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ABSTRACT
In ACT-R, some subsymbolic mechanisms can be
switched on that transform ACT-R into a stochastic
theory using random variables to generate choice
probabilities. This paper asks for the relation between
probabilities of production selection and the
corresponding random variables. Starting with the
assumption that choice probabilities governing
production selection satisfy the requirements of Luce’s
choice axiom, it is shown that these probabilities can
be generated by a system of independent and
identically double-exponentially distributed random
variables.
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INTRODUCTION
In ACT-R models, the system selects productions out of
the set of all productions with a first pattern in the left-
hand side matched by the current goal. In the
deterministic version, that production is selected for
which the ‘PG–C’-value is maximal and larger zero.
‘PG–C’ is sometimes called the “evaluation” of
production i and represented by Ei. In the probabilistic
version, a random variable ε is added to Ei and the
production with the largest positive realization of the
random variable ‘Ei+ε’ is chosen. Anderson and
Lebiere (1998, p. 64) assume independent and
logistically distributed ε-components with distribution
function

(1)
    
F ε( ) =

1

1+ e −ε / s
.

In ‘Conflict Resolution Equation 3.4’ Anderson and
Lebiere (1998, p. 65) claim that the resulting choice
probabilities are

(2)

    

P( i ) = Prob selection of production i{ } =
eEi / t

eE j / t

j
∑

with     t = s 2 . Unfortunately, equation (2) does not
follow from (1) (see Yellott, 1977). It gives a good
approximation, but approximations sometimes have
properties different from those of what is
approximated.

This paper starts with assumptions that lead to equation
(2) and tries to find additive random variables, which
can be justified by these assumptions. The reason why
such an upside-down procedure seems promising is
that (2) conforms to Luce‘s (1959) “choice axiom”.

STOCHASTIC THEORY OF CHOICE
Choice Probabilities
Equation (2) is not precisely formulated. Obviously,
the probability of choosing or selecting something
depends on the set of alternatives from which to
choose. Therefore, choice probabilities are the function
of two arguments, an option and a set of options. Given
option set B and option   a ∈B , we write P(a, B) to
denote the probability of choosing a if B is the set of
feasible options. A triple 

    
A, M,P  is a structure of

choice probabilities if an only if
• A is a set,
• M is a nonempty subset of 2A whose members are

nonempty and finite,
• P is a real-valued function with domain

    
a, B( ) | a ∈B ∈M( ){ }  such that

    
P a,B( ) ≥ 0   and   P b,B( ) =1

b ∈B
∑

(Suppes at al., 1989, p. 384). Such structures are called
finite if and only if A is finite, and they are closed if
and only if A is finite and 

    
M = B ⊆ A |B ≠ ∅{ } .

Often, the notion of choice probabilities is extended to
cover values for subsets of options. For   B ⊆ A , we
write
(3)

    
P B,A( ) = P b,A( )

b∈B
∑

to refer to the probability of choosing any element of B
out of option set A.

In case of stochastic production selection in ACT-R, we



have a structure of choice probabilities that is finite but
not closed. Furthermore, we have to take into account
that the sum of probabilities over all available options
equals 1 only if each option set contains the ‘no-
selection option’ which is chosen if the maximum of
Ei+ε is negative and, therefore, no production at all is
selected. We use the symbol ο to denote this null-
option. One of the problems with equation (2) is that it
does not take into account this ‘no-selection option’.

In the literature on theories and models of choice
behavior, there is a distinction between ‘constant
representation’ and ‘random variable representation’
models. Constant representation models specify a real-
valued function ϕ on A such that for each possible size
β of a finite option set there exists a real-valued
function Fβ in β real arguments such that

(4)
    
P a,B( ) =Fβ ϕ (a),ϕ (b ),…ϕ (h )( )

with each Fβ strictly increasing in its first argument and
strictly decreasing in the other arguments (Suppes et
al., 1989, p. 410). In a random variable representation
model, there exists a collection 

      
U = Ua |a ∈A{ }  of

random variables such that

(5)
      
P a,B( ) =Prob Ua = max Ub |b ∈B{ }{ } .

While constant models simply impose plausible
constraints on choice probabilities, random variable
models postulate a covered process representing
options by random variables that are compared to reach
a final choice. Since Thurstone (1927), such processes
are called “discriminal processes”. Equation (1)
belongs to a random variable model with     Ui = Ei +ε
and equation (2) to a constant representaion model with

    ϕ( i) = eEi /t .

The ‘Choice Axiom’
Luce’s (1959) choice axiom, which is equivalent to the
‘strict utility model’, is a good candidate for a constant
representation of stochastic production selection in
ACT-R.  Its basic assumptions are rather simple but not
trivial, and a lot of important consequences are well
known.  The special case of option sets with two
options only was originally proposed by Bradley and
Terry (1952) and Bradley (1954a, 1954b, 1955).
Therefore, another name for the same theory is
‚Bradley-Terry-Luce system‘ or simply ‚BTL scale‘
(Suppes & Zinnes, 1963; Luce & Galanter, 1963).
Modeling confusion probabilities in speech perception,
Clarke (1957) stated what is in principle the same
assumption.

There are several equivalent versions of the choice
axiom. They all use the extension of the choice-
probability concept given in equation (3). One of them
additionally introduces conditional choice probabilities

(6)

    

P (D |C),B( ) =
P D ∩C,B( )

P C,B( )
provided     P(C,B) ≠ 0. The axiom itself is stated as

Choice Axiom 1: A set of choice probabilities defined
for all the subsets of a finite set A satisfies the choice
axiom provided that for all a, Β, C such that

  a ∈C ⊆ B ⊆ A
(7)

    
P x,C( ) =P (x | C),B( ) ,

whenever the conditional probability exists (Luce &
Suppes, 1965, p. 336).

Another version avoids the introduction of conditional
choice probabilities and states the axiom as follows:

Choice Axiom 2: A closed structure of choice
probabilities, with     P(B, A) ≠ 0  for all   B ⊆ A , satisfies
the choice axiom iff for all   C ⊆ B ⊆ A
(8)

    
P C,A( ) = P C,B( )P B,A( )

(Suppes et al., 1989, p.416).

The basic principle is that the process leading to the
selection of any element in C given option set A can be
thought of as a two(or more)-step process consisting of
a choice of C from B and a choice of B from A, that
these two choices are independent, and that the process
leads to the same result independent of which one of
the possible B’s is taken for the intermediate state.
According to the choice axiom, a selection of an option
a from a set C is just that, regardless whether C is the
given option set or whether there is a larger option set
Β and we only look for choices of a at those occasions
on which an element of C was chosen from B.

The choice axiom is equivalent to the ‚constant ratio
rule‘ (Clarke, 1957), which states that for all options

    a,b ∈B ∩C  and     B,C ∈M  holds

(9)
    

P(a,B)

P(b,B)
=

P(a,C )

P(b,C)
provided both denominators are not zero. The ratio of
the choice probabilities of two options is the same for
all option sets containing both of them. Something like
a ‚strength of preference‘ of a over b is taken as
independent of what else is available as an option. This
rule can be viewed as a probabilistic brother of the
principle of ‘independence of irrelevant alternatives’
which is prominent in deterministic choice theory.

Furthermore, the choice axiom is equivalent to the
‘strict utility model’ that assumes the existence of a
function     v : A → ℜ such that

(10)

    

P(a, B) =
v (a)

v (b)
b ∈B
∑

.

This is the format of Anderson and Lebiere‘s (1998, p.
65) ‘conflict resolution equation 3.4’.



The choice axiom may look simple, but it is by no
means trivial. Imagine little Alice who has to decide
whether she prefers a pony or a bicycle as birthday
present from Uncle John. Poor Alice is totally
indifferent between these two options. Therefore, we
can assume

v(pony) = v(bicycle),
which leads directly to a choice probability of 1/2 for
each of the two options. Enlarging the option set by
adding a perfect copy of the bicycle as a third
alternative would — under choice-axiom assumptions
— reduce the probability of voting for the pony from
1/2 to 1/3. In real life, this does not make much sense.
The example shows that the choice axiom presupposes
a strict form of distinctness of the feasible options.
Fortunately, this creates no special problems for
productions in Act-R. It does not make much sense to
write a model with two or more identical copies of one
production. New productions created by compiling
dependencies are never perfect copies of each other.

PRODUCTION SELECTION
When formulating the assumption that the choice
axiom holds for stochastic production selection in ACT-
R, we have to take into account the already mentioned
requirement that every option set must contain the no-
selection option ο. Given a current goal g, there is a set
of productions R(g) with a first pattern matching g. The
option set from which the system can choose consists
of all productions from R(g) plus the no-selection
option ο. We formulate the basic assumption by using
the strict-utility form.

Selection Assumption:
Given a current goal g,

the set R(g) of all productions with a goal
pattern matching g,

the ‘no-selection option’ ο,

there exists a function 
    
ϕ : R(g) ∪ ο{ }( )→ ℜ such that

for all     i ∈R(g)

(11)

    

P( i,g) =
ϕ(i )

ϕ (ο) + ϕ( j)
j ∈R( g )
∑

is the probability of production i being chosen if g is
the current goal, and

(12)

    

P(ο ,g) =
ϕ(ο)

ϕ(ο) + ϕ( j )
j∈R (g )
∑

is the probability that no production is selected and g is
popped with failure.

The task is to find a random-variable representation
using the same option sets and resulting in the same
choice probabilities. This representation should be of
the following kind.

Random Variables assumption:
Given a current goal g,

the set R(g) of all productions with a goal
pattern matching g,

the ‘no-selection option’ ο,

there is a function 
    
γ : R (g) ∪ ο{ }{ }→ ℜ  and a set of

independent and identically distributed random

variables 
      
X = X( i )| i ∈R (g) ∪ ο{ }{ }  such that

(13)

      

P( i,g) = Prob
γ (i ) +X( i ) =

max γ ( j ) + X( j ) | j ∈R(g) ∪ ο{ }{ }
 
 
 

  

 
 
 

  
(14)

      

P(ο ,g) =Prob
γ (ο) + X(ο) =

max γ ( j )+ X( j )| j ∈R(g) ∪ ο{ }{ }
 
 
 

  

 
 
 

  
This kind of random-variable representation differs in
one important aspect from Anderson’s and Lebiere’s
(1998, p. 64) original assumption. They propose to
select that production for which γ+X is maximal and
larger zero. In other words, they look for the maximum
in the set

    
0, γ (1) + X(1),γ (2) + X(2),…{ }

while the proposal here is to search the maximum in

    
γ (ο) + X(ο),γ (1) + X(1), γ (2) +X(2),…{ }.

They take the no-selection option into account in their
random-variable representation, but they do not
consider it in the constant representation given in their
‘Conflict Resolution Equation’ (Anderson and Lebiere,
1998, p. 65). Since the option sets differ, there can be
no correspondence between their two representations.

There are several possibilities to remove this
inconsistency. ‘Conflict Resolution equation’ could be
interpreted as an expression of the choice probabilities
of those productions for which the realized value of the
corresponding random variable is larger zero.
Formally, the summation in Equation 3.4 (in Anderson
& Lebiere, 1998, p.64) can be taken as going over all

(15)
    
i ∈ R(g )| Ei +ε( ) > 0{ } .

Unfortunately, multiplying the resulting choice
probabilities in such a restricted option set with the
probability that there is a selection (and no ‘pop the
goal with failure’) does generally not give the choice
probability in the unrestricted set. The reason is that the
‘no selection’ event is not guaranteed to be
independent of which production has gained the
highest value. Additionally, restricting the choice set in
the random model accordingly would require the
introduction of truncated random variables with
(16)

    
F ε ≤ −Ei( ) = 0 ,

which are — due to their dependence on Ei —no longer
identically distributed. Such complications can be



avoided by the much simpler solution proposed here.

The assumption in this paper is that all alternatives in
the option set have the same status. Not only the values
attached to productions are randomly fluctuating but
the lower limit of productions’ selectability is
randomly fluctuating too.

The random-constant connection
It is an old idea that that constant and random-variable
representations of choice probabilities differ only at the
surface and are in principle based on the same
assumptions about properties of probabilistic choice
behavior. Early research in this area has concentrated
on the special case of pair comparisons. “Pair
comparison” refers to choices from option sets of size

two. In this case, the probability 
    
P a, a,b{ }( )  can be

interpreted as the probability of preferring a over b and
is — therefore — often formalized as       P(af b) . When
Luce (1959) presented his choice axiom, he pointed out
that in the special case of pair comparisons his axiom is
equivalent to a random variable model in which the
differences

      
γ (i) + X(i )( )− γ ( j ) + X( j )( )( )

are logistically distributed random variables. The
question whether there are random-variable
distributions leading to the choice axiom for any size of
option sets, which is the question we are pursuing here,
was referred to by Luce (1959, p. 144) as ‘open
problem B-2’.

At first sight, the relation between random variables
and choice probabilities looks rather simple. Adding a
constant to a random variable results in a random
variable. So, we can —for simplicity— introduce for
any current goal g the set
(17)

      
Y = Y( i ) = X(i ) + γ (i ){ } .

Option i is chosen if Y(i) takes any value and all Y(j)
take values which are not larger. Assume that for every
Y(i) there exists a distribution function Fi and a density
fi. Then, thanks to the independence between the Y(i),

(18)
    
P( i,g) = fi (ξ) F j (ξ) dξ

j ∈R( g )∪ ο{ }
∏

−∞

+∞

∫ .

The task is to find a family of distributions for the
random variables such that this integral exists in closed
form and results in an expression equivalent to
equation (10).

The ‘double exponential’
As already mentioned, Luce (1959) has shown that
logistically distributed differences between the X(i)
yield a system equivalent to the choice axiom for pair
comparisons. Adams and Messick (1957) could prove
that logistically distributed differences are even
necessary for this equivalence. Therefore, the
distributions of the X(i)’s themselves must belong to a

family from which logistically distributed differences
can be derived. Such a family, among others, is the
class of ‘double exponential distributions’. Holman and
Marley assumed double-exponentially distributed
random variables in the general case (including larger
option sets) and derived, based on equation (18), that
this is sufficient for a strict utility model. There seems
to exist no special publication of Holman and Marley’s
proof; it is referred to in Luce and Suppes (1965, p.
338), and the derivation itself is presented by Suppes et
al. (1989, p. 424 f.). Finally, Yellott (1977) has shown
that for closed structures of choice probabilities with at
least three options the double exponential is the only
distribution with the required property.

The distribution function of the double exponential
(Johnson & Kotz, 1970) is

(19)     F(ξ ) = exp(−e− ξ )
and the density function

(20)     f (ξ ) = exp(−ξ) exp(−e− ξ ) .
The mean is
(21)   µ(ξ) = γ
with γ = .5772156649… (Euler’s constant, see
Abramowitz & Stegun, 1965, p. 255), and the variance
equals

(22) 
  
σ 2 (ξ) =

π2

6
.

If X1 and X2 are two independent and identically
distributed random variables with distribution function
F. the difference between these two is a random
variable with the difference distribution

(23)
    
DF ξ( ) = F(ξ +ζ ) dF(ζ )

−∞

+∞

∫ .

If the distribution of X1 and X2 is a double exponential,
the differences are logistically distributed.

… and the resulting theory
The just mentioned results can now be applied to
propose a slightly modified procedure of probabilistic
production selection in ACT-R that guarantees
equivalence with a choice probability system
corresponding to Luce’s choice axiom.

In any ACT-R model at any point in time, procedural
memory consists of a set R of productions. An
evaluation Ei is attached to each   i ∈R . Given a current
goal g, the set     R(g) ⊆R  consists of all productions
with a goal pattern matched by g. The no-selection
option leading to a ‘pop with failure’ of the current
goal is represented by ο; its evaluation Eο is defined to
be zero.

Let α be a real-valued and non-zero constant and

    
Ο (g ) = ξ (i )| i ∈ R(g) ∪ ο{ }( ){ } a set of independent

and double-exponentially distributed random variables



with distribution function

(24)     F(ξ ) = exp(−e− ξ / α ) .
If g is the current goal, select that option i for which

    
Ei + ξ(i )( ) = max Ej +ξ( j )( ) | j ∈Ο (g){ } .

The distribution function of the new random variables

    ζ (i ) = Ei +ξ (i )  equals

(25)

    

F(ζ ) = exp −exp −
ζ − E

α
 

 
 

 

 
 

 

 
 

 

 
 

= exp −e− ζ /α eE / α( )
.

If and only if ζ has a maximum,     τ = −e− ζ /a  has a
maximum too. This allows us to proceed further with
the much simpler random variables τ that follow an
exponential distribution and take densities larger zero
for negative arguments only.

The probability of selecting option i equals the
probability that τ(i) takes the maximum of all τ(j) and
this is (according to equation (18)) equal to

(26)

    

P( i,O (g)) = eEi /αe
Ei

α
τ

e
E j

α
τ

j ∈Ο( g )− i{ }
∏

 

 
  

 

 
  

 

 
 
 

 

 
 
 dτ

−∞

0

∫

= eEi / α exp e
E j / ατ

j ∈Ο ( g)
∑

 
 
 

 
 
 dτ

−∞

0

∫

=
eEi /α

eE j /α

j ∈Ο ( g )
∑

To assimilate the formalism to the notion given in
Anderson and Lebieres ‘Conflict Resolution Equation’,
we propose to write t instead of α.

To make plain the main difference between this
approach and Anderson and Lebiere’s, the special
evaluation of the no-selection option should be made
explicit. The resulting new form of Equation (26) is
then

(27)

    

P( i,g) =
eEi / t

1+ eEj / t

j ∈R ( g )
∑

giving the probability of selecting production i, and

(28)

    

P(ο ,g) =
1

1+ eE j / t

j ∈R( g )
∑

giving the probability of selecting no production and
popping g with failure.

A reformulation of the random variable representation
can be used to re-instantiate even the assumption of
logistically distributed variables. As already
mentioned, differences between double-exponentially
distributed variables are themselves logistically
distributed. Subtracting ζ(o) from each of the other ζ(i)

results in a selection procedure, that adds a logistically
distributed ε(i) to each production evaluation and
selects that production for which the resulting variable
is the maximum over the set

    
0,E1 +ε(1), E2 +ε(2),…{ } .

The variance of each ε is 
    
a2 π 2

3
; the factor a

introduced here is the same as the factor s in Anderson
and Lebiere (1998, p. 64). The central difference is that
in the approach proposed here, the ε(i) are not
independent. Since they all share the common
component ε(o), the covariance between two of them is

always 
    
a2 π 2

6
 and the correlation is .50.

Under the selection assumption used here (Equations
(11) and (12)), the ϕ-values have ration-scale quality;
they are unique up to multiplication with a constant
unequal zero. It follows immediately from Equation
(27) that

(29)     ϕ( i) = eEi /t .
Therefore, Ei/t is at most unique up to the addition of a
constant; it belongs to a difference scale or to a scale of
higher type. Eο has been fixed at point zero. Therefore,
the additive constant of an admissible transformation
must be zero. This forces Ei/t to be even a value of an
absolute scale. In ACT-R, Ei is a ‘PG–C’-value. P is a
probability, its value has absolute-scale property, and
the cost factor C is usually interpreted as an estimate of
the time needed to reach the goal set by the evaluated
production. To justify the subtraction of C from PG, G
must be of dimension [time] too. It can be interpreted
as the maximum time the system is willing to spend on
the pursuit of the goal set by the production in
question. Since Ei/t necessarily has to be an absolute-
scale value, the factor t-1 must be of dimension [time-1].

This has two consequences. At first, if the time scale
used for C (and therefore implicitly for G too) is
changed, the scale of t has to be altered accordingly. If
for instance values of µsec are divided by 1,000 to
switch to seconds, the t-value has to be divided by
1,000 too. The second consequence is that [time-1]
reminds of an expression for unit-speed that probably
could be interpreted as something like the speed with
which time needed runs in the system. If t is doubled,
the time given in ‘PG–C’ is used up faster, its value is
only half the original one. If we speculate that t
represents something like ‘mental speed’ of time flow,
it is worthwhile to look for inter- and intra-individual
variation of t and to possible correlations with other
speed-indicators more common in psychological
research. But this is a problem requiring further
research.
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