Production Compilation

Niels Taatgen
University of Groningen
Artificial Intelligence
At last year’s PGSS two questions remained concerning production compilation

- How does production compilation handle interaction with ACT-R/PM?
- How are the parameters learned?
Interaction with ACT-R/PM

- To explore this interaction, Frank Lee and I updated my ACT-R 4 non P/M model of the Kanfer-Ackerman Air Traffic Controller task to an ACT-R 5 model with ACT-R/PM.
- This proved to work really well.
- Except that ACT-R at some point didn’t get any faster anymore, while participants still improved.
- So we decided that a tighter integration of perceptual, cognitive and motor actions was needed.
Integration of Cognitive, Perceptual and Motor actions

- To use time as efficiently as possible, you should keep all the modules as busy as possible
- So while a declarative retrieval is going on, you might want to initiate an eye-movement
- ACT-R should do “internal” multi-tasking
Problems with this approach

- Hard to inspect whether a certain module is “free” (especially retrieval)
- When you do two tasks at the same time:
 - Do you represent them as two goals, making it necessary to switch between them?
 - Or do you represent them both in a single goal?
 - Or, will this be something for a module behind the goal, the “intention-model”?
Parameter Learning: what we want from it

- Gradual introduction of new rules: after the first opportunity for the rule to be learned, it should take some more practice or experience before it will regularly be used.

- Evaluation of new rules
 - If the new rule is better than the parents, it should eventually fire whenever it matches.
 - If the new rule is worse than the parents, it should eventually not fire anymore.
Current scheme

- A new rule is given prior values for its successes, failures and efforts based on the parent rules.
- A penalty is added to the cost of the rule to ensure that it is gradually introduced.
Current implementation

- Basic Utility equation:

\[
\text{Utility} \equiv \frac{n \cdot \text{priorUtility} - m \cdot \text{experiencedUtility}}{n - m}
\]

- In the current implementation

\[
\text{priorUtility} = \text{parentUtility} - \text{costPenalty}
\]
Parameter learning: example

Noise = 0.4 Initial experiences = 10 Penalty = 1.0 Utility new rule = 10.5
Parameter learning: example

Noise = 0.4 Initial experiences = 10 Penalty = 1.0 Utility new rule = 9.5
Problems with current implementation

 Level of noise is critical
 – If it is too low, the new rule will never be tried
 – If it is too high, the rule will be introduced too fast

 Eventually, the new rule will not dominate if it is better, nor will it fade away if it is worse
Current implementation

- Basic Utility equation:

\[
\text{Utility} = \frac{n \cdot \text{priorUtility} - m \cdot \text{experiencedUtility}}{n - m}
\]

- In the current implementation

\[\text{priorUtility} = \text{parentUtility} - \text{costPenalty}\]
Proposal

Basic Utility equation:

\[
\text{priorUtility} = 0 \text{ (initially)}
\]

Each time the rule is recreated:

\[
\text{priorUtility} = \text{priorUtility} + \left(\frac{\text{parentUtility} - \text{priorUtility}}{n \times m} \right)
\]
Parameter learning: example

Noise = 0.1 Initial experiences = 10 ? = 0.2 Utility new rule = 10.5
Parameter learning: example

Noise = 0.1 Initial experiences = 10 ?=0.2 Utility new rule = 9.5
Evaluation

- It takes a while for the new rule to be learned
- Rules that are recreated more often are learned faster
- The number of free parameters is the same as the current implementation (2)
- It is more robust, as it is less sensitive to the level of noise