for best results make sure you have the Palatino font installed

ACT-R Scripting Extension

A Users Manual

July 1998

Christian Lebiere
cl+@cmu.edu

Table of Contents

this gets built automatically - do not edit
2Table of Contents

Section 1 Introduction
3
Section 2 Commands
4
General Design and Data Structures
4
Generating Input Sets
4
Generating Programs of Instructions
4
Cycling Programs through Input Sets
5
Manipulating Data Sets
6
Computing Statistical Quantities
6
Transposing, Printing and Returning Data Sets
7
Section 3 Examples
8
Missionaries
8
Algebra Latency
10
Section 4 The Script Macro
12
Arithmetic
12
Building Sticks Task
13

Section 1
Introduction TC "Section 1
Introduction" \l 1
This manual describes the scripting extension to the ACT-R modeling system. This extension simply needs to be loaded after ACT-R. Its aim is to make it easier for ACT-R users to model actual data sets. While developing ACT-R models does not require any particular programming skills, users typically found it necessary to write small pieces of Lisp code to run a model through a data set, collect the results, manipulate them and print out the resulting statistics. Although such code was usually fairly straightforward for even moderately experienced programmers, it represented for non-programmers an intimidating barrier to the use of ACT-R in actual research situations.

This scripting extension is not meant to entirely eliminate but rather to greatly reduce and simplify the task of writing such code. By providing high-level functions for commonly used operations, such as cycling through a data set, averaging results and printing them out in table form, it is hoped that most users will be able to abstractly but precisely specify how their model is to be run to match experimental data without getting entangled in low-level coding details. Certainly, complex cases will arise when the library of functions provided will provide insufficient. Users will then have to resort to writing code specifically for their purpose, or if the use is sufficiently general the library may be extended to provide that functionality. Also, hand-written and optimized code will always be more efficient than general library functions, but the overhead resulting from the use of this extension should be reasonable.

The Scripting Extension folder should contain:

• Script: the source code for the scripting extension, to be loaded after ACT-R.

• Manual: this manual, written in Microsoft Word.

• Examples: a folder containing a number of ACT-R models illustrating the use of the library functions.

The rest of this Manual is as follows: Section 2 provides a list of the functions provided by the Script extension and Section 3 describes the use of those commands found in Examples.

To ask questions, report bugs or suggest further additions to the library, send email to Christian Lebiere at cl+@cmu.edu.

Section 2
Commands

General Design and Data Structures

This scripting extension is designed to allow modelers to easily generate and manipulate data sets resulting from running an ACT-R model. Those data sets are multidimensional and are best conceived of as tables. For example, running a model through a stimulus set S of cardinal s will generate a single-dimensional data set with s elements. Repeating this cycle a certain number of times n will yield a two-dimensional table, with n rows and s columns. If one averages over the n iterations, then the result is again a single-dimensional set with s elements, but now each corresponds to the average for a particular stimulus over n runs. Generally, tables of arbitrary dimensions can be manipulated, and the operations on them, such as average, apply to the first dimension, i.e. the most recent cycling operation.

Multidimensional data sets are represented by structures of type data. These structures are composed of two parts. The first part, called labels, is a list of the dimensions of the data. Each dimension is described by a list whose first element is the label of that dimension and the rest of the elements are the indices along that dimension. The second part, array, contains the data itself in array form. The dimensions of that array correspond to the dimensions listed in the first part of the data structure.

 TC "Section 2
Commands" \l 1
Generating Input Sets

Often, a model has to be run through a number of sequentially presented input sets. In this extension, these input sets have to be presented in a list that represents the serial order in which these sets will be presented. Each component of the set is itself a list of the data presented in that run. While such lists are often specified directly, they often need to be duplicated any number of times:

Duplicate
(Duplicate list n)
Returns the data set list duplicated n times.

Another common need is to present the data set in random order:

Randomize
(Randomize list)
Returns the data set list, rearranged in random order.

Generating Programs of Instructions

To run a model, one often has to give a sequence of ACT-R commands, for example to set the focus, modify it to reflect the data inputs, run ACT-R for a number of cycles, and finally extract the results. Such a program can simply be represented by the list of commands, as they would be given in the listener. The only constraint is that the last command in the list must return the data, and a function is provided to that effect:

Data
(Data {value}*)
Returns the results of the ACT-R run, which may consist of one or more value. If it consists of more than one value, then it returns a data structure, with the values in a single dimensional vector, whose labels consist of data followed by the indices first, second, etc.

This list of instructions must usually be generalized from a specific example to a more general program. Replacing specific values in ACT-R commands with variables requires using the functional form of those commands (consult the ACT-R manual). This program can be defined explicitly using the Lisp defun, or implicitly by using the following function:

Variabilize
(Variabilize instructions variables)
Returns a function whose arguments is the list of variables and whose body consists of the list of instructions, properly variabilized.

Cycling Programs through Input Sets

The main purpose of this extension is to help users combine the two previous sections, i.e. to run an ACT-R program through an input set and organize the results. As described previously, each component of the input set should be a list of one or more values, each of which should correspond to a variable on the variabilized function. This is accomplished by the following function:

Cycle
(Cycle function stimuli {end} {label} {indices} {repeat})
Returns the data set corresponding to the function applied sequentially to each element of the stimuli, or if the condition end is true, whichever comes first. Each element of stimuli should be a list (optional if only one value is specified) of values corresponding to the arguments to function. For output purposes, a label is assigned to this set which defaults to 'problem. Also for output purposes, a list of indices corresponding to each element of the stimuli can be specified, otherwise it defaults to stimuli itself. If repeat is specified as a number, then it is equivalent to calling the repeat command with this command as first argument and repeat as second argument. If repeat is given a list of n numbers, then it is equivalent to n nested calls to repeat with the successive numbers as arguments.

Often, just as in experiments, the program will be run through the same data set repeatedly. This can be accomplished by using the following function:

Repeat
(Repeat instructions cycles {end} {label} {indices})
Returns the data set corresponding to calling instructions cycles times, or if the condition end is true, whichever comes first. For output purposes, a label is assigned to this set which defaults to 'block. Also for output purposes, a list of indices can be specified; otherwise it defaults to the numbers from 1 to cycles.

Finally, a number of runs can be performed in sequence and concatenated. This can be accomplished by using the following function:

Sequence
(Gather runs {label} {indices})
Returns the data set corresponding to calling each run in the list of runs. For output purposes, a label is assigned to this set which defaults to 'block. Also for output purposes, a list of indices can be specified. This command was called sequence before being changed because of incompatibility with Allegro CL 5.0.

Often several of these commands are called sequentially. For example, one can cycle through an input set, then repeat that a certain number of times. The resulting data set will have two dimensions, one for the first iteration (cycle) and one for the second iteration (repeat). The order of dimensions in the inverse of the sequence of commands, i.e. the most recent command defines the first dimension. For example, the sequence above will result in a two-dimensional table whose rows correspond to the number of times specified by repeat and whose columns correspond to the input set given to cycle.

Manipulating Data Sets

Usually one does not want to output the detailed result of every run, but instead to aggregate those results in statistically meaningful values which can then be reported. A number of functions are provided to that effect (and many more can certainly be defined). These aggregation functions take as first argument a data set as returned by the functions defined in the previous section or a previous aggregation function. Unless otherwise specified (e.g. choose), they aggregate over the first (most recent) dimension of the data and leave the other dimensions unchanged. The functions being provided include choose, categorize, frequency, average, mean-correct and aggregate:

Choose
(Choose data {indices})
Returns the data set obtained by selecting one or more indices (specified in list form if more than one) from the last dimension of data.
Categorize
(Categorize data categories (accessor} {label} {indices})
Returns the data set data with the data categorized according to the list of categories, which can be specified either by values or functions, with t being the default category. An accessor can be optionally specified to indicate that an entire column (last dimension) should be categorized based on the value of the given index (e.g. first). Finally, for output purposes, a label can be affixed to the category set (default is 'answer) as well as indices (the categories are the default).

Frequency
(Frequency data {test} {factor})
Returns the data set obtained by counting the frequency of each answer in data that fails the test (by default nil), multiplied by an optional factor, which defaults to 1. Most useful to call after categorize.

Average
(Average data {factor})
Returns the data set obtained by averaging each answer in data and multiplying by an optional factor, which defaults to 1.

(Mean-Correct data {data-index} {correct-index} {correct} {label} {indices})
Returns the data set consisting of the average data and frequency of correct answers in data. Answers are correct if it is equal to correct (default is 1). The last dimension should consist of at least a data pair, one of which being the actual data (usually latency) and the other being the answer. Their indices can be specified by data-index (default first) and correct-index (default second) respectively. An optional label can be specified for the pair (default ‘stats) as well as indices (default ‘first and ‘second).

Aggregate
(Aggregate data {label} {indices})
Returns the data set obtained by aggregating together the first two dimensions in data. The label (default ‘item) and indices (default 1, 2, …) can be specified for the new dimension.

Examples in Section 3 help illustrate the use of those functions.

Computing Statistical Quantities

Often, one want not only the data generated by the model but also some statistical measure of how that data fits equivalent subject data. Two functions are provided (many more are possible) to compute the mean deviation and correlation between model and subject data:

Mean-Deviation
 (Mean-Deviation data subjects)
Prints the mean deviation between data and subjects, both of which can be either data structures, arrays or lists as long as they have the same number of elements in the same general order. Returns data.

 Correlation
 (Correlation data subjects)
Prints the correlation between data and subjects, both of which can be either data structures, arrays or lists as long as they have the same number of elements in the same general order. Returns data.

Transposing, Printing and Returning Data Sets

When one has produced a suitable result set, the next step is to print it. The result set will be output in standard table form, with each dimension corresponding to a cycle or repeat iteration, minus those that have been aggregated away, with new ones sometimes appearing (e.g. categorize). The newest (outermost) dimensions will be printed first. If one prefers the opposite order, then the following function should first be called to transpose the data set:

Invert
(Transpose data)
Returns the data set obtained by inverting the order of dimensions in data. This command was called invert before being changed because of incompatibility with Allegro CL 5.0.
A data set can be displayed in table form with the following function:

Tabulate
(Tabulate data {format} {captions} {output})
Returns the data set data after printing it in table form. Each entry is printed according to the optional format directive (see Lisp function format), which defaults to "~6,3F", i.e. floating-point format 6 characters wide with 3 digits after the decimal point. Unless captions is set to nil, the labels and indices for each dimension are printed alongside the data. Outputcan be set to any valid file name, pathname or output stream to redirect output from the listener. This command can also be used to print the subject data given in list or array form.

Finally, the array part of the data set can be returned for direct manipulation:

Array
(Matrix data)
Returns an array containing the data in the data set data. This command was called array before being changed because of incompatibility with Allegro CL 5.0.
Section 3
Examples TC "Section 3
Examples" \l 1
The following scripting codes are taken from examples in the web tutorial, to which you should refer for complete running models.

Missionaries
Two functions are defined using the Lisp command defun. The first one, experiment, takes no argument and runs a single missionaries experiment, returning the frequency that each of the 14 possible states is visited:

 (defun experiment ()

First, a variable called result is defined (using the Lisp command let) to hold the data set:

 (let (result)

To run the experiment, one first needs to update the goal, then focus on it:

 (mod-chunk goal past (t) boat left missionaries 3 cannibals 3)

 (goal-focus goal)

Then the variable result is assigned (using the Lisp command setf) the result of running the model for 50 cycles, or until the goal has been popped. The list of commands is to run one cycle, then return as result using the scripting command data the first element of the slot past of the goal, i.e. the current state. Run those commands for 50 cycles, or until the goal has been popped, as specified by the :end keyword:
 (setf result (repeat '((run 1)

 (data (first (chunk-slot-value goal past))))

 50 :end '(null (no-output (goal-focus)))))

Categorize the result of those runs by using the scripting command categorize, which takes as argument the result data set and the list of categories describing the possible states. The data set returned has two dimensions, with the each state defining a column and each new visit to a state defining a new row:
 (setf result (categorize result

 '((3 3 left) (0 2 right) (1 1 right)

 (3 2 left) (0 3 right) (3 1 left) (2 2 right)

 (2 2 left) (3 1 right) (0 3 left) (3 2 right)

 (0 2 left) (1 1 left) (3 3 right))))

Count the number of visits to each state by using the scripting command frequency:
 (setf result (frequency result))))

The second function is named test and takes one argument, n, which is the number of subject runs to average over:

(defun test (n)

Again, a variable called result is defined to hold the data set. Note that since this variable is defined in a separate function, it is distinct from the variable of the same name defined in the other function:

 (let (result)

Setting the variable reportflag to nil using the Lisp command setf turns off the trace of the problem simulation:

 (setf reportflag nil)

Setting the flag Verbose to nil turns off all ACT-R traces:
 (sgp :v nil)

The variable result is assigned the result of repeating the whole experiment n times, returning a two-dimensional table, with a row for each separate experiment:
 (setf result (repeat '(experiment) n))

Average the result of those runs by using the scripting command average and reassign the resulting single-dimensional vector to result:
 (setf result (average result))

Tabulate the result using the scripting command tabulate:

 (tabulate result)

Turn the traces back on for future runs:
 (setf reportflag t)

 (sgp :v t)

Compute the mean deviation and correlation between the result data set and the subject data held in the global variable *data*:

 (mean-deviation result *data*)

 (correlation result *data*)

Finally, return the array part of the result data set using the scripting command matrix:

 (matrix result)))

Algebra Latency

The function is named test and takes no argument:
(defun test ()

All ACT-R traces are turned off by setting the flag Verbose to nil:
 (sgp :v nil)

The variables program, first and second are defined:
 (let (program first second)

The variable program is set to the program resulting from the variabilization of a list of ACT-R commands using the scripting command variabilize:
 (setf program (variabilize

The first argument is the list of commands, which are to focus on goal1, modify the contents of equation1 and expr1, then run the model and return using the scripting command data the result of the run command, which is the latency of the run:
 '((goal-focus goal1)

 (mod-chunk equation1 left expr1 right twelve)

 (mod-chunk expr1 arg1 X op times arg2 four)

 (data (run)))

The second argument to the variabilize command is the list of values appearing in the list of commands (first argument) which should be variabilized to take on the values of the input set:
 '(X times four equals twelve)))

The variable first is then assigned the result of applying that program through the four components of the input set using the scripting command cycle. Each component of the input set represents an equation, and each component of the equation will be used as the value of the corresponding variable in the cycle command:
 (setf first (cycle program

 '((X times four equals twelve)

 (X divide three equals eight)

 (X plus three equals nine)

 (X minus three equals nine))))

The result of that run will be tabulated using the scripting command tabulate:
 (tabulate first)

The program variable is then assigned a similar program for more complex equations:
 (setf program (variabilize

 '((goal-focus goal1)

 (mod-chunk equation1 left expr1 right ten)

 (mod-chunk expr1 arg1 expr3 op plus arg2 one)

 (mod-chunk expr3 arg1 X op times arg2 three)

 (data (run)))

 '(X times three plus one equals ten)))

The variable second is then assigned the result of cycling that program through the input set of complex equations:
 (setf second (cycle program

 '((X times three plus two equals eight)

 (X times three minus two equals four)

 (X divide three plus two equals eight)

 (X divide three minus two equals four))))

The result of the complex equation runs is then tabulated:
 (tabulate second)

Turn the traces back on for future runs:
 (sgp :v t)

Construct a data set from the first and second data sets (put together using the Lisp command list) and assign it to the result variable:

 (setf result (gather (list first second)))

Compute the mean deviation and correlation between the result data set and the subject data held in the global variable *data*:

 (mean-deviation result *data*)

 (correlation result *data*)

Finally, return the array part of the result data set using the scripting command matrix:

 (matrix result)))

Section 4
The Script Macro TC "Section 3
Examples" \l 1
The following macro command has been defined to allow the sequence of functions to be specified in abstract rather than Lisp form, with each of the above functions (except the data sets functions duplicate, randomize and data) taking the result of the previous function as first argument and return a value to be used as first argument of the next one, and with the other arguments (when supplied) quoted as needed (constants, variables and function calls are not quoted):

Script
(Script name arguments {commands}*)
Defines a function named name with the argument list arguments, whose body consists of the appropriate nesting of the scripting functions including in commands with the arguments supplied to those functions quoted as needed. The program command is used to define a list of commands suitable for variabilize and recall.

The function defined by script can then be called with the proper arguments like any other Lisp function. The following examples refer to Units 5 and 7 of the web tutorial.

Arithmetic

The task is to model the recall of the answer to arithmetic problems from 1+1 to 3+3 in 4-year-olds as reported by Siegler. The following script defines a function called test which takes one argument, the number of times to average over, and tabulates the frequency of the answer to each problem:

(script test (n)

The following lines define how to run the model on the example 3+5:

 (program

Focus on goal:

 (goal-focus goal)

Set slot arg1 to three, slot arg2 to five and answer to nil:

 (mod-focus arg1 three arg2 five answer nil)

Run the model:

 (run)

Return as data the value of slot answer of chunk goal:

 (data (chunk-slot-value goal answer)))

Variabilize the program defined above over the arguments three and five:

 (variabilize (three five))

 Apply the resulting function to the data set consisting of the six problems from 1+1 to 3+3:

 (cycle ((one one) (one two) (one three) (two two) (two three) (three three)))

Repeat n times:

 (repeat n)

Categorize the set of answers to each problem from 0 to 8 and other (t):
 (categorize (0 1 2 3 4 5 6 7 8 t))

Count the frequency of each answer , dividing by the number samples to yield a probability and multiplying by 100 to report in percentages:
 (frequency :factor (/ 100 n))

Transpose the table to correspond to the form of the subject data given:

 (transpose)

Tabulate the results in integer form 6 characters wide:
 (tabulate :format "~6D")

Compute the mean deviation with the subject data in the variable *data*:

 (mean-deviation *data*)

Compute the correlation with the subject data in the variable *data*:

 (correlation *data*)

Return the results in array form:
 (matrix))

Building Sticks Task

The task is to model the building sticks task, a choice task designed by Lovett, in which subjects are presented with 15 problems, each characterized by the length of the goal stick and three building sticks. The following script first defines a function called experiment which runs the experiment once, then a function called test which takes one argument, the number of runs to average over, and tabulates the average probability of choice for each problem:

(script experiment (n)

First, reset the model:
 (reset)

Then, define the program to run a single problem:
 (program

Focus on goal:

 (goal-focus goal)

Set slots a, b, c, and goal to the length of the sticks, current to 0 and over and under to nil:

 (mod-focus a fifteen b two-hundred c fifty goal hundred current 0 over nil under nil)

Reset the variable which will receive the answer (set in a production):
 (setf *bst-strategy* nil)

Run the model:

 (run)

 Return as data the strategy chosen as set by a production in the variable *bst-strategy*:

 (data *bst-strategy*))

Variabilize the single-problem program defined above over the length of the sticks:

 (variabilize (fifteen two-hundred fifty hundred))

Run the program for each of 15 problems held in the global variable *bst-stimuli*:
 (cycle *bst-stimuli*))

Then define the script test to repeat the program to run all 15 problems for n subjects:

(script test (n)

Run the experiment described above:

 (experiment)

Then repeat it n times

 (repeat n)

Then categorize the “over” strategy answers:

 (categorize (over))

Then compute the frequency of answers in that category:

 (frequency)

Average the frequencies over the n samples, and multiply by 100 to report in percents:
 (average :factor (/ 100 n))

Tabulate the results in integer form 6 characters wide:
 (tabulate :format "~6D")

Compute the mean deviation with the subject data in the variable *data*:

 (mean-deviation *data*)

Compute the correlation with the subject data in the variable *data*:

 (correlation *data*)

Return the results in array form:
 (matrix))

1
PAGE
11

