

ACT-R Environment Manual

Dan Bothell
db30@andrew.cmu.edu

 2

Introduction

This is the current ACT-R Environment. It still has some minor bugs and oddities so any
and all suggestions, questions or improvements are welcome. The known problems are
listed at the end. It is a radical departure from the old Environments in many ways, but
there are many reasons for the change and it is hoped that this Environment will be a
more useful tool for a wider audience of old and new ACT-R users alike.

Installation

First, the two pieces of the Environment communicate through a TCP/IP socket, so you
need to have TCP functionality on your machine. That typically isn’t a problem, but there
have been some problems reported when the machine was using PPP for a connection.
So, if you are using PPP and experience problems connecting the Environment pieces that
may be the reason.

The current version for most systems now includes the Tcl/Tk side of the environment as
an executable application, but there are a couple of systems that may not be able to run
the application and will still need to have Tcl/Tk installed. I know that MacOS X prior to
10.2 can’t run the included application, and there may be some compatibility issues with
the Linux version as well.

Unless you are using the standalone version (available for Windows and MacOS 10.2+),
you will have to have a supported Lisp application installed. The currently supported
Lisps are:

OS Lisps

Windows ACL free or full version and with or without the IDE for the versions:

6.0 and 6.1 works fully (free or full versions)
6.2 free version only runs interpreted i.e. very slowly
6.2 full version works fully
5.0.1 full version has some bugs listed below
5.0.1 free version requires some minor changes (contact me)
5.0 may work as does 5.0.1, but I don't have it for testing

 LispWorks 4.2 Personal Edition works (see notes at the end)
 And the full version should also work (but I don’t have a license)

MacOS 9.x MCL 5.0, 4.3.5, 4.3.1 and 4.3 have been tested and work fully, but there
 are some issues listed below to be aware of

MacOS X OpenMCL works with only a minor issue listed below

ACL 6.2 works (it was verified by a user because I don’t have a license)
 MCL 5.0

 3

Linux ACL I’ve only tested 6.1, but other versions should work as for Windows
 LispWorks 4.2 also works

CMUCL (I don’t know which specific versions)

Other Unix if it has an ACL that should work
 CMUCL should also work

If you’ve got a Lisp that’s not currently supported either contact me to see if it’s been
added or feel free to make the necessary changes yourself (there’s some description below
as to what’s necessary, and it’s not that much).

If you don’t want to use the included Tcl/Tk application, or you are using Mac OSX prior
to 10.2 or Linux/Unix, then you need to make sure that you have Tcl/Tk 8.3.4 or newer
installed (actually, it should work with anything since 8.1, but I've been testing in 8.3.4 so
that’s the safest option). You can get it free from http://www.tcl.tk/ if you don’t have it
already, and you should be able to find out just about anything you’d like to know about it
there as well. I didn't find it difficult to install and if you have any problems I should be
able to help you get it set up.

I assume that you already have the Environment files, but if not you can get them from
the ACT-R web site at http://act-r.psy.cmu.edu/software/. The one thing to make sure of
is that the Lisp source files have the proper line endings for your system (the Tcl files
don’t really matter because Tcl is pretty lenient when it comes to line endings). If when
you load the loader file you get some strange errors that may be a sign that the line
endings are “wrong” (if you are using OS X then it actually depends on which Lisp you
are using – MCL wants Mac line endings and OpenMCL and ACL want Unix line
endings).

Running the Environment

If you are using the standalone version then all you need to do is run the “Start
Environment” application, and you do not need the rest of the directions in this section.

Start your Lisp and load the file loader.lisp from the Environment folder. That’s going to
load the newest ACT-R 5 (which is in the ACT-R folder of the Environment) and the
necessary support files to create an environment connection. There's not much in the
support files, and until you connect to an environment it should have an almost
undetectable impact on the speed of ACT-R (there are a few hook functions set up, but
they aren't really doing anything) relative to running without loading them. You're free to
work with ACT-R as you typically would at this point (if you don’t need the Environment
tools yet, don’t start them).

You can start the Tcl/Tk side of the Environment now, or wait until you need it. Once it
is running you can start and stop the connection to Lisp without stopping the

 4

Environment application if you want. When you’re ready to start it the directions depend
on which OS you’re using:

Windows

Double click the Start Environment.exe application.

Mac OS 9.x

Double click the “Start Environment OS9” Application.

Mac OS X (prior to 10.2)

I don’t have an application built for the Tcl/Tk that will run here yet, so you’ll have to
use the old directions for now. There are basically two ways to get it going, one which
uses the terminal and one that doesn’t. Without using the terminal, start the wish app
(in the Applications folder). Then at the Tcl console window prompt (hit enter if it
doesn't give you a prompt right away) enter cd "/.../GUI" (where ... is the path to the
Environment files) then enter source starter.tcl. If you want to use the terminal (or
build a script to start it) then you need to cd to the Environment/GUI directory and
then execute “…/Wish Shell” starter.tcl (… is the path to the wish shell application
and the default installation is at “/Applications/Wish Shell.app/Contents/MacOS”).

Mac OS X (10.2 or newer)

Double click the “Start Environment OSX” Application. There is one note to add
here. The name of the application is important in this setup, and it will not work
correctly if you change it unless you also change the AppMain.tcl script in the
included Contents/Resources/Scripts folder accordingly.

Linux/Unix

If you have Tcl/Tk installed already, then you should probably use that with these
directions. Change to the Environment/GUI directory and then call wish with
starter.tcl i.e. "wish starter.tcl". It's important that the Environment/GUI directory be
the working one when it starts, so if you want to make a script to start it automatically
keep that in mind.

If you want to use the included Tcl/Tk application then you should run the “startenv”
script provided in the Environment directory. If that doesn’t work for you, please let
me know the details of the error and your machine configuration.

 5

Once you’ve done the necessary step for your platform it should result in the display of a
"Powered by ONR" splash screen (which will go way in three seconds or when you click
on it) and then an ACT-R Control panel that says "Waiting for ACT-R *" at the top (with
the * being a spinning bar). If you close the control panel while it's waiting it will safely
exit the Environment.

When you want to use the Environment tools call start-environment from Lisp and that
will connect the Lisp to the Environment running on the same machine (it is also possible
to connect to an Environment running on a different machine, see below for directions).
You should see an ACT-R copyrights dialog for about 5 seconds (or until you click it) if
you haven't disabled it in the environment options settings and then you'll get the buttons
in the control panel.

When you are done with the environment connection you should call stop-environment
in Lisp and it will terminate the connection and the Environment application will go back
to waiting. If you want to close the Environment application, you can do so now.

That basically covers it for the standard installation and use. Those interested in either the
multiple machine Environment setup or the multiple Environments setup can continue
with the next section. If you don’t need those features you can skip down to the
descriptions of the tools available in the Environment.

Running with Multiple Machines

The new Environment has support for two new methods of operation that were not
possible in the old Environments. These are still in development, but the basic
framework is in place to use it in a limited fashion now. The biggest problem with
running the Environment on a different machine at this point is that without access to the
listener in the Lisp there isn’t a lot that you can do. I’ve got a listener window working in
the standalone version, but it’s not quite ready for use on a different machine. So, how
much use you’ll get out of the split- and multi-Environment features at this point I guess
is questionable.

Two machines

The first method is to run the Lisp on one machine and the Environment on a separate
machine. Each machine has to have the appropriate application installed (Lisp or Tcl/Tk)
and a copy of the Environment. The only difference is the function that you call to make
the connection. Instead of calling start-environment you need to call connect-to-
environment and pass the ip address of the machine running the Environment as the host
parameter, like this (connect-to-environment :host “192.168.123.254”). You should also
be able to pass the name of the machine instead of the ip address, like “foo.bar.edu”, but I
haven’t tested that in all of the Lisps so your mileage may vary with that. That’s basically
all there is to it. You still call stop-environment to put the Environment back to the
waiting state. Something to note about this is that the machines do not need to be of the

 6

same type or OS – you can connect a Lisp running on a Windows machine to an
Environment running on a machine with Mac OS X for instance.

More than two machines

The other new possibility, which is related to the previous one, is to have multiple
Environments connected to a single Lisp running ACT-R. Thus, it’s possible for multiple
people to view/operate a single running model. To connect the first Environment, use
either the standard method (if it’s on the same machine) or the method described above
for a separate machine. Then, to connect the second and subsequent Environments you
must call connect-to-environment specifying the host address and also the parameter
clean needs to be nil i.e. (connect-to-environment :host “192.168.123.254” :clean nil). If
you don’t specify the :clean nil parameter all previously connected Environments will be
deactivated (but not completely disconnected until you close them down). To put all of
the connected Environments back to waiting you now call close-all-connections instead
of stop-environment, and that will disconnect the Lisp from all of the connected
Environments. The big use that I see for this mechanism is remote debugging. Instead of
people sending me or Mike error reports with a trace and description of the problem
(which often requires several correspondences to resolve) we could schedule a time for
that user to connect an Environment to one of us and we’d be able to actually debug the
problem on the user’s own hardware!

Provided Tools

Many of the current tools work basically the same as the similarly named button or menu
item from the old Environments, but there are some differences, and I’ll describe each of
the items on the Control Panel below. The one big difference that I think makes it worth
using is the new stepper. It can step on any of the RPM events and you can pick which
ones you want, as well as terminate a run or "fast-forward" to a particular time or
production.

On the Control Panel there are a bunch of items, and here’s an image of the Windows
version (all of the images included are from the Window’s version, but the other systems’
displays will be structured the same except that they will have the native look for the
particular machine):

 7

There are 22 rows of items on the Control Panel. Some of them are only headings to
separate sections, but I’ll discuss everything there starting from the top and working
down. If you are running the standalone version then there will be an additional button
labeled Listener between the Options and Graphic Trace buttons which is described in the
section on the standalone version.

 8

Currently Loaded Model

At the top is a text heading that says “Currently Loaded Model”. This is a static heading
that describes what is on the next line.

Loaded model display

The next row shows a text box that says “No Model Loaded”. This will be changed by
the Environment to the name of the currently loaded model file from ACT-R’s
perspective automatically whenever a new model is loaded. The model doesn’t have to
be loaded from the Environment for this change to occur – it could be loaded in Lisp and
this text will be changed to reflect that. Technically, this text shows the name of the file
that is the car of the ACT-R global variable *model*, or “No Model Loaded” if *model*
is nil.

Currently Open Model

Next is a text heading that says “Currently Open Model”. This is a static heading that
describes what is on the next line.

Open model display

The next row shows a text box that says “No Model Open”. This will be changed by the
Environment to the name of the model that is opened in the Environment for editing.
This does not have to be the same as the model that ACT-R considers to be currently
loaded because one could edit a different model from the one that ACT-R has loaded
(though I wouldn’t advise getting into such a situation).

Model…

Below that is a text heading that says “Model…”. This is just a static heading that
describes the general functionality of the following items.

Load Model

The “Load Model” button can be used to load a model file into Lisp. When you press it
will open a file selection dialog from which you are to select a file to load. That file will
then be loaded into the Lisp. If the compile definitions option of the Environment
(described below) is enabled, then a separate file will be created that contains all of the
definitions (defun, defclass, defmethod, etc) from that file and that file will then be
compiled and the resulting compiled file will be loaded as well. Note that this button will
only function if the Lisp is running on the same machine as the Environment.

 9

Open Model

The next row contains two items, an “Open Model” button and an option menu. Pressing
the button will open a model for editing in the Environment, and load that model into the
Lisp as well (as described in the Load Model section). If the split model file option is
enabled (as described below) then the model will be edited in the “classic” Environment
style of 5 specific windows – Chunk Types, Chunks, Productions, Misc, and Commands.
If the split model file option is disabled, then the file will be opened in a single window.
There can only be one model opened for editing in the Environment at any time. Note
that this button will only function if the Lisp is running on the same machine as the
Environment.

The option menu specifies what type of model to open. There are four options. They are
Existing (shown as the current selection above), New, Tutor 1.1, and Tutor 1.2. When
you press the option menu it will open a list of those choices for you to pick from. If you
select Existing, then when you press the open model button you will be presented with a
file selection dialog from which to choose a model file. If you select New, when you
press the open model button you will be presented with a file selection dialog to specify
where to save this model and what to name it, and then an empty model will be created
with that name. If you choose either of the tutor options, when you press the open model
button you are presented with a file selection dialog to specify where to save this model.
Then, the windows for that model opened in tutor mode (note only the windows needed
for that model are opened).

While in tutor mode the windows do not operate as normal edit windows. There will be a
highlighted selection and when you start typing that selection will be filled in. You
should type the value you want followed by either a space or return to have that value
accepted. After a correct entry the next part to enter will be presented if there are any
more entries to make. At any time you can request help on the current selection by
pressing F1. Once all of the required elements have been filled in the tutor will inform
you that the model is complete at which time you should save the model, close it, and
then open it as an existing model for running.

 Save Model

The “Save Model” button will save the contents of the currently opened model file. If
there is no model currently opened for editing, then this button has no effect (other than to
inform you that there isn’t an open model). When you save a model file it will be
checked for (serious) errors in syntax (those that would prevent it from loading into Lisp)
and a dialog will be opened to show you if any are found. If the model is open for editing
in multiple windows, then the Environment will also check to make sure that everything
is in the “right” window, and move things that are not in the right window to where they
belong.

 10

Close Model

The “Close Model” button will save the contents of the currently opened model file and
close the editing of it i.e. all of its edit windows will be closed, and the open model
display will be returned to “No Model Open”.

You should always close an open model before disconnecting the Environment from
Lisp. If you do not it will be automatically closed, but it may not be properly “ordered” if
it was opened in multiple windows, and you will receive warnings if you do so.

Running…

This is a static text heading that describes the general functionality of the tools to follow.
There is also a potential bug with the items in this section, so see the Known Bugs/Issues
section below for details.

Run Button

Pressing the “Run” button will execute the pm-run command in the connected Lisp. The
editable text box next to the “Run” button allows you to enter the parameter that is passed
to pm-run when it is called i.e. the number of seconds to run the model. There can only
be one call to pm-run pending at a time from the Environment, so you must wait for the
first call to complete before pressing the button again will have any effect.

Reset and Reload Buttons

The next row contains two buttons, “Reset” and “Reload”. When these buttons are
pressed the corresponding ACT-R function is called in the connected Lisp. In addition, if
there is an open model and the automatically save on reload option is enabled the open
model file will be saved before the call to reload is made.

Stepper

The “Stepper” button is perhaps the most useful tool in the whole Environment. When it
is pressed it will open the stepper dialog if it is not already open. If it is open, then
pressing this button will bring it to the front – there can be only one stepper dialog open
in the Environment (see the Known Bugs/Issues section for information about using the
stepper with multiple Environments connected to a single Lisp). The stepper dialog is
used to “step” an ACT-R model through its execution one “event” at a time. When it is
open it will stop the model at all of the requested points, and wait for you to tell it to
continue. To use the stepper dialog you should have it open before you start the model
running (if you try to open it while the model is currently running the results are

 11

unpredictable). Thus, the proper way to use it is to open the stepper dialog and then press
the “Run” button or call the appropriate function to run the model from a Lisp prompt or
the Listener window of the standalone version. If you close the stepper dialog while the
model is running the model will continue to run to its natural completion from that point.

The stepper dialog looks like this when you first open it:

This shows the general set of tools it provides and I’ll describe them first. As the model
runs other things will be displayed, and I’ll get to those as well.

The Step Button

 12

Pressing the “Step” button makes the model continue to the next stopping event.

The Stop After Button

Pressing the “Stop After” button makes the model execute the currently displayed event,
and then the current call to pm-run is terminated. Note that if you are running a model
through the use of a Lisp function that contains multiple calls to pm-run, this button only
terminates the current call so the model may “continue” to run even after pressing this
button.
The Run Unti- Button

The “Run Until-” button works in conjunction with the option menu and edit box to its
right. When you press this button the model is run without interruption by the stepper
until the explicit time or production (as specified by the next two interface items) occurs
(or until it reaches the end of the current run) at which point it again stops for inspection.
If the current option is time then the model is run until the specified time in seconds
occurs. If the current option is production then the model is run until the named
production is selected.

The Run Until Option Menu

The option menu has two choices which are time and production (the image above shows
time currently selected). When you press the menu it will display a list of those choices
for you to pick one. If you pick time, then you must enter a time in seconds in the edit
box. If you pick production then the edit box is to contain a production name.

The Run Until Edit box

This box is where you specify the time or production to which the model should be fast-
forwarded when the “Run Until-” button is pressed.

The Tutor Mode Checkbox

This checkbox enables tutor mode for the stepper when it is selected. In tutor mode the
user is required to fully instantiate all of the productions that are selected before the
model will fire them. On a select-production event the bindings will not be shown, and
the instantiation will not have the values displayed. Instead, the production will be shown
with the variables highlighted. The user is to click on a variable which will open a dialog
into which the current binding for that variable is to be entered. Once all of the variables
have been correctly bound the stepper can be advanced to the next event. In the dialog
for entering the binding there are two buttons called Hint and Help. Pressing the Hint
button will provide a suggestion as to how one should find the current value for the
variable and the Help button will just show the correct value.

 13

The Next Event Pane

The empty pane in the upper left of the window will be filled in with the details of the
event that is going to happen next when the model is being stepped. It will specify which
module is to receive, the event, what time the event occurs, and the command that is to be
executed.

The Module Selection Pane

In the lower left corner of the window is a box with several check boxes. These are the
destinations of events on which the stepper can stop. If a checkbox for an item is on, then
the stepper will stop every time one of those events occurs. These can be changed while
the stepper is open, so one could turn on a particular module’s events only when they
were important for instance.

That covers the general options of the stepper dialog. The other panes are important
when there is either a production or retrieval event. I’ll show an example of each below
and describe them.

A Production Event

 14

A production event can be generated on either a production selection (select-production
command) or a production firing (execute-rhs command). The information displayed is
the same in either case. This is basically the same as the functioning of the stepper in the
old Environments.

In the middle pane on the left is a list of the productions that were in the conflict set
ordered by utility (highest first). The three panes on the right display the information
about the production selected from the list. The top pane shows whether this was the
chosen production and its utility. The second pane displays the bindings of the variables
in that instantiation of the production, and the third pane displays the production
instantiated (or at least as much as it could be instantiated).

 15

If you have enabled the “Allow Stepper to pick the instantiation” option, then it is
possible to choose which production will be selected next. When that option is enabled
the production that is selected in the “Possible Productions” list on the left during a
select-production event will be the one selected and fired when the Step button is pressed
regardless of its utility (note that it is only the Step button that will force that production
to be chosen and not the “Stop After” or “Run Until-” buttons). This functionality is
useful for debugging and model tracing when you want a specific action to occur, but
don’t want to disable noise and/or utility calculations.

A Retrieval Event

A new feature of the stepper for this Environment is the display of chunks for a retrieval
event, shown here:

 16

When a chunk is retrieved it will generate an event with the complete-retrieval command.
The middle pane on the left shows a list of chunks that were attempted for that retrieval
ordered by their matching scores (highest on top). The three panes on the right display
the information about the chunk selected from the list on the left. The top pane displays
whether it was the chunk that was retrieved and its matching score. If the matching score
is nil, then the chunk did not match the specification. The second pane displays the
sources of activation that were active when the retrieval request was issued and the
retrieval request itself. The third pane shows the chunk that is selected.

Inspecting…

 17

This is a static text heading that describes the general functionality of the tools to follow.
All of the inspecting tools are updated as the model runs, however if the model is running
at “full speed” (not being stepped through) then you may not see all of the updates as they
occur (they may arrive faster than they can be displayed).

Declarative Viewer

Pressing the “Declarative viewer” button will open a new declarative memory viewer.
This differs from the old Environments which only had a single declarative viewer. The
declarative viewer will look like this:

On the left side is a list of chunks and on the right is the display of the currently selected
chunk from the list. There are two buttons at the top. The one labeled “Add to Graph”
does not do anything at this point, but will eventually allow the graphing of parameters
during a model run as was possible in the old Windows version of the Environment. The
other button (the one labeled “none” above) is the filter. Its name shows which chunk-
types are displayed in the list (none means no filter, all chunks are displayed). When you
press that button a list of the available chunk-types is shown and if you select one from
the list it becomes the current filter and only chunks of that type are displayed.
Procedural Viewer

Pressing the “Procedural viewer” button will open a new procedural memory
(productions) viewer. This differs from the old Environments which only had a single
procedural viewer. The procedural viewer will look like this:

 18

It operates in a manner similar to the declarative memory viewer. On the left side is a list
of productions and on the right is the display of the currently selected production from the
list. There are three buttons at the top. The one labeled “Add to Graph” does not do
anything at this point, but will eventually allow the graphing of parameters during a
model run as was possible in the old Windows version of the Environment. The middle
button (the one labeled “none” above) is the filter. Its name shows the current filter for
the list of productions. For the procedural viewer the filter is the chunk-type of the goal
buffer test on the LHS of the production, or one of the two special filters: none which
means no filter and all productions are displayed and no-goal-test which means only
those productions which do not have a goal buffer test on the LHS are displayed. When
you press that button a list of the chunk-types used in the goal buffer tests of productions
is shown and if you select one from the list it becomes the current filter. The third button
is an important debugging tool and is described in the next section.

The “Why not?” Button

The “Why not?” button is used to call the ACT-R whynot function. That will open a new
window which displays whether the current production matches the current buffer
contents or not and if so what its instantiation is and if not why it does not match. Here
are two whynot windows. The first shows a successfully matching production:

 19

This one shows a production that does not match:

 20

Using whynot in conjunction with the stepper is a very effective method for determining
why a model is not doing what you expect.

Buffer Viewer

Pressing the “Buffer viewer” button will open a new buffer inspector window. This
differs quite a bit from the buffers button in the old Environments. The buffers viewer
will look like this:

On the left is a list of the buffers in ACT-R and on the right is displayed the current
contents of the selected buffer.
Visicon

 21

Pressing the “Visicon” button displays a window with the current contents of the visual
icon (the visicon) if there is not already one open, and brings the current window to the
front if there is one already open. It will look something like the following:

The visicon is the list of features that are currently available for ACT-R to “see”. The
display shows the xy location of the feature in pixels, whether or not it has been attended,
its kind (type), value (varies based on the type), color and the name of the corresponding
visual-object chunk that will be created when/if that feature is attended.

Miscellaneous

This is a static text heading that describes the general functionality of the tools to follow.

Model Manager

When there is an open model, pressing the “Model Manager” button will open a window
with the list of edit windows for the model. Selecting one of the windows in the list will
bring it to the front, and if it is not currently open it will be opened again as well.

Options

 22

Pressing the “Options” button will open a window that allows you to configure your
Environment (something which the old Environments did not have). The Options
window looks like this:

Currently, there are six options available (though one is currently nonfunctional) and four
buttons. First I’ll describe the functioning of the buttons.

Save Button

The “Save” button writes the current setting of the options to a configuration file that will
be loaded the next time the environment is started and closes the options window.

Apply Button

The “Apply” button causes the current setting of the options to be applied instantly to the
Environment.

Cancel Button

The “Cancel” button causes the options window to close and throws away any changes
that were made to the options that have not yet been applied or saved.

Revert Button

The “Revert” button resets all of the options to the last applied values, or the values that
they had when the options window was first opened if they have not been applied.

 23

Here are the descriptions of what the options do:

Use an Environment Window for the Experiment display: This option sets whether the
“visible virtual windows” of the AGI (ACT-R GUI interface whose manual is available
from the Tutorial page of the ACT-R website) use a Tcl/Tk window to display the task
(when on) or a native Lisp window for the task (when off). Right now, this option has no
effect. The system operates as if the option is on regardless of the option setting.

Compile definitions when model opened or reloaded: This option controls whether the
definitions in an opened model file are saved out to a separate file which is compiled and
loaded (when on) or whether the file is loaded as is (when off). If using a Lisp that
doesn’t automatically compile definitions, then using this option can have a big impact on
the performance of a model if it relies on a lot of Lisp functions for operation i.e. having
this on can make the model run much faster in that case. There is an issue listed below
that relates to using this option with OpenMCL (which automatically compiles definitions
anyway so it should be left off), and when using the standalone version this option must
be off.

Split open model into 5 windows: This option controls how a model that is opened is to
be edited. If this option is on, then the model is split into the five edit windows as were
used by the old Environments, and if it is off a single window is used for editing the
model. This option does not affect the tutor models which will always be opened in
multiple windows.

Automatically save an open model when reload pressed: If this option is enabled, then if
you hit the reload button and there is a model currently open for editing in the
Environment, that model will be saved before the reload call is executed in ACT-R.

Show the ACT-R copyright screen: If this option is enabled then every time a connection
is made to the Environment from Lisp it will display the ACT-R copyrights for 5 seconds
(or until the window is clicked on). If it is disabled, then the copyright screen will never
be shown. If you do a lot of starting and stopping of the Environment then you may want
to disable this option because sometimes the copyright screen doesn’t come to the front,
and then you’ve got to wait 5 seconds before the Control Panel responds each time you
reconnect.

Save a backup every time: If this option is enabled then every time the model is saved
(either manually or automatically on a reload if enabled) the current version is first copied
to a backup file. The backup will have the same name as the original with a -# appended
to the end of it. The # will start at 0 and increase each time. It will not overwrite an
existing file with a backup, and will continue to increase the number until a safe name is
found (this allows you to maintain backups over multiple sessions). [This option may
result in a lot of backup files being generated as you develop a model, but disk space is
generally cheaper than a user’s time. You should never open one of the backup files
directly. If you need to use one you should copy it to a file without a -# on the end before

 24

opening it. Other wise there will be a backup created of that and you will end up in a
confusing situation with files named things like “model-10-4-3-2-0”.]

Allow Stepper to pick the instantiation: When this option is enabled it is possible to
choose which production will be selected next during a select-production event in the
stepper. Details for using this are described above in the Stepper section under the “A
Production Event” heading.

Graphic Trace

Pressing the “Graphic Trace” button opens up a window that allows you to see a graphic
trace of the dependencies of the modules for a model run (something like a PERT chart).
It is still in its early stages of development, and is fairly slow to draw and by default
doesn’t have any way to save the results (though it is possible to add a new button to the

 25

control panel that will save the graphic trace window as a postscript file – see the
information in the technical details below).

This is what the window looks like initially:

and this is how it will look when there is a trace of a model displayed :

 26

How to read the trace

Each of the main modules of ACT-R 5 is represented on a row of the diagram as well as a
row for the external device. Time advances along the horizontal axis and a scale marked
at 50ms increments is displayed. A box on a row (other than the Production’s row)
indicates that that module has had a request made to it and it is busy during the time
spanned by the box (which may be zero seconds for some of the requests, particularly
Goal and Visual-location requests). The production row shows a box for each of the
productions that fire, which is similar to the other rows, but the boxes are not initiated by
a request (the procedural system essentially runs continuously and fires productions as
they match with the restriction that only one can fire at a time). The manual row is a little
different as well. That row is split in half with the top half representing the preparation
stage and the bottom half representing the execution stage of motor processing. This is
done because it is possible that the stages are operating on different actions
simultaneously and that needs to be discernable in the display.

The text displayed in the boxes represents the request that was made, with two
exceptions. The retrieval row shows the result of the retrieval, which is either the name
of the chunk retrieved, the failure indicator, or an aborted retrieval indicator (a retrieval
request is aborted if a new one is initiated before the previous one completes). The
production row shows the name of the production that fires in the box.

 27

The lines represent the conditions for the productions and the actions that they request. A
line from the right end of a production to one of the modules indicates that that
production made a request to that module’s buffer. A line from a module row into the left
of a production box indicates that that production tested that particular module’s buffer.
There are also lines that project to the external row which indicate a module initiated an
action that affects the external device. One set of lines that are missing at this point and
should probably be added are those from the external device to the modules to represent
things like buffer stuffing, but those are not really available in the normal trace at this
point so they have not been added to the graphic trace.

How to use the Graphic Trace Tool

Open the Graphic Trace window. Then press the “Start Recording” button. That will
remove any trace that may already be in the display and start recording all of the events
generated by ACT-R. Now you should run your model for as long as you would like it to
be traced. When that is done you should press the “Display” button to have the trace of
the recorded events drawn. The drawing is not very fast at this point, and you should wait
for it to complete before manipulating the view (there is an indicator over the “Start
Recording” button to indicate whether it is busy or done). If you then continue to run the
model the new events will also be recorded, and pressing the “Display” button will result
in the entire trace being drawn starting at the time when you last pressed “Start
Recording”.

Once the display is completed you can use the “+” and “-” buttons to zoom in or out
respectively. Pressing the “Remove Text” button will remove all of the text from the
display which can be useful if it is overly cluttered, but the only way to get it back once it
has been removed is to redisplay the entire trace.

Standalone version

 28

The standalone version works very much like the “full” version, but there are some
differences. The biggest difference is the inclusion of a Listener. The standalone
environment comes with a built in Lisp image which you interact with through the
Listener window. This window looks like this:

It operates similar to a typical listener window in a Lisp, but is a bit more restrictive. It is
where text printed to *standard-output* will be displayed (that includes the model’s trace
and !output! commands from the model), and provides the input for *standard-input*
(though I haven’t tested that thoroughly so you may get some unexpected results and let
me know if that happens).

 All of the commands you want to execute (or text to send to *standard-input*) must be
entered in the Command area at the bottom of the window and cannot span multiple lines
i.e. as soon as you hit Enter the command is sent to be executed whether it is a valid form
or not. The command you enter will be copied to the upper text window portion of the
Listener and it will be followed by any text display from the execution and then the return
value of the call. Here is an image of the listener window after a couple of simple
commands have been executed:

 29

There is one other restriction (that I know of) on commands that can be entered.
Commands with backslash characters “\” don’t work right yet (it’s an escape character in
Tcl as well as Lisp and I should be able to fix it for a future release). Thus, you can’t do
something like this (format t “~c” #\a), but in most cases you can work around that by
using a double backslash like this (format t “~c” #\\a) until I fix that.

Another difference with the standalone version is that you don’t connect/disconnect it
from a Lisp because it’s always connected, and you don’t quit the application by closing
the control panel. Instead, to quit the standalone environment you close the listener
window. It will prompt you if that’s really what you want to do and if you respond
positively it quits the application.

As for the Lisp that’s “underneath” the standalone version, in Windows it’s a
distributable executable image built from ACL 6.2 and in MacOS X it’s basically a
complete version of OpenMCL. As such, the Windows version does not contain a
compiler, a debugger, or any of the fancy ACL features but should be sufficient for
someone learning ACT-R. The reason that I can distribute OpenMCL like that is because
it is distributed under the LGPL (at least that’s my understanding of the situation after
contacting the author – if you feel otherwise please let me know).

Known Bugs/Issues

- The following problem has been “fixed”, but if you are experiencing any problems with
it (other TCP/IP sockets are misbehaving now) please let me! When it is connected to
MCL there will be a significant slow down in performance even in the absence of there

 30

being any active inspectors. Only MCL suffers in this way (ACL, LispWorks, and
OpenMCL have a virtually unnoticeable slowdown as long as the environment is idle).
The reason is because the Opentransport stream is locked if I let it block on a read and
that prevents me from being able to write to it, so instead I have to constantly poll the
connection. There may be a way to “fix” that, but for now when using MCL one should
always stop the environment when it’s not being used.

- If you have any open windows on the environment side it will cause a significant slow
down of any model running because there’s likely to be some network traffic on the hook
functions. I don’t consider that much of a problem though because if you’re inspecting
something chances are you don’t want it running at full speed anyway, but if people have
a problem with that I can work to “improve” the way things interact.

- In ACL 5.0 and 5.0.1 you can't use the open model button (it will cause a Lisp error and
fail to open the file or worse it’ll open it ok, but when you try to save it will mangle the
model file). The problem is that in ACL 5 different functions return/require different file
positions because some count a CR/LF pair as only one character (incorrectly). That’s
something that could be worked around for the old environment, but isn’t “hacked” into
the new environment.

- In OpenMCL if you turn on the compile file option you will have problems opening
model files. The default for the Mac version is with that option being off, and as long as
one leaves it there things are fine.

- In ACL don't turn off the use environment window option or it will cause problems for
the model because it will fall back to using an ACL window (assuming you’re in an
IDE’ed version of ACL) but if you’re using the stepper the experiment window won’t
have the focus when the model “interacts” with it and the responses will not get handled
properly. [In fact, right now one can’t turn it off in any version.]

- If the environment connection is terminated “incorrectly” (most likely to occur if one
quits or kills the environment) the Lisp may hang, and with MCL I’ve found that it may
hang the machine as well. If it doesn’t hang, you may end up in a state where the Lisp
will complain if you try to call start-environment saying that there is already a
connection. If that happens, to connect to the environment without restarting the Lisp you
need to call close-all-connections first to clean things up.

- The stepper is not yet designed for use on more than one Environment at a time in a
multi-Environment setup. Only one of the machines should have a stepper open at any
time, otherwise they will end up out of sync.

- The items in the “Running…” section of the Control Panel are designed so that you
can’t use one while another is still “pending”. However, if an error occurs during the
execution of one it may leave the system thinking that it’s still “pending”. If you
encounter such a situation (an error occurs when you use one of these buttons, and

 31

subsequent attempts to use that or other buttons seems to have no effect) then in Lisp, you
should check the state of the global variable *running-actr*. If it is t, then if you clear
that by setting it to nil (setf *running-actr* nil) you should be able to use the buttons
again. [I think I catch all of these with unwind-protect and ignore-errors, but there were
problems in the past, so just to be safe I’m leaving this note in.]

- There have be reports of problems with the stepper when using the “old style” !output!
command - using the format directives in the string followed by variables like this:

!output! (“This is a chunk ~S” =var)

I haven’t replicated the problem yet, so I don’t have a fix for it directly, but if those are
converted to the new style !output! commands there isn’t a problem i.e.

!output! (This is a chunk =var)

- When using Tcl/Tk windows for the AGI it’s sometimes the case that they are not
“brought to the front” correctly when running with a Lisp (as opposed to the standalone
version) because the Lisp application’s windows obscure them. The easiest workaround
is to not position windows where the AGI window will be (or create the AGI window in
open space) so that they are not obscured. This is a tricky issue to fix cross platform, and
depending on your OS and Lisp you may or may not experience such problems.

Some Design notes

The biggest change is the use of Tcl/Tk [Tcl is a cross platform scripting language and Tk
is a GUI toolkit that works with Tcl] to provide the GUI instead of using the GUI
elements of particular Lisps. This introduces some complication because now there are
essentially two applications running – the Lisp that runs ACT-R and the Tcl/Tk running
the Environment, but I don’t think that that introduces too much extra difficulty and I
think the benefits far outweigh that. The first benefit is that the environment is now
almost completely independent of the Lisp software being used and thus there is only one
Environment – it’s the same source code on all platforms. Everybody is using the same
one no matter what Lisp or OS they are using, and it’s not tied directly to specific
versions of particular Lisp implementations so it’s going to be much easier to keep up to
date. This also means that we can support a wider range of Lisp applications more easily
(see the tech info at the end for the details of adding a new Lisp) and right now it is
available to a wider audience than the old Environments ever were (see above for systems
and Lisps currently supported). This also means that those with some knowledge of
Tcl/Tk can customize the environment to better suit their needs (by either modifying the
current tools or adding whole new ones), and it has been written so that even those
without knowledge of Tcl/Tk can at least remove unnecessary elements from the control
panel to make it easier to navigate.

 32

I see the new Environment being used slightly differently than the previous ones as well.
I see it as a separate tool for debugging and teaching, not a monolithic system for running
ACT-R like the old one was perceived to be (though the standalone versions will still
exhibit that character). When you need it, you connect it to the Lisp that's running ACT-
R and when you no longer need it you can disconnect it and go back to what you were
doing. ACT-R is very much a Lisp based tool, and the Environment is not an attempt to
move the focus away from Lisp or to hide the Lisp with a GUI – if a user isn’t
comfortable with a Lisp prompt for interacting with ACT-R the Environment doesn’t
really do much to alleviate that. As far as the provided tools go, the “open model”
options are there as a continuation of the old system, but I feel that they should only be
used by students early on. After that, people should move to using a better editor (the
editor provided by their Lisp application, Emacs, or just about anything else is going to be
a better editing tool than the Environment’s windows) and operate more independently of
the environment. After unit 1 it’s not likely that the run button does much good either,
and perhaps there should be an option setting that switches between novice and “regular”
user such that for a regular user the open and running options are automatically removed
(as opposed to the user “removing” them by hand).

That’s all I’ll go into here, but there are lots of other things that can be discussed about
the new environment, so feel free to contact me. [If you were at the 2001 ACT-R post-
graduate summer school you probably remember that when it comes to the Environment I
can talk forever!]

Technical Details

Configuring the Control Panel

The control panel is built from the Tcl files in the GUI/dialogs directory. All of the files
with a .tcl extension are sourced in sorted order. That’s why the names have the numbers
on the front. The names (hopefully) indicate what functionality is provided in each file. If
you want to rearrange the order of the items all you need to do is change the file names so
that they are ordered as you want. If you want to remove an item all you need to do is
either delete or rename the corresponding file. Most of the items are independent so you
can remove one without affecting the operation of the rest, but there are some exceptions
(the open-button has procedures that are used by other buttons) which I haven’t
documented yet so you may not want to delete a file until you try the environment without
it first.

Adding new Functionality to the Environment

Because all of the .tcl files from that directory are sourced it’s possible to add your own
functionality to the environment simply by writing the Tcl scripts and placing them there.
I don’t have much documentation yet on how one can use the internals of the
environment for contacting Lisp from Tcl or how you’d put a button on the control panel,

 33

but the current tools should provide reasonable examples and in particular the declarative
viewer was heavily documented for use as an example.

There are actually some extra buttons already included which are not placed onto the
control panel. They have a .tcx extension in the distribution but if they are renamed with
.tcl at the end they will be used. The two extra buttons are a “Save As” button (called 15-
ctrl-panel-save-as-button.tcx) which will allow one to save a model file under a different
name and a button called “Save Trace” (the 96-ctrl-panel-print-gt.tcx file) which will
allow you to save the Graphic trace window to a postscript file.

Adding support for a new Lisp

In theory, the only thing that needs to be done is to edit the uni-files.lisp file and add a
version of each of the functions in that file that works in the new Lisp and change the
loader.lisp file if necessary to get the pathing and compiling set right for the new Lisp. I
say in theory because there may be some minor issues that would call for the need to
change some of the other Lisp files, but the design is such that that shouldn’t happen.

The functions that need to be added are ones that deal with opening, closing, and
managing a stream over a socket, ones for starting and stopping a process in a different
thread, a function to handle errors that occur, one to allow system events to process, and
one to coerce a cons to a function if necessary. They are all documented in that file, and
it shouldn’t be too difficult for an experienced Lisp programmer to copy/modify the
existing versions (or maybe even improve upon them) for use with a new Lisp. The
estimate I’ve been working with is that I expect it’ll take me about a day’s work to add
and debug the support for a new Lisp - assuming it supports everything necessary and I’ve
got the appropriate docs. Of course everybody knows how accurate software design
estimates are, but that’s my claim at this point. [Note, it took me a little less than 2 days
to add LispWorks, so that estimate of about a day isn’t too far off.]

I think that should be enough to get someone started on supporting a new Lisp, and feel
free to contact me with questions if you want to try adding one.

