

Procedural learning in the control of a dynamic system

Danilo Fum and Andrea Stocco

Laboratorio di Sistemi Cognitivi Dipartimento di Psicologia Università di Trieste

Overview

- Learning in Sugar Factory
- Computational models
- The experiments
- A new model
- Conclusions

Sugar Factory

- The Drosophyla of learning in dynamic systems
- People have to keep the production *P* of a simulated sugar factory on a target value by allocating an appropriate number of workers *W* to the job
- Discrete number of states [1..12] for both P and W, and discrete computational steps
- The system dynamics is controlled by the relation $P_t = 2W_t - P_{t-1} + ?$
- The task is made difficult by the existence of random noise ?, uniformly distributed with values {-1, 0, +1}.

Sugar Factory

- For a more realistic interpretation, the values of W are multiplied by 100 (hundreds of workers), and the values of P by 1000 (tons of sugar)
- Resulting values of *P* less than 1000 are simply set to 1000, and values exceeding 12000 are set to 12000
- Participants are given the goal to produce a target value of 9000 tons of sugar on each trial.

Sugar Factory

- Typical phenomenon: dissociation between task performance and associated verbalizable knowledge
- Initially assumed as a case for the existence of a separate implicit learning system
- The phenomenon could be explained by assuming that people rely on memorized records (instances) of their interactions with the system.

Computational models

Two instance-based models have been developed to explain the behavior of participants in the SF task:

- Dienes & Fahey (1995)
- Wallach and coworkers (Lebiere, Wallach & Taatgen, 1998; Taatgen & Wallach, 2002)

Both models show a good fit with data, with no model being clearly superior

Wallach's model relies on the ACT-R architecture and requires fewer additional assumptions.

D&F in a nutshell

- Whenever, starting from a situation <W_{t-1}, P_{t-1}>, an action W_t leads to a sugar production P_t that is correct (within the limits of ?), both the action and the situation are stored in memory
- More particularly, two records (instances) are created:
 - a. the first storing the link between the current sugar production and the action that lead to it: $\langle P_{t-1}, W_t \rangle$
 - b. the second storing the link between the previous workforce and the action: $\langle W_{t-1}, W_t \rangle$
- Only instances referring to successful interactions are stored (this is a critical assumption!)

D&F in a nutshell

What you see

What you get

D&F (cont.)

 On any given trial, a random selection between the instances that match the current situation is performed, and the associated action is executed

> For instance, let us suppose that $W_{t-1} = 600$ $P_{t-1} = 8000$

Among all the instances matching the patterns: <600, W_t > <8000, W_t > one is randomly picked out, and the W_t associated with the selected instance is chosen as the workforce for the trial.

D&F (cont.)

D&F noted that 86% of the first ten input values could be explained by assuming the following behavior:

- if *P* is above/below target, then set *W* to a value that is different from the previous one by {0, ±100, ±200}
- if *P* is on the target, then set *W* to a value that is different from the previous one by {-100, 0, +100}
- for the very first trial, start with a *W* in the range [700..900].

D&F: Some assumptions

- To replicate this behavior, D&F had to stuff into the model a number N of instances covering each of the three cases (N is a critical parameter of the model!)
- D&f assume the storage of only successful instances
- D&F use a "loose" criterion of correctness by considering as successful a situation in which *P* was within ± 1000 tons from the target value.

- Grounded on the ACT-R architecture
- Encodes every interaction episode, irrespective of the result, e.g.:

(transition1239

ISA	transition	
state	3000 ; P _{t-1} the old production	
worker	8 ; W _t	
production	12000) ; P_t the current productio	n

- The participants' performance is explained by assuming a match between the present situation and the encoding of instances experienced in the past
- On each trial, a memory search is initiated, based on the current situation and the target value of 9000 tons, in order to retrieve an appropriate workforce value
- Instances that only partially match the retrieval pattern are penalized by lowering their activation proportionally to the degree of mismatch.

The fundamental production:

(p retrieve-episode

=goal>	
ISA	transition
state	=state
production	=prod
=episode>	
ISA	transition
state	=state
production	=prod
worker	=worker
==>	
=goal>	
worker	=worker
N	

A perfect match:

(p retrieve-episode

A partial match:

In case of partial match, a penalty is computed according to the formula:

penalty? MP? (1? sim(required, actual))

where:

- MP is the mismatch penalty parameter, and
 - s is each slot in the matched chunk.

To calculate the similarity of two numbers *a* and *b* representing the sugar productions in respective instance chunks, the following function (Lebiere, 1999) is used:

The ugly duck production:

D&F (cont.)

D&F noted that 86% of the first ten input values could be explained by assuming the following behavior:

- if *P* is above/below target, then set *W* to a value that is different from the previous one by {0, ±100, ±200}
- if *P* is on the target, then set *W* to a value that is different from the previous one by {-100, 0, +100}
- for the very first trial, start with a *W* in the range [700..900].

The use of instances increases over time (from Lebiere, Wallach, & Taatgen, 1998)

Wallach vs. D&F

Both models show a pretty good fit with data (from: Lebiere, Wallach, & Taatgen, 1998)

Ninth Annual ACT-R Workshop, Pittsburgh, 2-4 August 2002

Overview

- Learning in Sugar Factory
- Computational models
- The experiments
- A new model
- Conclusions

← You are here

Playing the science game

We tried to falsify Wallach's model by testing two of its main assumptions:

- the interaction episode as the basic knowledge unit
- the declarativeness of the acquired knowledge.

Pilot A

Two blocks of 40 trials each.

First block:

- STD (standard): the output of each interaction episode constitutes the input for the following episode
- DSC (discontinuous): every interaction episode is discrete, but the participants experience the same situations of the STD group.

Second block:

• STD

Pilot A

Numero di lavoratori	600
Tonnellate prodotte	6000

Numero di lavoratori	800
Tonnellate prodotte	6000

Attendi: elaborazione in corso...

Numero di lavoratori	800
Tonnellate prodotte	11000

Numero di lavoratori	800
Tonnellate prodotte	11000

Premi la barra spaziatrice per continuare

Pilot A: results

Ninth Annual ACT-R Workshop, Pittsburgh, 2-4 August 2002

Pilot B

Two blocks of 40 trials each.

First block:

- DIR (direct): set W to control P, with a target value P = 3000
- INV (inverse): set P to control W, with a target value
 W = 200

P target value has been changed in order to equate the success probability in the two conditions.

Second block:

• DIR

Pilot B: results

Ninth Annual ACT-R Workshop, Pittsburgh, 2-4 August 2002

A new effect

Experiment #1

Two conditions:

- target *P* = 3000
- target *P* = 9000

to test the new effect.

Surprise!

The new effect is predicted by Wallach's model (but not by the D&F's)!

What happens if we switch the target between the first and the second phase?

Two conditions:

- 3000 9000
- 9000 3000

Wallach's predictions

The results

The replication

A new model

Six productions compete according to a pure ACT-R learning scheme:

- **choose-random:** choose a random value between 1 and 12
- repeat-choice: repeat the previous *W* value
- **stay-on-hit**: if you hit the target, keep the same W value
- **pivot-around-target**: choose as *W* the value of the target (plus noise)
- **jump-up**: if your production *P* is below the target increase the value of *W*
- **jump-down**: if your production *P* is above the target decrease the value of *W*.

Model

Data

Ninth Annual ACT-R Workshop, Pittsburgh, 2-4 August 2002

🔘 labsico

Model

Data

Two key concepts:

 good (i.e., repeat-choice, stay-on-hit) vs. bad (i.e., jump, choose-random) productions

3000-3000 (2500 runs)

	Frequency	P(success)	P(hit)	N	Success	Hit
Productions in the FIRST p	hase					
CHOOSE-RANDOM	16.69%	4.33%	12.49%	(16693	723	2085)
AROUND-TARGET	21.44%	9.37%	28.78%	(21437	2009	6174)
REPEAT-CHOICE	29.09%	15.69%	42.02%	(29090	4563	12226)
JUMP-UP-ON-MIDDLE	12.55%	0.00%	0.00%	(12550	0	0)
JUMP-DOWN-ON-MIDDLE	15.64%	4.32%	10.68%	(15636	675	1671)
STAY-ON-HIT	4.59%	5.42%	32.96%	(4594	249	1514)
Productions in the SECOND	phase					
CHOOSE-RANDOM	12.16%	4.16%	12.73%	(12159	506	1548)
AROUND-TARGET	23.91%	10.92%	33.77%	(23912	2612	8076)
REPEAT-CHOICE	42.41%	15.17%	42 028	(42413	6436	17820)
JUUP-UP-ON-UIDDLE	6.09%	0.00%	0.00%	(6088	0	0)
JUMP-DOWN-ON-MIDDLE	10.13%	4.61%	11.73%	(10131	467	1188)
STAY-ON-HIT	5.30%	5.30%	36.11%	(5297	281	1913)

9000-9000 (2500 runs)

	Frequency	P(success)	P(hit)	N	Success	Hit
Productions in the FIRST p	hase					
CHOOSE-RANDOM	18.50%	4.28%	12.16%	(18496	792	2250)
AROUND-TARGET	23.25%	9.07%	22.41%	(23254	2110	5211)
REPEAT-CHOICE	25.24%	11.21%	32.83%	(25243	2829	8287)
JUMP-UP-ON-MIDDLE	15.36%	2.15%	5.53%	(15364	331	850)
JUMP-DOWN-ON-MIDDLE	13.72%	0.00%	0.00%	(13717	0	0)
STAY-ON-HIT	3.93%	5.15%	34.87%	(3926	202	1369)
Productions in the SECOND	phase					
CHOOSE-RANDOM	15.87%	4.34%	12.18%	(15870	688	1993)
AROUND-TARGET	28.98%	9.95%	25.95%	(28977	2884	7520)
REPEAT-CHOICE	32.74%	11.46%	32.51%	(32737	3751	10644)
JUMP-UP-ON-MIDDLE	9.80%	2.08%	5.26%	(9798	204	516)
JUMP-DOWN-ON-MIDDLE	7.64%	0.00%	0.00%	(7640	0	0)
STAY-ON-HIT	4.98%	6.05%	36.58%	(4978	301	1821)

Two key concepts:

- good (i.e., repeat-choice, stay-on-hit) vs. bad (i.e., jump, choose-random) productions
- different hit probability for each production in the separate target conditions.

3000-3000 (2500 runs)

	Frequency	P(success)	P(hit)	N	Success	Hit
Productions in the FIRST p	hase					
CHOOSE-RANDOM	16.69%	4.33%	12.49%	(16693	723	2085)
AROUND-TARGET	21.44%	9.37%	29.79%	(21437	2009	6174)
REPEAT-CHOICE	29.09%	15.69%	42.02%	(29090	4563	12226)
JUUP-UP-ON-UIDDLE	12.55%	0.00%	0.00%	(12550	0	0)
JUMP-DOWN-ON-MIDDLE	15.64%	4.32%	10.68%	(15636	675	1671)
STAY-ON-HIT	4.59%	5.42%	32.96%	(4594	249	1514)
Productions in the SECOND	phase					
CHOOSE-RANDOM	12.16%	4.16%	12.73%	(12159	506	1548)
AROUND-TARGET	23.91%	10.92%	33.77%	(23912	2612	8076)
REPEAT-CHOICE	42.41%	15.17%	42.02%	(42413	6436	17820)
JUMP-UP-ON-MIDDLE	6.09%	0.00%	0.00%	(6088	0	0)
JUMP-DOWN-ON-MIDDLE	10.13%	4.61%	11.73%	(10131	467	1188)
STAY-ON-HIT	5.30%	5.30%	36.11%	(5297	281	1913)

9000-9000 (2500 runs)

	Frequency	P(success)	P(hit)	N	Success	Hit
Productions in the FIRST p	hase					
CHOOSE-RANDOM	18.50%	4.28%	12.16%	(18496	792	2250)
AROUND-TARGET	23.25%	9.07%	22.41%	(23254	2110	5211)
REPEAT-CHOICE	25.24%	11.21%	32.83%	(25243	2829	8287)
JUMP-UP-ON-MIDDLE	15.36%	2.15%	5.53%	(15364	331	850)
JUMP-DOWN-ON-MIDDLE	13.72%	0.00%	0.00%	(13717	0	0)
STAY-ON-HIT	3.93%	5.15%	34.87%	(3926	202	1369)
Productions in the SECOND	phase					
CHOOSE-RANDOM	15.87%	4.34%	12.18%	(15870	688	1993)
AROUND-TARGET	28.98%	9.95%	25.95%	(28977	2884	7520)
REPEAT-CHOICE	32.74%	11.46%	32.51%	(32737	3751	10644)
JUMP-UP-ON-MIDDLE	9.80%	2.08%	5.26%	(9798	204	516)
JUUP-DOWN-ON-MIDDLE	7.64%	0.00%	0.00%	(7640	0	0)
STAY-ON-HIT	4.98%	6.05%	36.58%	(4978	301	1821)

The overall learning effect is explicated by the fact that the ACT-R learning mechanism endorses and glorifies good productions.

3000-3000 (2500 runs) _____

--

	Frequency	P(success)	P(hit)	N	Success	Hit
Productions in the FIRST p	phase					
CHOOSE-RANDOM	16.69%	4.33%	12.49%	(16693	723	2085)
AROUND-TARGET	21 44%	9.37%	28.78%	(21437	2009	6174)
REPEAT-CHOICE	29.09%	15.69%	42.02%	(29090	4563	12226)
JUUP-UP-ON-UIDDLE	12.00%	0.00%	0.00%	(12550	0	0)
JUMP-DOWN-ON-MIDDLE	15.64%	4.32%	10.68%	(15636	675	1671)
STAY-ON-HIT	4.59%	5.42%	32.96%	(4594	249	1514)
Productions in the SECOND	phase					
CHOOSE-RANDOM	12.16%	4.16%	12.73%	(12159	506	1548)
AROUND-TARGET	23 91%	10.92%	33.77%	(23912	2612	8076)
REPEAT-CHOICE	42.41%	15.17%	42.02%	(42413	6436	17820)
JUUP-UP-ON-UIDDLE	6.09%	0.00%	0.00%	(6088	0	0)
JUMP-DOWN-ON-MIDDLE	10.13%	4.61%	11.73%	(10131	467	1188)
STAY-ON-HIT	5.30%	5.30%	36.11%	(5297	281	1913)

9000-9000 (2500 runs) _____

	Frequency	P(success)	P(hit)	N	Success	Hit
Productions in the FIRST	phase					
CHOOSE-RANDOM	18.50%	4.28%	12.16%	(18496	792	2250)
AROUND-TARGET	22.25%	9.07%	22.41%	(23254	2110	5211)
REPEAT-CHOICE	25.24%	11.21%	32.83%	(25243	2829	8287)
JUUP-UP-ON-UIDDLE	15.36%	2.15%	5.53%	(15364	331	850)
JUMP-DOWN-ON-MIDDLE	13.72%	0.00%	0.00%	(13717	0	0)
STAY-ON-HIT	3.93%	5.15%	34.87%	(3926	202	1369)
Productions in the SECOND	phase					
CHOOSE-RANDOM	15.87%	4.34%	12.18%	(15870	688	1993)
AROUND-TARGET	28 98%	9.95%	25.95%	(28977	2884	7520)
REPEAT-CHOICE	32.74%	11.46%	32.51%	(32737	3751	10644)
JUUP-UP-ON-UIDDLE	9.80%	2.08%	5.26%	(9798	204	516)
JUMP-DOWN-ON-MIDDLE	7.64%	0.00%	0.00%	(7640	0	0)
STAY-ON-HIT	4.98%	6.05%	36.58%	(4978	301	1821)

The overall learning effect is explicated by the fact that the ACT-R learning mechanism endorses and glorifies good productions.

The target effect is explicated by the different hit probabilities of productions in different conditions.

Without learning

With learning

Conclusions: What you can buy

- Two new phenomena in the SF domain
- A new model:
 - no memory
 - pure procedural parameter learning
- The model seems to do a pretty good job (BTW: it explains the results of the pilots, too)
- but ...

Caveat emptor!

- In the very long run (600 trials):
 - people are able to completely control the system
 - people are able to verbalize their knowledge
- The model predicts that by broadening the target (thus making the scoring criterion explicit) the performance should improve.

