Production Compilation

Niels Taatgen
University of Groningen
Artificial Intelligence




At last year's PGSS two questions remained
concerning production compilation

How does production compilation
nandle interaction with ACT-R/PM?

How are the parameters learned?




Interaction with ACT-R/PM

&« T0 explore this interaction, Frank Lee and |
updated my ACT-R 4 non P/M model of the
Kanfer-Ackerman Air Traffic Controller task to
an ACT-R 5 model with ACT-R/PM

& This proved to work really well

= Except that ACT-R at some point didn’t get
any faster anymore, while participants still
Improved

= S0 we decided that a tighter integration of
perceptual, cognitive and motor actions was
needed




Integration of Cognitive,
Perceptual and Motor actions

= T0 use time as efficiently as possible,
you should keep all the modules as
busy as possible

= S0 While a declarative retrieval is going
on, you might want to initiate an eye-
movement

= ACT-R should do “internal” multi-tasking




Hand

Perception

Declarative
Memory

Production

Hand

Perception

Declarative
Memory

Production

Task A, after composition

.

F 3

——» Time

Concurrent A and B

Concurrent A and B after
composing task B

I

Concurrent A and B after final
composition step

|




Problems with this approach

= Hard to inspect whether a certain module Is
“free” (especially retrieval)

= When you do two tasks at the same time:

— Do you represent them as two goals, making it
necessary to switch between them?

— Or do you represent them both in a single goal?

— Or, will this be something for a module behind the
goal, the “intention-model”?




Parameter Learning:
what we want from it

= Gradual introduction of new rules: after the
first opportunity for the rule to be learned, it
should take some more practice or
experience before it will regularly be used

= Evaluation of new rules

— If the new rule is better than the parents, it should
eventually fire whenever it matches

— If the new rule is worse than the parents, it should
eventually not fire anymore




Current scheme

= A new rule Is given prior values for its
successes, fallures and efforts based on
the parent rules

=« A penalty Is added to the cost of the rule
to ensure that it is gradually introduced




Current implementation

=« Basic Utility equation:

n‘priorUtility ? m* experiencedUtility

Utility ?
v n?m

& In the current implementation
priorUtility = parentUtility - costPenalty




Parameter learning:. example

— PG-C new rule
—PG-C old rule
—— Probability newrule>oldrule

Noise=0.4 Initial experiences= 10 Penalty = 1.0 Utility new rule=10.5




Parameter learning:. example

—PG-C new rule
—PG-C old rule
—— Probability newrule>oldrule

Noise= 0.4 Initial experiences= 10 Penalty = 1.0 Utility new rule=9.5




Problems with current
Implementation

=« Level of noise Is critical

— If it I1s too low, the new rule will never be
tried

— If it Is too high, the rule will be introduced
too fast
« Eventually, the new rule will not
dominate If it Is better, nor will it fade
away If it Is worse




Current implementation

=« Basic Utility equation:

n‘priorUtility ? m* experiencedUtility

Utility ?
v n?m

& In the current implementation
priorUtility = parentUtility - costPenalty




Proposal

=« Basic Utility equation:

n‘priorUtility ? m* experiencedUtility

Utility ?
v n?m

priorUtility = 0 (initially)
Each time the rule Is recreated:
priorUtility = priorUtility + ?(parentUtility - priorUtility)




Parameter learning:. example

" |=—PG-C new rule
= PG-C old rule
—— Probability newrule>oldrule

Noise=0.1 Initial experiences= 10 ?=0.2 Utility new rule = 10.5




Parameter learning:. example

]

" |=—PG-C new rule
— PG-C old rule
—— Probability newrule>oldrule

Noise=0.1 Initial experiences= 10 ?=0.2 Utility new rule=9.5




= |t takes
earneo

Rules t

Evaluation

a while for the new rule to be

nat are recreated more often are

earnecd

faster

= The number of free parameters is the
same as the current implementation (2)

= |t1S mo

re robust, as It Is less sensitive

to the level of noise




