Strategies and Performance in an Orientation Task*

Glenn Gunzelmann John R. Anderson

Carnegie Mellon University

*A version is also to be presented at Cognitive Science 2002; the paper is available through the Cognitive Science Society or ACT-R websites

Issues

Theories of orientation have relied on imagery and mental rotation

Push ACT-R along the track (along with others) of being able to do spatial reasoning, navigation, etc.

Sample Trial

Counting Strategy

Angle (Rotation) Strategy

Hypotheses

Counting Strategy

- Linear effect of target location
- No effect of orientation

Angle Strategy

- No effect of target location
- Linear effect of orientation

Experiments Two & Three

Participants...

- Were trained to use one of the two strategies
- Completed 4 blocks of trials
 - All 64 possible trials were presented using a dropout procedure

Reliable differences found between strategies

Experiment 3 - Eye Tracking

Movies

Counting

Angle

Eye Data Regions

The Eye Data

Counting Strategy

 More time spent looking at regions
between the plane and the target on both views

Angle Strategy

 More time spent looking at the center of the views, particularly on the map

An ACT-R 5.0 Model

- ACT-R 5.0 includes perceptual and motor modules that are closely tied to the cognitive component
 - The ACT-R model can actually do the task
- Simply an instantiation of the proposed strategies
 - Explanations can be quantified to see if they fit with the data

Special-case Strategies

Included for

- Target locations of 0 or 180 degrees
 - These were reported by participants in both conditions
- Plane locations of South (counting strategy)

Rotation in Angle Strategy

Model contains an "Imaginal Buffer"

- Holds a chunk that encodes 3 visual locations
 - Three angle points
 - Encoded on camera view
 - "Mentally moved" to the map view
- On map view, rotation consists of iteratively updating the locations of the angle's endpoints

Counting Model

Angle Model

Model Fit

Model Fit

Hypotheses Mostly Supported

Small effect of plane angle in counting strategy

- Encode target as left/right instead of clockwise/counterclockwise
 - 40% of errors were left/right confusions
 - (i.e., instances where the answer given was the right deviation from the plane, but in the wrong direction

Effect of target location in angle strategy not fully captured

Eye Data

*K*Fit involves a single parameter

- Proportion of eye samples that are "on-task"
 - Set to .5
 - The rest are randomly distributed across the screen
 - Several components of "off-task"

- Correlation = .86, RMSD = .03 (3%)

Eye Data - Counting

Eye Data - Angle

Conclusions

The "PM" may help to reduce the number of free parameters

- Only 2 needed here:
 - Latency Factor (.1)
 - One production execution time (.2)
- Strategy variation is fundamental
 - More comprehensive accounts
- Fine-grained data allow for more accurate accounts

– Predicting eye movements!!