
Modeling Synthetic Opponents
in MOUT Training Simulations

Brad Best
Human-Computer Interaction Institute

Carnegie Mellon University

VIRTE: Virtual Technologies
and Environments (ONR)

? Some of VIRTE’s Goals:
? Develop and demonstrate leap ahead human-immersive

technology for naval training.

? Supplement & complement live simulations using virtual &
wargaming simulations and other emerging technologies.

? Train soldiers for ever increasing complexity and chaos.

? VIRTE’s Approach:
? Expand the current knowledge base.

? Incorporate current understanding of human behavior &
learning theories into systems.

? Leverage commercially available advanced technology.

? Evolve current capabilities into products and transition
products to the naval forces.

Project Elements

? MOUT Training Simulations
? Urban Terrain: dominated by buildings and streets
? Typical scenario: capture defended building
? Platform: Unreal Tournament/Infiltration
? Knowledge Base: SMEs and military doctrine

? Synthetic Opponents
? Exist in a synthetic world (Unreal Tournament)
? Must interact with each other and live soldiers

? ACT-R Cognitive Architecture
? Used for modeling human behavior

? Putting it together: ACT-R in UT doing MOUT

Synthetic Environment: Unreal
Tournament
? Off the shelf software

? Low cost
? Wide user base and support

? Virtual 3D First-person Game Engine
? High performance graphics rendering
? physics modeling

? Customizable
? Mod authoring: Infiltration

? Support for Synthetic and Real Opponents
? GameBots API

The Infiltration Mod for UT

? Realistic weapons
? Grenades
? Machine guns that run

out of ammunition and
need to be reloaded, kick
when fired, deadly

? Realistic actions
? Stand, crouch, kneel, lie

prone, lean
? Carefully or loosely aimed

weapons
? Run, walk, creep

AI Development in UT

? GameBots mod allows synthetic characters in
the game to be controlled via network
sockets connected to other programs.

? Sensory Messages
? Messages containing sensory information are

passed from the UT server to the client

? Command Messages
? Commands may be issued from the client to the

bot on the UT server

UT Server

System Architecture

LISP
Client

Messages

ACT-R
Model

LISP
Client

ACT-R
Model

ACT-R
Model

? Bots interact via a Lisp
client that is connected to
the UT server, receiving
sensory messages and
sending command
messages.

? Bots may be controlled
with ACT-R models or
Lisp code.

? Each bot runs in a thread
and may use an
independent ACT-R
model.

Sensory Messages

? Received by the Lisp client from UT over a socket
? Messages contain a tag followed by a set of

attribute/value pairs
? Synchronous messages:

? appear in batches at a configurable interval
? begin - begins a batch
? slf - an update of the bot's state
? plr - another player has come into the bot's field of view
? end - ends a batch

? Asynchronous messages:
? appear in response to events in the game
? bmp - the bot just bumped into another player
? dam - the bot took damage (from being shot, etc.)

Command Messages
? Sent from the Lisp client/bot over a socket to

the UT server
? Messages contain a tag followed by a set of

attribute/value pairs
? Example Message Types:

? changeweapon - change the weapon the bot is
using

? rotate - turn a specified amount
? runto - turn and move directly towards a

destination
? shoot - start firing a weapon

Opponent Task Decomposition
? Situational Awareness

? What does a soldier know?

? Unit task level
? High level goals and key reactive behaviors

? Functional task level
? Breakdown of unit tasks

? Perceptual/Motor task level
? Implementation of functional task level for a

platform
? Seeing walls, openings, and doors is critical

Situational Awareness
? Global

? Location of self, friendly units, hostile units
? Mission
? Navigation and weather information, cleared areas

? Local
? Target information (location, identity, weaponry)
? Self information (ammunition, health, location)
? Terrain information (cover, concealment, walls,

doors)
? Avenues of entrance/escape
? Weapon Fire (type, source, target)

Unit Task Level

? Defend Area
? Defend L-shaped Hallway
? Defend Room

? React to Contact
? React to Communication
? React to Fire
? Give Order/Communicate
? Retreat

Functional Task Level

? This task level is platform independent
? Example Breakdown for ‘Defend Area’

Goal
? Locate entry point(s)
? Identify dominant position
? Assume dominant position
? Locate exits (retreat path)
? Scan area for targets
? Respond to contact

Perceptual/Motor Task Level

? Behaviors that can be implemented
? Platform dependent implementation (UT)

? Examples:
? Fire weapon from shoulder
? Fire weapon from hip
? Move to location
? Identify L-shaped Hallway

? The challenge at this level:
? Perceiving walls, doors, spatial layout

Interactions of Tasks and
Interruptions

? Complications
? Goal stack: avoiding too much structure

? Use of sub-types allows flexible matching and
squashes the stack

? Needs to be interruptible, but only by certain
conditions

? Multiple goals
? Should a bot pursue a goal to give an order

while being shot at?
? Should a bot abandon a goal to return fire

while being shot at?

Buffers Simplify the Situation

? Solution: ACT-R 5.0 Buffers
? Goal Buffer

? Structured behavior

? Visual Buffer
? See another player

? Auditory Buffer
? Hear shots fired

? Allows matching multiple goal conditions
simultaneously

? Allows reactivity and more flexibility

A Key Prerequisite: Perceiving
Spatial Layout

? This was much harder than we expected
? UT maps do not provide boundaries easily

? If they did, it would not be portable to another
platform

? Create UT map by carving overlapping volumes
from space

? Since UT doesn’t provide the map, the
challenge is very similar to robotic mapping
? Range Sensing

? Very little sensor noise

? No positional uncertainty

Using an Exploration Bot to
Map a UT Level

? UT Primitives Available: Range Sensing
? Is a point in x,y,z space reachable from my

current location?

? Sampling the map
? Using this sensor data to crawl the walls

? Extracting cognitive primitives from the data
? Creating a map consisting of high-level concepts

from this data: walls and openings

Sampling the Map
The exploration bot finds
the nearest obstacle and
traces its edge. It calculates
grid points in the area
around it, and queries the
server as to whether the
points are visible (i.e., is
there an obstruction
between the bot and the
sample point).

Resulting Sampled Data
The result is a set of points representing the occupied space in a
map. Note that, though we perceive lines, the computational
representation is just a collection of points.

Analysis of Exploration Bot
Data

? Fits a set of lines to the sample points
gathered by the exploration bot

? For any given set of points, there are a
number of possible fits:

Hough Transform
A convenient equation for describing a line
that fits a set of points is:

r = x (cos ?) + y (sin ?)

Finding the Walls

Using a Hough
Transform, we can
extract walls and
openings from the
sample point set.
This can be done for
multiple floors.

Egocentric Spatial
Representation

? Which of the walls and
openings are visible from the
current location?

? First find all walls and
openings with both endpoints
visible

? Connecting visible endpoints
gives a bounding box
representing walls and
openings visible from a
particular location

Attack Bot

? Uses MOUT tactics
? Bots cover each other,

stack at doorways,
follow MOUT doctrine

? Each area is cleared
and goals to clear
adjoining areas are
created
? Systematically clears

hallway and rooms off
of it

Clearing an L-shaped Hall

Defense Bot

? Also uses spatial primitives extracted by
exploration bot

? For Attackers to win, they must have superior
weapons, skills, numbers, or tactics.
? Defense bot uses less accurate shooting from hip
? Defends when it can, runs when it can’t
? Very reactive: simple goal structure
? Does not effectively use tactics or teamwork

Conclusions
? UT/Infiltration provides realism and a with

the Gamebots API, a convenient platform
? Separation of implementation task level from

unit and functional task level allows for
portability – the model is independent of the
platform

? Low level perception of walls through range
sensing was needed to build high level
representations of architecture

? ACT-R allows for the creation of synthetic
opponents that blend reactive and goal-
directed behavior

