
Compilation and Instruction

ACT-R Post Graduate
Summer School 2001

Coolfont Resort

ACT-R Home Page: http://act.psy.cmu.edu

John R. Anderson
Psychology Department

Carnegie Mellon University
Pittsburgh, PA 15213

ja+@cmu.edu

Notes on Compilation and Instruction

The missing elements to have a self-generating system.

Production Compilation: The Basic Idea

(p read-stimulus
=goal>

isa goal
step attending
state test

=visual>
isa text
value =val

==>
+retrieval>

isa goal
relation associate
arg1 =val
arg2 =ans

=goal>
relation associate
arg1 =val
step testing)

(p recall
=goal>

isa goal
relation associate
arg1 =val
step testing

=retrieval>
isa goal

relation associate
arg1 =val
arg2 =ans

==>
+manual>

isa press-key
key =ans

=goal>
step waiting)

(p recall-vanilla
=goal>

isa goal
step attending
state test

=visual>
isa text
value "vanilla

==>
+manual>

isa press-key
key "7"

=goal>
relation associate
arg1 "vanilla"
step waiting)

Production Compilation: The Principles

1. Perceptual-Motor Buffers: Avoid compositions that will result in
jamming when one tries to build two operations on the same buffer
into the same production.

2. Retrieval Buffer: Except for failure tests proceduralize out and
build more specific productions.

3. Goal Buffers: Complex Rules describing merging.

4. Safe Productions: Production will not produce any result that the
original productions did not produce.

5. Parameter Setting:
Successes = P*initial-experience*
Failures = (1-P) *initial-experience*
Efforts = (Successes + Efforts)(C + *cost-penalty*)

Production Compilation: The Successes

2. Taatgen: Learning of air-traffic control task – shows that production compilation
can deal with complex perceptual motor skill.

3. Anderson: Learning of productions for performing paired associate task from
instructions. Solves mystery of where the productions for doing an experiment
come from.

4. Anderson: Learning to perform an anti-air warfare coordinator task from
instructions. Shows the same as 2 & 3.

5. Anderson: Learning in the fan effect that produces the interaction between fan
and practice. Justifies a major simplification in the parameterization of
productions – no strength separate from utility.

Note all of these examples involve all forms of learning occurring in ACT-R
simultaneous – acquiring new chunks, acquiring new productions, activation
learning, and utility learning.

1. Taatgen: Learning of inflection (English past and German plural).
Shows that production compilation can come up with generalizations.

The Problems
-- modeling natural language comprehension
-- representing the product of comprehension
-- interpreting the representation

The Prolog Solution?
-- skip natural language
-- represent the instruction as a set of Prolog clauses

(not unique) that represent the knowledge in the instruction
-- encode in ACT-R a Prolog interpreter
-- each prolog clause corresponds to a goal and a unit task
-- the thorny issue of backup

What does the Prolog Solution Represent?
--Not that Prolog is the right internal representation
--Rather that we have an outline for learning from

instruction if we have an adequately expressive
internal language.

Proof of Concept
From Last Year’s Summer School:
Learning from Instruction

Now we are moving to a serious model of instruction representation and interpretation.

Paired Associate Example

Without compilation latency is largely determined by the competition
which stays relatively constant.

Dat a Wit hout
Comp ila t ion

Wit h C ompi lati on

Trial Lat enc y
(se c.)

Accur ac y Lat e nc y
(se c.)

Accur ac y Lat e nc y
(se c.)

Accur ac y

2 2 .15 8 0 .52 6 2 .29 3 0 .66 0 2 .11 8 0 .55 0
3 1 .96 7 0 .66 7 2 .15 9 0 .75 5 1 .74 8 0 .72 5
4 1 .76 2 0 .79 8 2 .11 4 0 .77 0 1 .66 7 0 .77 5
5 1 .68 0 0 .88 7 2 .21 8 0 .80 0 1 .60 7 0 .83 0
6 1 .55 2 0 .92 4 2 .20 9 0 .84 0 1 .62 8 0 .90 0
7 1 .46 7 0 .95 8 2 .27 9 0 .88 5 1 .48 7 0 .84 5
8 1 .40 2 0 .95 4 2 .24 4 0 .91 0 1 .52 9 0 .89 0

1. To do the experiment you are to read the stimulus, associate the stimulus
with the response, act on the response, and repeat.

2. To associate a response with a stimulus, wait and read the response.

3. To act on an item, if you are still the stimulus stage, type the item, and read
the answer.

4. Otherwise to act on an item just pass.

The “Prolog” clauses are:

do-experiment :- read(Stimulus),associate(Stimulus,Response),
act(Response), repeat.

associate(Probe,Answer):- read(Answer).
act(Item):- still-stimulus?, type (Item), read (Answer).
act(Item).

The “Instructions” for the Paired-Associate Task

1. A rule for a goal is represented as an ordered sequence of clauses.
Should it be not possible to satisfy one clause, the rule immediately
fails. There is no backup.

2. The rules for a goal are tried in strict sequence so that default rules
are tried only after special case rules.

3. Iteration is achieved with a special case repeat goal.

4. The terms capitalized above are variables. Rules have at most two
variables.

5. Relations have at most two arguments.

The Critical Features of Instructions and
their Interpretation

(setf instructions '(
(do-experiment read (stimulus) associate (stimulus response)

act (response) repeat)
(associate (probe answer) read (answer) done)
(act (item) still-stimulus? type (item) read (answer) done)
(act (item) done)))

(parse instructions)

produces

(RULE102 ISA HEAD RELATION DO-EXPERIMENT PRIOR START)
(P102 ISA CLAUSE RELATION READ PRIOR RULE102 ARG1 VAR1)
(P103 ISA CLAUSE RELATION ASSOCIATE PRIOR P102 ARG1 VAR1 ARG2 VAR2)
(P104 ISA CLAUSE RELATION ACT PRIOR P103 ARG1 VAR2)
(P105 ISA CLAUSE RELATION REPEAT PRIOR P104)
(RULE105 ISA HEAD RELATION ASSOCIATE PRIOR START ARG1 VAR1 ARG2 VAR2)
(P106 ISA CLAUSE RELATION READ PRIOR RULE105 ARG1 VAR2)
(P107 ISA CLAUSE RELATION done PRIOR P106)
(RULE106 ISA HEAD RELATION ACT PRIOR START ARG1 VAR1)
(P108 ISA CLAUSE RELATION STILL-STIMULUS? PRIOR RULE106)
(P109 ISA CLAUSE RELATION TYPE PRIOR P107 ARG1 VAR1)
(P110 ISA CLAUSE RELATION READ PRIOR P108 ARG1 VAR2)
(P111 ISA CLAUSE RELATION done PRIOR P110)
(RULE109 ISA HEAD RELATION ACT PRIOR RULE102 ARG1 VAR1)
(P111 ISA CLAUSE RELATION done PRIOR RULE109)

(chunk-type clause relation arg1 arg2 prior)
(chunk-type head relation arg1 arg2 prior)
(chunk-type task parent relation arg1 arg2 rule clause step var1 var2)

The Actual Encoding for ACT-R

(p retrieve-rule
=goal>

isa task
relation =relation
step achieve

==>
+retrieval>

isa head
relation =relation
prior start

=goal>
step rule)

Initiation of a Rule

(p instantiate-rule-var1-var2
=goal>

isa task
relation =relation
arg1 =val1
arg2 =val2
step rule

=retrieval>
isa head
arg1 var1
arg2 var2

==>
+retrieval>

isa clause
prior =retrieval

=goal>
step done
relation nil

arg1 nil
arg2 nil
var1 =val1
var2 =val2
rule =retrieval)

Instantiation of a 2-argument Head

(p retry-higher
=goal>

isa task
parent =parent

- parent experiment
step rule

=retrieval>
isa error

==>
+retrieval>

=parent
=goal>

step pop-failure)

(p pop-failure
=goal>

isa task
step pop-failure

=retrieval>
isa task
parent =grandparent
rule =rule

==>
+retrieval>

=grandparent
+goal>

isa task
step try-again
rule =rule
parent =grandparent)

Backup

(p retry-1-arg
=goal>

isa task
step try-again
rule =rule

=retrieval>
isa task
relation =rel
arg1 =arg1
arg2 nil

==>
+retrieval>

isa head
prior =rule

=goal>
relation =rel
arg1 =arg1
arg2 nil
step rule)

(p type-var1
=goal>
isa task
step done
var1 =val
=retrieval>

isa clause
relation type
arg1 var1
arg2 nil

!eval! (equal (length =val) 1)
==>

+manual>
isa press-key
key =val

=goal>
relation nil
arg1 nil
clause =retrieval

step done
+retrieval>

isa clause
prior =retrieval)

Special Instructions for Achieving a Clause

(p retrieve-*var1-var2
=goal>

isa task
step done
var1 =val1
var2 nil

=retrieval>
isa clause
relation =relation
arg1 var1
arg2 var2

==>
=goal>

relation =relation
arg1 =val1
arg2 var2
clause =retrieval
step retrieval-harvest

+retrieval>
isa task
relation =relation
arg1 =val1

- arg2 var2
- step retrieval-harvest)

Retrieval to Instantiate a Clause

(p retrieve-*var2-var1
=goal>

isa task
step done
var1 nil
var2 =val2

=retrieval>
isa clause
relation =relation
arg1 var2
arg2 var1

==>
=goal>

relation =relation
arg1 =val2
arg2 var1
clause =retrieval
step retrieval-harvest

+retrieval>
isa task
relation =relation
arg1 =val2

- arg2 var1
- step retrieval-harvest)

(p harvest-var2b
=goal>
isa TASK
arg2 var2
step retrieval-harvest
clause =clause
=retrieval>

isa task
arg2 =val

==>
=goal>

step done
relation nil
arg1 nil
arg2 nil
var2 =val

+retrieval>
isa clause
prior =clause)

Harvesting Results

(p fail-harvest-var
=goal>

isa TASK
relation =relation
step retrieval-harvest

=retrieval>
isa error

==>
+retrieval>

isa head
relation =relation
prior start

=goal>
step subgoal-var)

(p subgoal-find-second-arg
=goal>
isa TASK
relation =relation
arg1 =val

- arg1 var1
- arg1 var2
step subgoal-var
parent =parent
=retrieval>

isa head
arg1 var1
arg2 var2

==>
+retrieval>

isa clause
prior =retrieval

+goal>
isa task
var1 =val
parent =goal
step done
rule =retrieval

=goal>
step subgoaled)

(p Go-Back-1
=goal>

isa TASK
step Done
parent =oldgoal

- parent experiment
=retrieval>

isa clause
relation done

==>
+retrieval>

=oldgoal
=goal>

step go-back)

Subgoaling
(p go-back-arg1b

=goal>
isa task
step go-back
var1 =arg1

=retrieval>
isa TASK
relation =rel
arg1 var2
arg2 =arg2
step Subgoaled

==>
=goal>

relation =rel
arg1 =arg1
arg2 =arg2
+retrieval>

=goal
+goal>

=retrieval)

(p harvest-subgoal-var2a
=goal>
isa TASK
arg2 var2
step Subgoaled
clause =clause

=retrieval>
isa task
var2 =val

==>
+retrieval>
isa clause
prior =clause

=goal>
arg2 =val
var2 =val
step done)

(p subgoal-2-given-var2
=goal>

isa task
step done
var2 =val2

=retrieval>
isa clause
relation =relation
arg1 =val1

- arg1 var1
- arg1 var2

arg2 var2
==>

=goal>
relation =relation
arg1 =val1
arg2 =val2
step subgoaled
clause =retrieval

+goal>
isa task
relation =relation
arg1 =val1
arg2 =val2
parent =goal
step achieve)

Subgoaling for Side Effects

(p go-back-side-effect
=goal>

isa task
step go-back

=retrieval>
isa TASK
- arg1 var1

- arg1 var2
- arg2 var1
- arg2 var2

step Subgoaled
==>

+retrieval>
=goal

+goal>
=retrieval)

(p forward-subgoal-default
=goal>

isa task
step subgoaled
clause =clause
- arg1 var1
- arg1 var2
- arg2 var1
- arg2 var2

==>
=goal>

step done
relation nil
arg1 nil
arg2 nil

+retrieval>
isa clause
prior =clause)

(p repeat-1-arg
=goal>

isa task
parent =parent
step repeat
rule =rule

=retrieval>
isa task
relation =rel
arg1 =arg1
arg2 nil

==>
+retrieval>

isa head
relation =rel
prior start

+goal>
isa task
relation =rel
arg1 =arg1
arg2 nil
step rule
parent =parent)

Repeating

(p repeat
=goal>

isa task
step done
parent =parent

=retrieval>
isa clause

relation repeat
==>

=goal>
step repeat

+retrieval> =parent)

A Trial without Production Compilation
Time 70.000: * Running stopped because time limit reached
Time 70.083: P498149 Retrieved
Time 70.083: Ready-To-Read Selected
Time 70.133: Ready-To-Read Fired
Time 70.133: Read-Attend Selected
Time 70.183: Read-Attend Fired
Time 70.183: Module :VISION running command MOVE-ATTENTION
Time 70.233: Module :VISION running command FOCUS-ON
Time 70.233: Read-Bind-Var1 Selected
Time 70.283: Read-Bind-Var1 Fired
Time 70.452: P498150 Retrieved
Time 70.452: Retrieve-*Var1-Var2 Selected
Time 70.502: Retrieve-*Var1-Var2 Fired
Time 71.405: Goal498174 Retrieved
Time 71.405: Harvest-Var2b Selected
Time 71.455: Harvest-Var2b Fired
Time 71.607: P498151 Retrieved
Time 71.607: Subgoal-1-Var2 Selected
Time 71.657: Subgoal-1-Var2 Fired
Time 71.657: Retrieve-Rule Selected
Time 71.707: Retrieve-Rule Fired
Time 71.836: Rule498154 Retrieved
Time 71.836: Instantiate-Rule-Var1 Selected
Time 71.886: Instantiate-Rule-Var1 Fired
Time 71.941: P498155 Retrieved
Time 71.941: Still-Stimulus Selected
Time 71.991: Still-Stimulus Fired
Time 72.140: P498156 Retrieved
Time 72.140: Type-Var1 Selected
Time 72.190: Type-Var1 Fired
Time 72.190: Module :MOTOR running command PRESS-KEY
Time 72.290: Module :MOTOR running command PREPARATION-COMPLETE
Time 72.335: P498157 Retrieved
Time 72.335: Ready-To-Read Selected
Time 72.385: Ready-To-Read Fired
Time 72.440: Device running command OUTPUT-KEY

Time 70.000: * Running stopped because time limit reached
Time 70.000: Read-Attend Selected
Time 70.050: Read-Attend Fired
Time 70.050: Module :VISION running command MOVE-ATTENTION
Time 70.100: Module :VISION running command FOCUS-ON
Time 70.100: Production24197 Selected
Time 70.150: Production24197 Fired
Time 70.150: Module :MOTOR running command PRESS-KEY
Time 70.250: Module :MOTOR running command PREPARATION-COMPLETE
Time 70.400: Device running command OUTPUT-KEY

A Trial after the Point of Maximal Learning

(p Production24197
=goal>

isa TASK
arg1 Var1
relation Read
step Reading
clause P24143
var2 nil

=visual>
isa TEXT
value "zinc"

!eval! (stimulus =goal)
==>

-visual-location>
=goal>

relation Act
arg1 "9"
arg2 nil
step Subgoaled
clause P24145
var2 "9"
var1 "zinc"

+manual>
isa PRESS-KEY
key "9"

+goal>
isa TASK
relation Read
arg1 Var2
arg2 nil
clause P24151
step Ready-To-Read
rule Rule24148
var1 "9"
parent =goal)

The Learned Production

start :- change-radius(128), id.
change-radius(X) :- select(display), select(radius),

select(X), select(execute).
id :- find-closest(X), id-sequence(X), repeat.
find-closest(X) :- seek(anzio), attend-closest(X),

mouse, hook(X).
idsequence(X) :- altitude, test, speed-test,

classify(arinc).
idsequence(X) :- ews(X,T), classify(T).
classify(T) :- match(T,arinc),idit(friend,non-military).
idit(X,Y) :- select(track), select(update), select(class),

select(primary),select(X),select(air),select(save).
ews(X,T) :-select(ews),select(query),identity(T).
altitutde-test :- seek(upper-left),search-down(alt,W),

read-next(W,Z),<(Z,40000),<(20000,Z).
speed-test :- seek(upper-left),search-down(speed,W),

read-next(W,Z),<(Z,500),<(350,Z).
select(T) :- find-menu(T,L),key(L).
find-menu(T,L) :- seek(lower-left),search-right(T,L).
key(L) :- find-count(L,C),f-key(C).
f-key(C) :- append-F(C,K),hit(K).
search-right(T,L) :- match-right(T), current(L).
match-right(T) :- read-right(I),match(T,I).
match-right(T) :- repeat.
search-down(T,L):- match-down(T), current(L).
match-down(T) :- read-down(I),match(T,I).
match-down(T) :- repeat.
find-count(L,N):- seek(lower-left),attend-button,

init-count(1), count-to(L,N).
count-to(L,N) :- at(L),count(N).
count-to(L,N) :- next(button), increment-count.

Instructions for the Athena Task

