

ACT-R as a Framework for Modeling Human Error

Michael D. Byrne

Department of Psychology Rice University Houston, TX 77005 byrne@rice.edu http://chil.rice.edu

Overview

- The Error Problem
- Previous Approaches
 - Norman
 - Z Reason
- Mechanistic approach (MHP)
- New taxonomy based on responsible mechanism

The Error Problem

- Errors, even in the execution of routine procedures by people with, in some sense, the "correct" knowledge, are common
 - Section Postcompletion errors
 - Section Forgetting the attachment
 - All kinds of other slips
- Consequences range from negligible to fatal
 - Clearly an important topic
- Surprisingly little research from the cognitive psychology and human factors communities

Why?

- Reasons offered:
 - Senders and Moray: "error is frequently considered only as *result* or *measure* of some other variable, and not a phenomenon in its own right."
 - The "blame trap"
 - Empirical difficulty
- ✓ The Real Problem[™]
 - Same cognitive-perceptual-motor system that produces correct behavior produces errors
 - Need an account of the whole system
 - And how it interacts with the world!

Norman's "Seven Stages"

Seven Stages

- Can derive an error taxonomy by asking the question "at what stage did the error occur?"
- Can be a useful framework for designing artifacts
- However, it is neither mechanistic or predictive
 - Z Little is said about the root causes of errors at each stage

Reason's GEMS

- GEMS is "generic error modeling system"
- Based heavily on Rasmussen's Skill-Rule-Knowledge framework
 - Knowledge-based: New situations, behavior guided by interpreted knowledge, reasoning, planning, etc.
 - Rule-based: Familiar situations, governed by rule-plusexception quick procedures
 - Skill-based: Stored patterns of preprogrammed perceptual-motor sequences, automaticity

Major Error Headings in GEMS

- Skill-based performance
 - Inattention
 - S Overattention
- Rule-based performance
 - Informational overload
 - Seneral rules
- Knowledge-based performance
 - K Workspace limitations
 - Several that mirror Kahneman & Tversky heuristics
- Similar problems to the Norman framework

Desiderata

- A framework based on mechanisms, not forms
- Mechanisms need to be specified
- Has to have broad coverage

Model Human Processor

MHP->ACT-R

- LTM/WM -> Declarative Memory
- Cognitive Processor -> Production Memory
- Perceptual Processor & Auditory Store -> Audition
 Module
- Perceptual Processor & Visual Store -> Vision Module
- Motor Processor -> Motor Module

Declarative Memory Errors

- Retrieval failures
 - Complex issue here; what causes the failure?
 - Solution Strategy Constrained Working memory (not enough W)
 - Mot enough rehearsal
 - 🖉 Weak cues
- Mis-retrievals
 - High similarity
 - High base-level for wrong thing in combination with weak cues
- Retrievals too slow

Procedural Memory Errors

- "Wrong" productions match or fail to match
 - Critical piece of information missing from relevant buffer (e.g., came in late)
 - Sol type hierarchy not good enough here?
- Selection of "wrong" production via PG-C
 - P or C wrong because environment has changed or in different environment
 - Low G favors "bad" solutions
- New kind of problem: Buffer conflicts
 - Solar Solar

Perceptual Errors

- Attending wrong item
 - ✓ Bottom-up
 - Again, not presently in the system, but plans are being considered
 - Z Top-down
 - ∠ Cognitive error?
- Failure to meet time constraints

Motor Errors

- Motor noise (e.g. in aimed movements)
 - Not presently in system, but possible
- Failure to complete within necessary time
- Mis-specification of commands is a cognitive error in this scheme

Combinations and Cascades

- Combinations: Many errors arise because of multiple mechanisms "working" together
 - Visual attention to wrong item results in wrong cue being used for retrieval
- Cascades: Small deviation produces large perturbation later
 - For example, long retrieval results in insufficient time for visual search to find relevant warning, so wrong procedure selected

A Note on Goals

- Since the goal stack is gone, this means goals should be subject to same declarative memory issues as other chunks (only worse)
- Details will depend on what kind of goal management scheme is adopted
 - Link-based stack (Schoelles?)
 - Z Declarative-memory based GOMS (Schoppek, et al.)
 - Serial attention style (Altmann & Trafton)
 - Z Display-based reconstruction (a la Gray)
 - Solution of the observation o
- Is goal-management scheme learned and taskdependent?

Conclusions

- The time is (finally) right to consider more comprehensive frameworks for the analysis of errors
 - ${\scriptstyle \measuredangle}$ Comprehensive, mechanism-based theory
- Maybe even prediction!

