Strategy Shift in Prisoner's Dilemma through Utility Learning

Kwangsu Cho Christian Schunn Learning Research and Development Center Univ. of Pittsburgh

Prisoner's Dilemma (PD)

- ∠Non zero-sum game
- ∠Goal: Getting big payoffs
- ∠Two players are involved.
- Strategy Choice without knowing each other's choice
 - In each trial, each player must choose between the cooperate (C) and the defect (D) strategy
- ✓ Players receive payoffs depending on both of the moves
 - ∠Your payoffs depend on your partner's move
- ✓In a typical study two players participate in multiple trial play of the game.

Prisoner's Dilemma Payoff Matrix

Player 2

Pl	~		40	1
P	A	Иe	r	
		, ~	_	

Move	Defect2		Cooperate2	
Defect1	-1	-1	+10	-10
Cooperate1	-10	+10	+1	+1

Expected Payoff

- \geq Defect = (-1 + 10) / 2 = 4.5
- \angle Cooperate = 4.5
- Rational action = Defect
- Irrational action = Cooperate
- A conflict between rational and irrational behavior
 - Zero The loss from defect vs. the benefits from Coop.
- Strategy Shift = learning process
 - *∠* from the *Defect* to the *Cooperate*

Motivation & Goal

- ∠Game theory assumes Rationality
 - ∠Chaotic performance in the beginning is ignored.
 - Equilibrium state in games needs multi-hundreds of trials
 - ∠Human cognition (learning and adaptation) is ignored
 - Lack of short-term prediction
- Simulation of Strategy shift in the PD
 - ∠To consider human learning or adaptation process

Strategy Shift Phenomena

✓ Strategy Shift

- From rational choice in the beginning to irrational choice later on

Conflicts between immediate payoff and goal

∠Immediate payoffs interfere with goal

 \angle Expected gain: Defect = 4.5 vs. Cooperate = -4.5

Lebiere, Wallach, & West (2000)

✓ Memory-based model

- ∠The most likely outcomes are determined by retrieving the most active of the possible move combinations
- Retrieve most likely (most active) consequence of Cooperation and of Defection
- ∠Pick strategy with highest gain

∡Winner takes all

- ∠Once a pattern of behavior is established, it seems not changeable
 - ZStrategy that's more common in the beginning tended to be stable
 - Self-reinforcing chunk strength
- Inherent bias for defecting in the beginning
- ∠Strategy shift was hard to simulate

Our Model Flow

Retrieve Payoff Matrix

Calculate Expected Payoff (*EP*) per each strategy

Decide Strategy Choice Preference

If EP(D) > EP(C) or If EP(D) < EP(C)

If EP(D) > EP(C)

Make a Move

If EP(D) < EP(C)

D_Move_Defect D_Move-Cooperate

C Move-Defect

C_Move-Cooperate

Get Partner's Move

Receive Real Payoff (RP)

Compare RP with EP

Punish the rational choice if it fails (when RP < EP) Reinforce the irrational one if it succeeds (when RP > EP)

Request New Goal

Utility Learning of the Model

✓ Production for rational choice is weighted in the beginning

```
When EP(D) > EP(C),

\emptyset \text{ (spp D_Move-Defect : failures 0 : successes 20 : efforts 100)}

\emptyset \text{ (spp D_Move-Cooperate : failures 20 : successes 20 : efforts 100)}

\emptyset \text{ When EP(D) < EP(C),}
```

- ∠ (spp C_Move-Defect :failures 20 :successes 20 :efforts 100)
- ∠ (spp C_Move-Cooperate :failures 0 :successes 20 :efforts 100)

Surprise-Based Utility Learning

Unbalanced Reinforcement of Strategy

- ∠Punish the rational choice if fails when RP < EP
 - ze.g (spp Eval-Payoff-Poor-D:failure t)
- Reinforce the irrational choice if succeeds when RP > EP
 - ∠E.g. (spp Eval-Payoff-Good-C:success t)

Result 1. General Fit

	DD	DC	CD	CC	r	Mean-Dev.
Human Data	30	7	8	55		
Lebiere et al	32	8	6	54	.99	.02
Our Model	20	13	12	55	.95	.06

Method

≥10 groups of two players

≈300 trials per group

Rappoport et al. (1976)

Result 2. Strategy Shift

Result 3. Individual difference

Human Data

Run	DD	DC	CD	CC
1	1	1	1	97
2	7	1	1	92
3	14	1	2	83
4	4	5	5	86
5 (21	4	3	72
6	24	5	5	66
7	54	12	7	27
8	34	2	52	11
9	58	25	5	12
10	83	9	4	3
	30	7	8	55

Cho & Schunn

Run	DD	DC	CD	CC
1	20	4	8	68
2	23	7	6	64
3	9	9	19	63
4	20	9	12	59
5	20	14	10	56
6	21	17	7	55
7	20	18	8	54
8	16	16	18	50
9	32	11	17	40
10	22	23	15	40
	20	13	12	55

Lebiere et al.

Run	DD	DC	CD	CC
1	1	0	2	97
2	1	1	2	96
3	2	9	2	87
4	5	4	10	81
5	4	19	12	65
6	10	13	12	65
7	13	21	18	48
8	92	4	3	1
9	93	3	3	1
10	95		3	0
	32	8	6	54

Conclusion

- ✓Our model captures features not previously captured ✓model captures both the asymptotic behavior and the strategy shift
- ∠The model doesn't assume any altruistic assumption
 - considering partner's gains as general solutions in the Game theory. Instead, the model seeks moves for its own maximal gain.

Surprise based learning

- Unbalanced or weighted reinforcement learning
- Reinforcing each strategy as either good or poor
 - the natural defecting strategy is reinforced negatively when it fails, but not positively even when it succeeds.
 - the cooperative is reinforced only positively when it's successful

Limitations and Difficulties

- ZDominant preference for defecting in the beginning
- Sometimes human players start with the irrational choice, cooperation
 - «We don't model it.
- ∠Learning too slow
 - ∠Utility learning unit is limited to 1 in/decrement per experience
- Turning off surprise-based learning
 - ∠Habituation process?
 - ∠Once a behavior is set, it doesn't need to be strengthen or weaken

