

Reaping the Rewards of Teaching ACT-R: Class Projects Spring 2002

Michael D. Byrne David Maurier Christopher Fick Department of Psychology Rice University Houston, TX 77005 byrne@rice.edu http://chil.rice.edu

Overview

- Structure of the class
- Thoughts on 5.0 vs. 4.0
- Maurier's project: Learning in PRP
- Fick's project: Contingent capture

Class Structure

- Starts with general readings on computation and cognition (Pylyshyn, Simon)
- A couple weeks of connectionism
 - Readings
 - Building simple models
- Transition to symbolic systems
 - Fodor & Pylyshyn critique
 - Mewell on symbolic systems
- ACT-R the rest of the way
 - Readings
 - CMU tutorial units
 - Projects

Project Requirement

- Select a published data set
- Model it!
 - Z Did not have to be with ACT-R
 - Most used ACT anyway
- Grades were based more on showing what they learned than on r-squared of fits
- I wrote all the supporting Lisp code
 - students, only 8 of whom used ACT

Pros and Cons of 5.0 (vs. 4.0)

∝ Pros

- More uniform syntax
- Buffer basis simplifies explaining all the things that happen on a production cycle
 - Especially dealing with retrieval failures
- Zerial Parallels between declarative retrieval and visual attention
- Simpler PG-C formulation
- ∠ Cons
 - Lack of a book like Atomic Components
 - Lack of a manual for 5.0
 - Z Debugging 5.0 seems a little harder
- Environment was a wash

David Maurier's Project: Learning in the PRP Paradigm

- Anyone **not** know the PRP paradigm?
- Data from Van Selst, Ruthruff, & Johnston (1999)
- Setup
 - Z Task 1: 4-choice tone discrimination with vocal response
 - Task 2: 8-choice visual character discrimination with manual response
 - ${\scriptstyle \measuredangle}$ SOAs of 17, 67, 150, 250, 450, and 850 ms
 - A bunch of difficulty manipulations
- Focus on first phase of the experiment
- 18 sessions, roughly 1 hour each

Maurier's Model

- Attempt to model endpoints
 - Session 1 performance
 - Session 18 performance
 - No initial attempt to have ACT-R do the learning
- Each task requires three productions:
 - Z Register
 - Relies on buffer-stuffing
 - Shifts attention to new location in buffer
 - Retrieve chunk which maps stimulus to appropriate response
 - Respond
 - \measuredangle No complex unlocking

Parameters

- Session 1 model
 - Tone recode 100 ms
 - SR mapping chunk activation
 - ✓ For Task 1: 1.6
 - ✓ For Task 2: 1.0
 - Z Default cognitive cycle time of 50 ms
- Session 18 model
 - Tone recode time 70 ms
 - SR mapping chunk activation to 16 and 15
 - ✓ Cognitive cycle time to 5.5 ms (!)

Fit to Task 1 RTs

Fit to Task 2 RTs

Discussion

- Could ACT-R learn it?
 - Chunk activations would certainly go up a lot with that much practice
 - However, might not be necessary with production rule learning on
 - Production learning might also solve the problem of reducing the cycle time
 - Cannot right now learn to reduce tone recoding time
 - Not clear if it would learn at the right rate
- Hopefully we'll have more to report at ICCM

Chris Fick's Project: Contingent Orienting

- Main research question: Do onsets of new visual stimuli "capture" attention?
- Widely believed to be the case until famous paper by Folk, Remington, & Johnston (1992)
- Three cue types
 - Color singleton
 - Solution
 - ∠ None
- Two target conditions
 - Solution
 - Color singleton
- Cues could be valid or invalid

Results: Onset Cues

Onset Cue by Target Type

Results: Color Cues

The Model

- Didn't model "no cue" conditions
- Capitalizes on strange aspect of the original experiment
 - Trial types were blocked
 - Including blocking by validity
 - Model knows if cue is valid
- Handling cues
 - Solution Studies St
 - Color cue requires feature search, but that's fast
- Shift attention contingently depending on validity and cue-target match

Model: Onset Cues

Results: Color Cue

Discussion

- Model is a little too slow overall
 - Z Probably fixable
- Needs no-cue condition in model
 - Section Proposal: have model randomly select location to attend
- Contingency is not principled, not clear why it would work the way it does
 - May be a function of the way trials were blocked
 - Raises question: What happens when trials are not blocked?

Other Projects

- Z David Huss will tell you about his shortly
- Another related serial recall/working memory kind of task
- Two people modeled mental rotation experiments with somewhat varied levels of success
- Postcompletion errors
- Goal management (TOH)

Questions?

Emergency PRP Slide

- Very simple dual task
- Two tasks, Task 1 and Task 2
 - ✓ Usually choice RT tasks
- Stimulus onset for Task 2 stimulus delayed relative to onset of Task 1 stimulus (SOA)
- Subjects instructed to give priority to Task 1
- Basic findings
 - Z Task 1 RT unaffected by SOA
 - Task 2 RT a function of SOA; smaller SOA yields higher RT with approximately -1 slope
- Lots of contention, but used to argue for seriality

