– proponents of non-symbolic approaches who aim to 

discredit symbolic models of cognitive processes
– non-computational/philosophical types who advocate 

symbolic models and respond to the bait

• They will not be considered further in this talk
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A Subsidiary Issue:
Modularity

• The Fodorian view (Fodor, 1983):
– The cognitive architecture comprises a central 

processor interacting with the world via input/output 
processes

– Input and output processes are modular:
• Domain-specific, mandatory, fast, produce “shallow” outputs, 

informationally encapsulated, and cognitively impenetrable

– Central processes are equipotential:
• Domain-general, interruptible, slow, involve “rich” 

representations, informationally rich and cognitively penetrable
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A Subsidiary Issue:
Modularity

• ACT-R/PM maps well onto the Fodorian view, 
but…
– Wells (1998) argues against modular I/O processes
– Shallice (1988) argues against an equipotential central 

processor
– (and the current version of ACT-R treats “central” 

processes such as retrieval as modular)

• Relevance to (sequential) behaviour:
– Modular systems require structures or processes to 

coordinate modules
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Modularity: Implications

• Modularity raises questions for each regime:
– Can we design control mechanisms to support a 

modular Turing machine/production system/interactive 
activation network/recurrent network/…?

• If accepted, modularity … 
– requires the regimes to be modified to support it, 
– but does not allow any specific regime to be dismissed

• Further examination of the alternatives requires a 
more detailed analysis of the empirical phenomena
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Some Phenomena to be Addressed
(An Incomplete List)

• Routine (sequential) action

• Disorders of action

• Action monitoring and error recovery

• RT effects:
– Robust between trial effects

– PRP effects and switch costs

– Negative priming and inhibition of return

• Handling interruptions and interleaving of tasks
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Routine Action:
Action Slips and Lapses

• Routine action is prone to numerous types of error 
(Reason, 1974; Norman, 1981):
– Anticipation/omission errors
– Substitution errors
– Perseverative errors
– Capture errors
– Post-completion errors
– …

• Errors are most frequent when fatigued or when 
attention is diverted (Reason, 1979)
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Routine Action:
Relevance to Sequential Control

• Claim:
– The types of error to which the action system is prone 

provide insight into the operation of that system

• Examples:
– Substitution errors suggest the target of an action is 

specified independently of the action
– Omission and sequence errors appear to be 

incompatible with “chaining” accounts
– Priming of actions by objects (cf. Tucker & Ellis, 1998) 

suggests action representations are activation-based
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Routine Action:
“Frontal” Apraxia

• Neurological patients with frontal damage are 
often prone to disorganisation of routine action

• This disorganisation resembles an exaggerated 
tendency towards normal slips and lapses

• Schwartz et al. (1998, 1999):
– the predominant error type is omission, especially in 

more severe patients

– substitutions, perseverations, intrusions and errors of 
manner or quality also occur
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Routine Action:
An IA Model

• Cooper & Shallice (2000):
– A hierarchical interactive activation model operating in 

the domain of coffee making
– Nodes correspond to action schemas of varying 

complexity
– Multiple sources of activation contribute to each node
– With appropriate weighting of each source, the model 

was able to generate appropriate behavioural sequences
– An “existence proof” of the principles of Norman &

Shallice’s (1986) routine action control system
– Damage simulated by modifying the relative weights of 

different sources of activation
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Routine Action:
An RN Model

• Botvinick & Plaut (2000/submitted):
– A recurrent connectionist model of the coffee making 

task
– Network trained on a variety of well-formed coffee 

making sequences
– Damage was simulated by the addition of noise
– The damaged network showed errors similar to those of 

patients, including omission errors
– The training regime was critical in shaping the model’s 

behaviour and the errors to which it was prone
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Deficits in Action Selection:
Utilisation Behaviour

• Lhermitte (1983):
– Patients with extensive orbito-frontal lesions may be 

inappropriately stimulus driven
– When seated in front of a full jug and glass, a UB 

patient will pour into and drink from the glass, even 
when instructed not to do so

• UB within an IA model:
– Inappropriate regulation of activation within the action 

system, leading to environmentally triggered action

• How might UB arise in an RN model?
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Deficits in Action Selection:
Dopamine Disorders and Action

• Amphetamine psychosis:
– highly stereotyped behaviour
– increased rates of responding with reduced response 

categories (Lyon & Robbins, 1975)
– linked to increased activity within the dopamine system

• Bradykinesia:
– unmedicated Parkinson’s patients can show slowed 

action initiation, but near normal performance after an 
action is initiated

– linked to dopamine depletion
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Deficits in Action Selection:
Modelling Dopamine Disorders

• Amphetamine psychosis and bradykinesia are both 
consistent with an activation-based substrate

• Cooper & Shallice (2000):
– A qualitative simulation of basic effects through the 

manipulation of one parameter
– Increasing self activation ? increased response rates
– Decreasing self activation ? slowed initiation

• How else might these effects be simulated:
– in recurrent network models?
– in ACT-R?
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Deficits in Action Selection:
Forms of Perseveration

• Two forms of perseveration have been noted in 
frontal patients (e.g., Schwartz et al., 1991):
– Continuous: immediate repetition of a subtask
– Recurrent: repetition of a subtask after an interval

• Hymphreys & Forde (1998):
– Two patients with extensive frontal lesions
– Patient HG: mainly continuous perseverations
– Patient FK: mainly recurrent perseverations
– Conclusion: Continuous and recurrent perseveration 

have distinct origins
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Deficits in Action Selection:
Forms of Perseveration

• Within IA models, perseverative errors may arise 
from deficiencies in “rebound” inhibition:
– Continuous perseveration: RI is insufficient to 

disengage the current response
– Recurrent perseveration: RI is sufficient only to cause a 

temporary disengagement of a response

• How might different forms of perseveration arise 
within ACT-R?
– Kimberg & Farah (1993): weakened associative links
– Goal decay (cf. Goal neglect: Duncan, 1995)
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Routine Action:
Monitoring and Error Correction

• Humphreys et al. (2000):
– Normal subjects were required to perform several 

everyday tasks whilst carrying out the Trails task
– Many action errors took the form of aborted reach 

actions
– These errors generally arose immediately after making 

a self-corrected error on the Trails task
– Aborted reach errors are rarely observed in neurological 

patients
– Do patient errors result from faulty monitoring, which 

prevents false reaches from being aborted?
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Monitoring and Error Correction:
Models

• Cooper et al. (in preparation):
– An augmented version of the Cooper & Shallice (2000) 

model applied to a more complex task
– Task: approximately 50 actions with order constraints
– Task complexities require additional machinery for 

controlling sequential behaviour (preconditions and 
postconditions)

– These allow simple monitoring and error correction

• How might the Botvinick & Plaut model 
incorporate such processes?
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Between Trial Effects on RT:
Data (Rabbit, 1966)

• In choice reaction time tasks (Rabbit, 1966):
– Mean RT on error trials is less than on non-error trials
– Mean RT on non-error trials immediately following an 

error is greater than on other non-error trials
– Similar results were obtained by Lamming (1968)

• Luce (1986):
– Behaviour can be understood in terms of a shift along a 

speed-accuracy trade-off curve
– High accuracy results in subjects speeding up, which 

results in error, slowing, and then increased accuracy
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Between Trial Effects on RT:
Data (Eriksen & Eriksen, 1974)

• Eriksen’s CRT flankers tasks:
Congruent trials:

S   S   S S   S
Incongruent trials:

H   H   S   H H

• Congruent trials are faster and more accurate than 
incongruent trials, but also:
– I is faster and more accurate if preceded by I than if 

preceded by C
– C is faster if preceded by C than if preceded by I (with 

accuracy near floor in both cases)
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Between Trial Effects on RT:
Data (Altmann & Gray, 2002)

• Altmann & Gray (2002):
– Two CRT tasks involving the same stimuli but a 

different discrimination
– Within each block, subjects performed sequences of 

trials of each task

• Both RT and error rates increased with position in 
sequence

• Strengthening the most recent task cannot account 
for this pattern

• Altmann & Gray attribute it to goal decay
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Between Block Effects on RT:
Data (Tzelgov et al., 1992)

• The trial type frequency effect in Stroop:

– Decreasing the frequency of congruent and incongruent 
trials relative to neutral trials increases the difference 
between performance on those trials

– This appears to reflect on-line adjustment of processing 
parameters: when incongruent trials are common the 
cognitive system configures itself so that the Stroop 
effect is smaller than when they are rare
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Between Trial Effects on RT:
Data (Allport et al., 1994)

• Counter-intuitive effects on RT of switching 
between word-reading and colour-naming:

– Word-reading is slowed when the previous trial 
requires colour-naming, but colour-naming is not 
slowed when the previous trial requires word-reading 
(“asymmetric switch cost”)

– When switching from colour-naming, word-reading is 
slower for incongruent than neutral stimuli, but there is 
no difference in RT between such stimuli on non-
switch trials (“reverse Stroop interference”)
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Between Trial Effects on RT:
Relevance to Sequential Control

• Robust between trial effects indicate that the 
processing speed of the cognitive system is 
affected by its recent inputs and/or outputs

• They cannot be accounted for by static systems or 
systems with fixed processor cycle speeds (e.g., 
impasse-free Soar, EPIC?)

• Botvinick et al. (2001):
– Robust between trial effects reflect the modulating 

effects of on-line control on task behaviour
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Between Trial Effects on RT:
Three IA Models

• Botvinick et al. (2001) adapted existing (simple) 
IA models of Stroop, Eriksen, CRT to include 
feedback

• Feedback is based on a measure of conflict within 
the principal IA nodes in the model

• The effect of feedback is to modulate activity from 
different pathways in the model to reduce conflict

• In all cases, the adapted models provide good 
accounts of between trial effects
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Between Trial Effects on RT:
A Further IA Model

• Gilbert & Shallice (2002) adapted the Cohen & 
Huston (1994) model of Stroop to allow study of 
task carry-over effects

• Connections from input units to task-set units
• Control unit states persist across trials

– The model accounts for the standard Stroop effects and 
several task-switching phenomena, notably asymmetric 
switch costs and reverse Stroop interference

• Claim:
– Switch costs arise from between-task interference, and 

not an additional stimulus-driven task-setting process 
(contra Kieras et al., 2000 and Sohn et al., 2000)
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Between Trial Effects on RT:
Interim Thoughts

• The approach of Botvinick et al. (2001) and 
Gilbert & Shallice (2002) does not appear to 
generalise to the data of Altmann & Gray (2002)

• Can changes in base-level activation or association 
strength and decay yield appropriate between trial 
effects within ACT-R models?
– Many of the changes are “rational” in the ACT-R sense 

(e.g., decreasing RT when errors are rare) 
– If so, ACT-R would seem to provide a more 

parsimonious account of the effects
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Between Trial Effects on RT:
Models and Neural Structures

• Botvinick et al. (2001) relate conflict within IA 
networks (and the need for feedback to reduce this 
conflict) to activity of the ACC
– Does the cognitive architecture include specialised 

control modules, and is there an equivalent in ACT-R?
– Is the Botvinick et al. account of ACC activation 

spurious?

• Either way, what function(s) might ACT-R 
attribute to ACC (and other neural structures 
engaged in such tasks)?
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Psychological Refractory Period

• Psychological Refractory Period (PRP) effects:
– Subjects are required to respond to two stimuli (task 1 

and task 2) presented in quick succession
– Experiments vary Stimulus Onset Asynchrony (SOA)
– RT for task 2 is delayed, apparently until task 1 

processing is complete (smaller SOA ? longer delay)

• Numerous theoretical accounts of PRP effects:
– Bottleneck accounts

• Perceptual, response-selection, movement-production

– Unitary and multiple resource theory accounts
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The Challenge of PRP Effects

• Successful PRP models employ production system 
control:
– Meyer & Kieras (1997): Strategic Response Deferment 

theory of PRP effects (in EPIC)
– Byrne & Anderson (1998): ACT-R/PM: EPIC with 

ACT-R as its central processor

• PRP effects appear to pose a challenge for other 
mechanisms of sequence generation/regulation
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Other RT Paradigms:
Negative Priming and IoR

• Negative Priming:
– RT to a target item can be slowed when the target item 

was an ignored distractor item on the previous trial
– NP is usually taken to imply that ignored distractor 

items are actively inhibited

• Inhibition of Return:
– Responses to a target presented at a random location 

can be slowed if the location is cued less than 300 ms 
before the target appears

– IoR is usually taken to imply inhibition of the cued 
location
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NP and IoR:
A Challenge for ACT-R?

• NP and IoR are generally interpreted as reflecting 
the effects of inhibitory processes, perhaps acting 
to disengage attention

• How might NP and IoR be accounted for within 
ACT-R?

• More generally, can purely excitatory spreading of 
activation account for NP/IoR effects?
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Dual Tasking and Interleaving

• Dual tasking, interleaving and interruption 
handling impose further requirements on cognitive 
control, e.g., goal maintenance / reconstruction

• Salvucci & Macuga (2001): ACT-R/PM model of 
the effects of cell-phone dialling on driving
– Individual task models modified to allow interleaving
– ACT-R (production systems in general?) provides the 

necessary machinery for interleaving, but … 
– Are there generic strategies for interleaving that might 

be encoded via generic productions?
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Summary of Effects and Models
• Action:

– Basic effects accounted for by IA and RN models
– Questions over learning in IA model
– Questions over extending RN model to complex tasks 
– RN model unable to generate relative timing data
– Questions over extending RN model to monitoring

• RT effects:
– Several successful IA models
– PRP effects: Successful production system models
– NP/IoR: Are inhibitory interactions necessary?

• Handling interruptions and interleaving of tasks
– Production systems provide appropriate machinery
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Modularity Revisited:
Alternative Views

• There is no distinction between central and 
peripheral processes (e.g., Wells, 1998)
– How could peripheral processes evolve so as to provide 

just the right information to a central processor?

• Both central and peripheral processes are modular 
(e.g., Shallice, 1988)
– Modularity is a graded concept
– Neuropsychological dissociations reflect the breakdown 

of individual modules
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Modular Central Processes:
Shallice & Burgess (1996)
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Modular Central Processes:
Shallice & Burgess (1996)

• Shallice & Burgess argue for various structures 
and processes on neuropsychological grounds

• But:
– the diagram confuses structures and processes
– only the contention scheduling subsystem is 

implemented (though see Glasspool, 2000)
– the details of key “phases” and processes are not 

specified
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Shallice & Burgess (1996)
in COGENT
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Modularity Issues for ACT-R

• Can ACT-R address neurological dissociations?
– Early ACT-R studies of neurological deficits (Kimberg 

& Farah, 1993) do not address dissociations
– Is modular organisation of productions (a la Newell, 

1990) sufficient?

• Is there a place for generic processes such as 
strategy generation, monitoring, and error 
recovery in ACT-R?
– Does ACT-R need default productions?
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Conclusions I:
Sequential Control

• IA models have been used to successfully account 
for most findings concerning sequential behaviour

• Recurrent network models of a range of RT 
phenomena have yet to be developed

• Claim:
– On balance, the weight of evidence currently favours an 

activation-based substrate for the generation and 
regulation of sequential behaviour
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Conclusions II:
Beyond IA Models

• But…
– There are some tasks to which IA models have yet to be 

applied successfully,

– There is little work on learning within IA models, none 
on integration of different IA task models, and little on 
goal-oriented extensions of IA

• Is ACT-R the kind of goal-oriented extension IA 
models require?
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Conclusions III:
Issues for ACT-R

• Can ACT-R account for between-trial effects on 
standard RT tasks?
– Successful IA models rely on inhibitory interactions
– Are inhibitory processes necessary to account for RT 

data (Stroop interference, negative priming, inhibition 
of return)

– Milliken et al. (1998) and Kimberg & Farah (2000) 
suggest not

• Can ACT-R’s non-modular cognitive processor 
account for neuropsychological dissociations?
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THE END

Thanks to John Fox, David Glasspool and Tim
Shallice for discussions which have directly and
indirectly influenced the material presented here
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