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ABSTRACT

In this paper, we describe how individual differences in working memory capacity can be modeled in ACT-R as differences in the amount of source activation, W. Source activation is used to maintain task-relevant information in an available state relative to the rest of declarative memory and is assumed to vary among individuals. We show that an ACT-R model with such limits can predict individuals’ performance at a fine-grained level within one working memory task and that the estimate of a W from that task can be used to predict that person’s performance in a second, qualitatively different task.
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INTRODUCTION
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Figure 1. The structure of a declarative chunk encoding the fact that seven was the first item of the current list.

Working memory provides the resources required to retrieve and maintain task-relevant information during cognitive processing (Baddeley, 1986; 1990). During mental arithmetic, for example, one must retrieve appropriate facts and hold the original problem and any intermediate results in memory in order to achieve the solution. One nearly ubiquitous assumption in the working memory literature is that working memory capacity is limited and that this limit affects performance of diverse cognitive tasks. Anderson, Reder, and Lebiere (1996), for instance, had subjects hold a digit span for later recall while solving an equation. Both the size of the span and the complexity of the equations to be solved were manipulated. Results showed that as either of the tasks became more complex (more digits in the span or more operations in the equation), performance on both decreased.

Salthouse (1992) demonstrated that individuals differ in their sensitivity to working memory demands. He had subjects perform four different tasks at 3 levels of complexity and found that as task complexity increased, performance decreased. Salthouse also found individual differences in performance: the decrease in performance with increased task complexity was greater for older adults. Other researchers besides Salthouse have also found that people differ in their sensitivity to the working memory demands of a task: some individuals are less affected by increases in working memory demands than others. Engle (1994), for example, reported that differences in working memory capacity predict performance on a variety of tasks including reading, following directions, learning vocabulary and spelling, notetaking, and writing. To summarize, working memory capacity is a resource that a) is drawn upon to enable performance of cognitive tasks, b) is inherently limited, and c) differs in amount across individuals.

WORKING MEMORY IN ACT-R

Declarative knowledge in ACT-R is stored in schema-like chunks. Figure 1, for example, shows a chunk encoding the fact that seven occurred in the first position of the current list. When a particular chunk is required during processing, its probability and speed of retrieval are governed by its level of activation. Chunk activation is given by:
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where Ai is the total activation of chunk i and Bi is the base level activation of chunk i. W is the amount of available source activation and it is divided equally among the n elements in the focus of attention. Each sji is the strength of association between chunk j in the focus of attention and chunk i in declarative memory. In Figure 1, for example, s7,i represents the link between the concept 7 and the memory of seven in the first position of the current trial. As this link becomes stronger, more source activation will be spread to the memory chunk should seven become the focus of attention thus making it easier to access that memory. In general, a chunk will be more active the more often it is used (increasing Bi) and the more strongly related it is to items in the focus of attention (higher sji’s). However, if there are many chunks in the focus of attention (i.e., a higher value of n in Equation 1), the proportion of W spread to each will be smaller which will decrease the total activation of each related chunk.

Anderson et al. (1996) proposed that working memory limits could be modeled within ACT-R by assuming a limit on ACT-R’s source activation parameter (W). Source activation is a type of attentional activation that flows from the current goal to related nodes in order to maintain them in a more active state relative to the rest of declarative memory. Anderson et al. suggested that the amount of source activation is limited and that it represents the working memory resources of the system. If the task being performed is complex (e.g., many pieces of information are relevant to the goal), the source activation must be spread thinly, and each relevant node will receive less source activation. This makes the relevant information less distinct and less easily accessed. As a result, performance suffers.
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Figure 2. A graphic depiction of the modified digit span procedure.

The idea that working memory capacity can be modeled as source activation was extended by Lovett, Reder, and Lebiere (1999) who demonstrated that allowing W to vary around its default value allowed the model’s predictions to better match subject’s performance of a modified digit span (MODS) task. In this task, subjects read aloud sequences of letters and digits and attempt to retain the digits for later recall (see Figure 2). Subjects recalled from 3 to 6 digits on each trial and were required to recall them in order. Variability in W improved the fit of the model to subjects’ accuracy data. Further, by selecting a particular value of W for each subject, Lovett et al. obtained excellent fits to the data of individual subjects who completed multiple sessions.

Prior work from our lab (Daily, Lovett, & Reder, 1998; 1999) has shown that varying W across individuals not only allows our model to capture individual differences in overall performance of the MODS task, but also allows it to simulate more fine-grained aspects of subjects’ performance. We revised the Lovett et al. (1999) model somewhat to match its processing more closely to subject protocols and to accommodate changes in ACT-R. In two experiments we had subjects perform slight variations of the MODS task and the revised model was fit to the aggregate data to set ACT-R’s global parameters. These parameters were then fixed and the model was fit separately to each individual’s data with W as the only free parameter. As shown in Figure 2, the model captured subjects' accuracy as a function of memory set size, as in Lovett et al (1999). Further, the model also accurately predicted each subject's serial position functions (Figure 3).
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Figure 3. MODS data and model fits for four representative subjects from Daily et al. (1999) Experiment 2.Filled symbols are data, open symbols are model predictions.
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Figure 4. Serial position data and model fits for four representative subjects from Daily et al. (1999) Experiment 2. Filled symbols are data, open symbols are model predictions.

CROSS-TASK PREDICTION OF PERFORMANCE

In our current work, we extend our earlier findings by demonstrating that W can be used to predict performance across two qualitatively different tasks. Subjects performed both the MODS task described above and the n-back task. In the n-back task, subjects view a long sequence of letters and are required to indicate whether each is a target or a non-target. Targets are defined by the experimental condition: in the 1-back condition, for example, an item is a target if it matches the immediately preceding item in the sequence (i.e., the item one back). In a 2-back procedure, the subject is told to respond positively when the current stimulus matches the second stimulus before the current one, etc. Thus, as the number of items “back” increases, the subject must keep track of a greater number of items to respond accurately. Unlike the MODS task, which requires recall of the memory set items, the n-back task involves recognition of previously presented items. Further, the memory load involved (three items at most) is somewhat smaller than the load in the MODS task (varies from 3 to 6 items). Finally, successful performance of the n-back task requires continual updating of the list of to-be-remembered items whereas the MODS task involves simple maintenance of a list of to-be-remembered items. The usual finding in the n-back task is that response latency increases and accuracy decreases as memory load (i.e., the number of items back) increases.

To test whether estimates of W from the MODS task would predict performance on the n-back, we ran a group of 20 subjects in both tasks. During debriefing, subjects were questioned about how they performed the n-back task and all indicated using one of two strategies. In the first, subjects responded to each letter based on its familiarity: if the item seemed familiar it was called a target. The second strategy involved actively maintaining a list of the prior items and updating that list after each stimulus presentation. Presumably, working memory resources would not be involved in the first strategy as no maintenance (i.e., retrieval of chunks based on a goal to rehearse) is involved. They would, however, be required for the maintenance and updating of the lists in the second strategy.

Empirical Results
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Figure 5. MODS data from 4 representative subjects. Global ACT-R parameters were set in Daily et al. (1999).

We divided the subjects into two groups based on their self-reported strategy and compared the performance of the two groups (see Siegler, 1987; 1989). While accuracy decreased for both groups as load increased, the decrease was smaller for the update group than for the activation group. This difference in performance suggests that the differences in the strategies adopted by the two groups are not trivial and that the strategies have a real affect on performance. Consistent with this analysis, we wish to note that an ACT-R model that implemented the activation strategy showed no effect on accuracy of varying W.

As mentioned earlier, we expected that W was not involved in the activation strategy but would be in the update strategy. Consistent with this interpretation we found that that there was no relation between W and overall n-back accuracy in the activation group (r = 0.04, p = .92). There was, however, a marginally significant relation between W and accuracy in the update group (r = .56, p = .12). As a result, we chose to model data from the update group only.

Modeling Results

Individual W estimates were computed from each subject’s data using our existing model of the MODS task. MODS data and model fits from 4 representative subjects are shown in Figure 5. As in Daily et al. (1999), these fits are quite good. We felt confident, therefore, that we could move on to the next step: using these estimates of W to predict performance on the n-back task. First, though, we had to develop a model of the n-back task that implemented the update strategy as described in our subjects’ self-reports.
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Figure 6. Aggregate n-back data and model fit.

We then fit this n-back model to the aggregate data (“update” subjects only) in order to set ACT-R’s global parameters. This fit is shown in Figure 6. This fit is quite good, but the real question is whether the W values estimated for each subject from the MODS task would predict that subject’s performance on the n-back task. The W value for each subject (estimated from fitting to the MODS task model) was simply plugged into the newly developed n-back model to obtain predictions of that subject’s n-back performance. Data from four representative subjects are presented in Figure 7. As with the MODS task, these fits are quite good.
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Figure 7. N-back data and model fits from 4 representative subjects. Filled symbols are data, open symbols are model predictions.

One strength of our MODS model is its ability to capture aspects of subjects’ performance that it was not specifically designed to reproduce (i.e., serial position curves). We were curious whether our n-back model would also display this trait. One aspect of performance that seemed relevant to explore was hit and false alarm rates. The n-back model does not make use of ACT-R’s partial matching mechanism and we wished to determine whether it would commit false alarms at a rate similar to our subjects. Hit and false alarm data from the same subjects that are represented in Figures 5 through 7 are shown in Figure 8, along with the model’s predictions. Despite a tendency to overpredict hits in some conditions, the model does surprisingly well at fitting subject performance considering that it was not specifically designed to provide these fits.
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Figure 8. Hits and false alarms from the n-back data for 4 subjects. Model predictions are also shown.

CONCLUSIONS

In this paper, we have presented a model that conceives of individual differences in working memory capacity as differences in source activation, W. We showed that this model accurately captured the patterns of working memory performance of individual subjects. More importantly, we demonstrated that the value of W estimated for a given subject could be used to accurately predict that same subject’s performance in an unrelated working memory task. Only one parameter was varied per individual and that parameter was not estimated for that task. These results, we suggest, strongly support our model and the use of W as a measure of working memory capacity.
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