
Introduction

This document will provide an introduction to the tools provided for producing
experiments for use with ACT-R 5.0. There are several interface layers available in the
system, and this document will focus on the highest layer – the ACT-R GUI Interface
(AGI) after briefly discussing the layers below it. It will also describe the ACT-R and
ACT-R/PM interfacing functions used in the ACT-R 5.0 tutorial.

Device Interface

At the lowest level ACT-R/PM interacts with the world through the device interface.
That is an abstract representation of the world (typically a simulated computer)
implemented as an object in Lisp. There are a handful of methods that must be defined
on that object so that ACT-R will be able to “see” and “manipulate” that device. In
general, defining such a device object is all that is necessary to produce something with
which ACT-R can interact, and the ACT-R/PM manual (available from the ACT-R/PM
web site at http://chil.rice.edu/byrne/RPM/index.html) describes the details of using the
device interface. When one needs complete control of the world for ACT-R this is the
best way to get it, but for simple experiments it can be a bit too detailed and a higher
level can be easier to work with.

Real Windows as Devices

Built into ACT-R/PM already are device interface specifications for native Lisp windows
and some interface widgets for Allegro Common Lisp with the IDE (ACL) and
Macintosh Common Lisp (MCL). Thus if you build your interface with the native tools
for ACL and MCL using the subset of widgets supported (or add the necessary support
for your own) it is likely that the model will be able to interact with that interface with
very little extra effort. There are two potential difficulties with this however. The first is
that you have to learn how to use the GUI tools of the Lisp system you are using if you
do not know them already. The second is that the GUI systems of the Lisps are not
compatible or portable i.e. if you build it in MCL it is only going to work in MCL. For
many users those issues are not a problem and this level works quite well. If this is how
you wish to use the system, then you can find more details in the ACT-R/PM
documentation.

Virtual Windows

There is an additional layer added that addresses the portability issue, and that is virtual
windows. Virtual windows are an abstract representation, based on the windowing
system in MCL, built into ACT-R/PM that implements a windowing interface which is
portable across Lisps. It is called virtual because it does not display anything – it is
entirely abstract and only “visible” to the model. Because it does not open real windows
it is often much faster than the native windows on a given system, and can be used when
speed is important. The down side of using them is that you still have to learn the MCL

windowing interface (though only a small subset of it) and it can be very difficult to
debug a model if you cannot actually see what it is interacting with and how it is
interacting.

The old UWI

To address the portability and visibility issues we built in another layer on top of that. It
is called the Uniform Windowing Interface (UWI). It provides a set of fairly low level
windowing functions that map onto the specific implementations in MCL, ACL and the
virtual windows so that one can create real windows in a portable fashion and easily
switch from real windows to virtual windows when speed is desired. However, there are
several problems with using it and it is really not supported any more (though for the time
being it still exists in ACT-R/PM to support the older tutorial models that used it and the
AGI which currently sits on top of it). Thus, it is not going to be discussed any further in
this document, and I would recommend against using the functions it provides directly.

The AGI

The new high level interface that we provide is the AGI. It is a small set of tools
designed to make creating simple experiments for ACT-R models easy. It also makes it
possible for the experimenter to interact with the same experiment as well for testing and
debugging, with very little additional work. It is not designed for building complex
experiments because those are often best suited to being implemented at the device
interface or real window level and portability is usually not an issue there. It provides
tools for opening and closing a window, adding and removing text, buttons, and lines,
collecting key presses and mouse clicks, as well as a couple of functions to do simple
data analysis. It is portable, and it works with real windows in ACL and MCL as well as
virtual windows, but perhaps its biggest advantage is that when used with the new ACT-
R environment it provides “visible virtual windows” - a real window that can be seen and
interacted with that uses the virtual window abstraction internally. The visible virtual
windows are available for use in any Lisp that will run the environment (currently that is
ACL with or without the IDE in Windows or Linux, OpenMCL or MCL 5 in Mac OS X,
MCL in Mac OS 9, and LispWorks for Windows or Linux). One of the big advantages
of the visible virtual windows is that if you transition from visible to purely virtual there
is no difference in the representation that the model sees. That is not the case when
switching from a real MCL or ACL window to a virtual window particularly when it
comes to text displays because the fonts used can differ slightly between the real and the
virtual which causes text to “move” when switching from one representation to the other.

The rest of this document will describe the functions provided in the AGI as well as some
of the important ACT-R 5.0 functions for running models. Detailed examples of the AGI
in action can be found in the ACT-R 5.0 tutorial – each unit from 2-8 has an additional
text which describes the experiment code for the models of that unit, and those
experiments are implemented using the AGI.

General Experiment Design

The basic procedure for a simple experiment for ACT-R is the following:

1. Open a window
2. Clear the display
3. Present some stimuli
4. Run the model or wait for a real user to respond
5. Collect a response
6. Repeat steps 2-5 for different conditions/stimuli
7. Repeat steps 1-6 to simulate multiple participants
8. Analyze the results

That general pattern can be found in most of the tutorial model experiments. Other than
steps 6 and 7 and any averaging of the data that may be required (which are best done
with the iteration constructs and functions already present in Lisp) the AGI, ACT-R 5.0,
and ACT-R/PM provide the tools for carrying out those tasks. The biggest assumption in
the design of the AGI is that there is only one experiment window for the task at any
time, and all of the AGI functions will operate upon that window. The functions
available in the AGI are described below.

Window Control (steps 1 and 2)

Open-exp-window – this function takes one required parameter which is the title for the
window. It can also take several keyword parameters that control how the window is
displayed. This function opens a window for performing an experiment and returns that
window. If there is already an experiment window open with that title it clears its
contents and brings it to the foreground. If there is not already an experiment window
with that title it closes the previous experiment window if one exists and opens a new
window with the requested title and brings it to the foreground. The possible keyword
parameters are :height and :width which specify the size of the window in pixels and
default to 300 each, :x and :y which specify the screen coordinates of the upper left
corner of the window in pixels and also default to 300 each, and :visible which can be
either t or nil (defaulting to t). If :visible is t it specifies that a real or visible virtual
window be opened (a visible virtual will be used if the environment is connected and the
option is set to use an environment window for experiment display) and if it is nil it
means that a purely virtual window will be opened.

Select-exp-window – this function takes no parameters and brings the currently open
experiment window to the foreground. [Note: There are still some minor bugs to be
worked out when a visible virtual window is being used and this function may not
actually bring such a window to the front at this time.]

Close-exp-window – this function takes no parameters and closes the currently open
experiment window. Once the window is closed it is no longer possible for a person or

model to interact with it. If a model were to attempt such interaction it is likely to cause
an error in Lisp.

Clear-exp-window – this function takes no parameters and removes all of the items from
the currently open experiment window.

Displaying Items (step 3)

Add-text-to-exp-window – this function takes a few keyword parameters and draws a
static text string on the currently open experiment window. The return value is the text
object. The :text parameter specifies the text string to display and defaults to “”. The :x
and :y parameters specify the pixel coordinate of the upper-left corner of the box in which
the text is to be displayed, and the default value for each is 0. The :height and :width
parameters specify the size of the box in which to draw the text in pixels. The default
value for :height is 20 and for :width is 75. One thing to note about the :height and :width
parameters is that although the text shown in a real window or a visible virtual window
may be clipped at the borders of the box a model will always see the entire text string.
The :color parameter specifies in which color the text will be drawn and defaults to black.
The color must be a symbol naming the color (not a system dependent color value) and
the following color names are supported across platforms black, blue, red, green, white,
pink, yellow, gray, light-blue, dark-green, purple, brown, light-gray, or dark-gray.

Add-button-to-exp-window – this function takes a few keyword parameters and places a
button in the currently open experiment window. The return value is the button object.
The :text parameter specifies the text to display on the button and defaults to “Ok”. The
:x and :y parameters specify the pixel coordinate of the upper-left corner of the button and
each defaults to 0. The :height and :width parameters specify the size of the button in
pixels, and :height defaults to 18 and :width defaults to 60. The :action parameter
specifies a function to be called when this button is pressed and defaults to nil (no
function to call). When provided, that function will be called with the button object itself
as the only parameter.

Add-line-to-exp-window – this function takes two required parameters and one optional
parameter and it draws a line in the currently open experiment window. The return value
is the line object. The required parameters specify the pixel coordinates of the end points
of the line and each should be a two element list of the x and y coordinate for one end of
the line. The optional parameter can be used to specify the color in which the line is to be
drawn, and the default is black if it is not specified. It must be a symbol (and as such it
should be quoted) and can be any one of black, blue, red, green, white, pink, yellow,
gray, light-blue, dark-green, purple, brown, light-gray, or dark-gray (be careful when
using ACL in particular, because many of these names are global variables that evaluate
to a color object and not the symbol).

Remove-items-from-exp-window – this function takes an arbitrary number of
parameters each of which must be an object that is currently displayed on the currently
open experiment window. Each of those items is removed from the current display.

Audio Presentation (step 3)

New-tone-sound – this function takes 2 required parameters and a third optional
parameter. The first parameter is the frequency of a tone to be presented to the model.
The second is the duration of that tone in seconds. If the third parameter is specified then
it indicates at what time the tone is to be presented, and if it is omitted then the tone is to
be presented immediately. At the requested time a tone sound will be made available to
the model’s auditory module of the requested frequency and duration.

Miscellaneous (steps 3, 4 or 5)

Permute-list – this function takes one parameter which must be a list and it returns a
randomly ordered copy of that list.

While – this is a looping construct. It takes an arbitrary number of parameters. The first
parameter specifies the test condition, and the rest specify the body of the loop. The test
is evaluated and if it returns anything other than nil all of the forms in the body are
executed in order. This is repeated until the test returns nil. Thus, while the test is true
(non-nil) the body is executed.

Allow-event-manager – this function takes one parameter, which must be the window of
the experiment. It calls the appropriate function of the system to handle user interaction.
Giving the system a chance to handle the real user interactions is important because
otherwise the data collection functions may never be called.

Sleep – sleep is actually a function defined in ANSI Common Lisp, but because it is
being used for experiment generation in the tutorial it seems appropriate to discuss it
here. The Lisp specification for sleep says it takes one parameter, seconds, which is a
non-negative real, and it causes execution to cease and become dormant for
approximately the seconds of real time indicated by seconds, whereupon execution is
resumed. This is only useful when a person is doing a task because it has no impact for a
running model.

Model interfacing (step 4)

Reset – this function initializes the model to time 0 and sets the state of the parameters,
working memory, and the productions to those specified in the model file the last time it
was loaded.

Pm-install-device – this function takes one parameter which must be a window or device.
This tells the model with which window (or device) it is interacting. All of the models
actions (key presses, mouse movement and mouse clicks) will be sent to this window and
the contents of this window will be what the model can “see”.

Pm-proc-display – this function can take one keyword parameter, :clear. Calling this
function tells the model to process the currently installed device for visual information i.e.
this function makes the model “look” at the current contents of the installed device.
Whenever the window is changed you must call pm-proc-display again to make sure the
model becomes aware of those changes. The blink response described in the tutorial can
only happen after this function is called, and the bottom-up visual attention mechanism
discussed in unit 4 (buffer stuffing) will also only occur when this function is called. The
keyword parameter, :clear, if specified as t will cause the model to treat the window as all
new items – everything there will be considered unattended.

Pm-run – this function takes one required parameter which is the time to run the model
in seconds and a keyword parameter, :full-time. It runs the model until either the
requested amount of simulation time passes, or there is nothing left for the model to do
(no productions will fire and there are no pending actions that can change the state). If
the keyword parameter called :full-time is specified as t, then the model will be advanced
the entire amount of time requested even if there are no actions or events to process
during that time.

Pm-timed-event – this function takes 2 required parameters and any number of
additional parameters. It is used to schedule a function to be called during the running of
the model. The first parameter specifies the simulation time (in seconds) at which the
function should be called. The second parameter is the function to be called. Any
additional parameters specified are passed to that function when it is called. By
scheduling functions to be called during the running of the model it is possible to run the
experiment without stopping the model for changes in the task to occur (for instance
erasing the display or drawing something else). The alternative is to use the :full-time
parameter of pm-run to run the model for the desired amount of time, and then when it
stops, execute the function call, and then call pm-run again to continue running the
model.

actr-enabled-p - this is a global variable defined in ACT-R/PM that should be set to
indicate whether a person or a model is currently performing the task. If it is set to t, then
the system assumes that a model is performing the task, and if it is set to nil then it
assumes that a real user is performing the task.

Pm-get-time – this function takes no parameters. It returns the current time in
milliseconds. If the model is doing the task (when *actr-enabled-p* is t) the time is taken
from the simulation time and if a person is doing the task (when *actr-enabled-p* is nil)
the time is taken from the internal timer. The time from the internal timer is not zero
referenced with respect to the task, so one needs to make sure and record the time at the
start of the trial for reference when necessary.

Pm-set-visloc-default – this command sets the conditions that will be used to select the
visual location that gets buffer stuffed. It takes keyword parameters that correspond to
the slots that would be tested in a +visual-location request i.e. :kind, :attended, :value,
:color, :size, :screen-x, :screen-y, :distance, and :nearest. When the screen is processed
by the model (pm-proc-display is called) if the visual-location buffer is empty a visual-
location that matches the conditions specified by this command will be placed into the
visual-location buffer. Essentially, what happens is that when pm-proc-display gets
called, if the visual-location buffer is empty a +visual-location request is automatically
executed using the slot tests set with pm-set-visloc-default.

Response collection (step 5)

When a key press or mouse click occurs in an experiment window (generated by either a
person or the model) the method rpm-window-key-event-handler or rpm-window-click-
event-handler respectively will be called automatically. Thus, to record such responses
you must define those methods on the rpm-window class in your model. Those
definitions would look like this:

(defmethod rpm-window-key-event-handler ((win rpm-window) key)
…
)

(defmethod rpm-window-click-event-handler ((win rpm-window) pos)
…
)

with your code to record the responses inside of them.

The parameters passed to the rpm-window-key-event-handler will be the window in
which the key press occurs and the key that is pressed. For the ‘normal’ keys (letters,
numbers, and simple punctuation keys) the key parameter will be the character of that
item, but for other things (function keys, arrow keys, etc) it may be a system dependent
character or possibly a symbol representation of that key so you will have to be careful
when using such keys to make sure that your method can properly handle those items.

The parameters passed to the rpm-window-click-event-handler will be the window in
which the mouse click occurs and the position of the mouse when the click occurred.
The position will be a two element list of the x and y coordinates within the window of
the mouse pointer at the time of the click.

Data analysis (step 8)

Correlation – this function takes 2 required parameters which must be equal length
‘collections’ of numbers. The numbers can be in arrays or lists and the two parameters
do not need to be in the same format (one could be an array and the other a list). The

only requirement is that they have the same number of numbers in them. This function
then extracts those numbers and computes the correlation between the two sets of
numbers. That correlation value is returned. There is a keyword parameter :output which
defaults to t. When :output is t the correlation is printed to *standard-output*. If :output
is nil then nothing is printed, and if it is a string, stream, or pathname then that is used to
open a stream (if necessary) to which the results are written.

Mean-deviation – this function operates just like correlation, except that the calculation
performed is the mean deviation between the data sets.

Summary

The current AGI was designed to support the ACT-R 5.0 tutorial, and as such is fairly
minimal in what it provides, but that was one of the goals – to keep it simple. I hope that
people find the AGI useful, and if you have any questions, suggestions, or comments
about the AGI feel free to contact me at db30@andrew.cmu.edu.

