Symbol Fun: ACT-R's Brain Changes with Practice

Role NSF 0087396 John R. Anderson, Yulin Qin, Myeong-Ho Sohn, Carnegie Mellon Andy Stenger, Cam Carter, University of Pittsburgh http://act.psy.cmu.edu

Brain Imaging to Track ACT-R Modules

- 1. Functional Magnetic Resonance Imaging (fMRI) tracks the brain's metabolic expenditures. It allows relatively high spatial resolution but poor temporal resolution. Good for tracking ACT-R components
- 2. Event-Related potentials (ERP) track the indicating brain's electrical activity. They offer poor spatial resolution but high temporal resolution and are relatively non-intrusive. Good for tracking ACT-R dynamics (maybe). With the localization provided by fMRI they offer the promise of tracking the detail of brain function.
- 3. I will show some results from an fMRI study of college students solving problems in a new algebra. We are now collecting data on children (11-14 years) learning highschool algebra

Symbolic Reasoning Experiment Based on Blessing & Anderson (1996)

Example of equations:

st ep	equation	answer
0 step	P<->≪4≪5	P<->≤4≤5
1 st ep	窓P <-> ゑ4ゑ5	P<->≪4≪5
2 st ep	⊠P <i>⊠</i> 4<-> <i>⊠</i> 5	P<->≤5≤4

Subject types answer by pressing thumb and then key the 4 terms in the answer as fast as they can.

Practice Task 5 days; imaged on 1st and 5th day

72)	Time	Imaginal	Retrieval	Manual	
	3.1	C C			
Ŧ	3.3	<=> £			
	3.5	_<=> £3			
	3.7	<=> \$\$3\$			
	3.9	_<=> £3£4			
	4.1		r		
ACT-R	4.3	_ P<=> <i>\sigma</i> 3\$\sigma4			
Buffer	4.5	≤P<=>≤ 3≤≤4			
Activity	4.7				
ACTIVITY	4.9		📧 means flip		
during	5.1		·		
Solution of	5.3		args in 2nd and 4th		
	5.5		positions		
JI \-/ #J#T	5.7	P · · · · · · · ·		J	
	5.9	F <=> k) 4k) _			
	6.1	P <=> £ 4 £ 3			
	6.3			key 1	
	6.5				
	6.7			key 2	
	6.9				

Basic proposal (Boyton, 1996; Dale & Buckner, 1997; Cohen, 1997) for the shape of fMRI response to an event t times units ago is:

 $B(t) ? t^{a} e^{?t}$

Observed fMRI response is integrated over time the buffer is active. Therefore

$$CB(t)? M \underset{0}{\overset{t}{?}i(x)}B(\frac{t?x}{s})dx$$

where

- M = magnitude scale for response (varies with sensitivity of region)
- s = latency scale (estimated value 1-2 sec.)
- i(x) = 1 if buffer occupied at time x, 0 otherwise
- a = exponent (estimated value 2-10)

Brain Imaging Separates Manual, Imaginal, Retrieval, and Procedural

- 1. Motor area tracks activity of manual buffer. The form of the BOLD function is not sensitive to cognitive complexity or practice.
- Parietal area tracks mental the new imaginal buffer. The form of the BOLD function is sensitive to cognitive complexity but not practice.
- Prefrontal area tracks activity of the retrieval buffer. The form of the BOLD function is sensitive to cognitive complexity and decreases with practice.
- Caudate seems tracks firing of new productions. The BOLD function is only weakly sensitive to cognitive complexity and disappears with practice.