

ACT-R 4.0

A Users Manual

June 1998

Christian Lebiere
cl+@cmu.edu

ACT-R Users Manual

 Page 1

 Table Of Contents

TABLE OF CONTENTS 1

SECTION 0 INTRODUCTION 2

SECTION 1 COMMANDS 3

SECTION 2 MODELS 13

SECTION 3 GLOBAL PARAMETERS AND TRACES 16

SECTION 4 DECLARATIVE MEMORY 21

SECTION 5 GOAL STACK 26

SECTION 6 PROCEDURAL MEMORY 27

SECTION 7 PARTIAL MATCHING 35

SECTION 8 PRODUCTION COMPILATION 37

SECTION 9 HOOKS 40

SECTION 10 BIBLIOGRAPHY 41

GLOSSARY 42

ACT-R Users Manual

 Page 2

Section 0 Introduction

 The following conventions will be used throughout this document: Items appearing in bold are to be
entered verbatim; items appearing in italics take user-supplied values such as chunk, slot or production
names; items enclosed in {curly braces} are optional; * indicates that any number of items may be
supplied; | indicates a choice between several options. ::= indicates that the item on the left of that
symbol is of the form given by the expression on the right. Note that arguments to commands must not
be quoted (i.e., preceded by a “'“ mark) as is standard for most LISP function calls. None of the
commands are case-sensitive. Commands and sections of this document that are frequently used or are

likely to be especially useful to beginners are indicated by the symbol “”.

ACT-R 4.0 (hereafter referred to as ACT-R, unless otherwise specified) was written in Macintosh
Common LISP. However, it strictly adheres to the standard put forth in the second edition of "Common
Lisp: The Language" by Guy Steele Jr. and should run without any modifications in any complete Common
Lisp implementation. If a compiler is not available in your implementation, you should set the variable
compile-eval-calls to NIL when it is defined at the top of the code file1. This manual is a reference for
the ACT-R implementation. It is not meant to be a treatise, a tutorial or a textbook on ACT-R. A good
understanding of the first four chapters of Anderson & Lebiere’s upcoming ‘The Atomic Components of
Thougth’ (ACT in short) are required before experimenting with ACT-R.

The ACT-R folder should contain:

• ACT-R 4.0: the source code, which can be loaded directly or first compiled.

• Load ACT-R 4.0 (optional): a compiled version of the code for fast loading.

• Examples: a directory containing a number of ACT-R models.

• Manual: this manual, written in Microsoft Word 6.0.

• Patches: a directory holding the successive releases of ACT-R 4.0 and their release notes.

Feedback on this material is welcome. Please send your suggestions, remarks, bug reports and other
communications to cl+@cmu.edu.

1 The value of NIL for *compile-eval-calls* has been made the default in ACT-R 4.0.2. It makes running
ACT-R in Allegro CL 5.0 much more efficient and makes little difference in MCL. Your mileage may
vary however depending upon your model and Common Lisp implementation. If ACT-R seems unduly
slow, you might want to change the setting, recompile and reload ACT-R, then benchmark your model
using the Lisp command time.

ACT-R Users Manual

 Page 3

Section 1 Commands

Command List

The following commands are available to define an ACT-R model and control the ACT-R production
system. The command Help without any argument (i.e. (Help)) will print the list of commands, and if
given one or more command(s) as argument will display a short description of the command(s) (e.g.
(Help Help) will print something like “HELP: Outputs a short description of one or more ACT-R
command(s), or the full list of commands if none is supplied.”).

(Activation-Sources)
Displays the current activation sources with their level. Returns the list of sources.

(Actr-Time {delay})
Returns the current ACT-R time and, if delay is specified, adds it to the current time.

(Add-IA {(chunkj chunki sji)}*)
Adds inter-associativity (IA) values between chunks. Sji is defined as the new IA value
from chunkj to chunki. Returns the list of added IAs.

(Add-DM {(chunkname isa chunktype {slot value}*)}*)
Adds chunks to declarative memory. The new chunk chunkname is of chunk type chunktype,
with each slot being initialized to value. Returns the list of added chunks.

(Chunk-Slot-Value chunk slot)
Returns the value of slot of chunk.

(Chunk-Type {type | (type (:include supertype))} {slot | (slot value)}*)
Defines a new chunk type, which may include a supertype from which type inherits its slots,
and a number of slot, each with an optional initial value. If no argument is passed to
Chunk-Type, then a list of the existing types is printed. Return the chunk type defined or
the list of all chunk types if no argument is given.

 (Clear-All {save-model})
Clears everything from the ACT-R state, including chunk types, chunks, productions,
global variables, etc. A call to Clear-All MUST be put at the top of each model file. If the
optional argument save-model is t or is not specified, both the name of the file and its
contents after the call to Clear-All are saved for use by the commands reload and reset
respectively. If the argument is nil, neither is saved and neither command can be used. If
the argument is a value other than t or nil (e.g. compiled), then only the file name is saved,
not its contents, and reset becomes equivalent to reload. This setting can be useful if the
model file must be compiled for efficiency purposes, making its contents unsavable.

(Clear-DM)
Clears all chunks from declarative memory. It is especially strongly recommended to use
Clear-All or Reset instead for resetting purposes.

 (Clear-Goal-Stack)
Clears the goal stack by popping all goals and restoring the top goal as the focus.

ACT-R Users Manual

 Page 4

(Clear-Productions)
Clears all productions from production memory. It is strongly recommended to use Clear-
All or Reset instead for resetting purposes.

 (Close-Output)
Closes the current output stream file established by a call to Output-Stream.

(Close-Trace)
Closes the current trace stream file established by a call to Trace-Stream.

(Copy-Chunk {chunk}*)
Makes a new copy of each chunk and returns the list of copies.

(Delete-Chunk {chunk}*)
Deletes chunks from declarative memory. Do not use if chunk is still used in other chunks
or productions. Returns the list of deleted chunks.

(DM {chunk }*)
Displays the specified chunks, or the entire contents of declarative memory if none is
supplied. For each chunk, its name is printed followed by its current activation, then its
type and slot-value pairs. The current focus is displayed preceded by two asterisks (“**”).
Returns the list of chunks printed.

 (Focus-on-Goal chunk)
Replaces the focus with chunk , similarly to the !focus-on! production command. Returns
the new focus.

(Get-Base-Level {chunk}*)
Returns base level activation of chunks. Returns the list of base levels.

(Get-Name {chunk-or-production}*)
Returns the list of names of chunks and/or productions. This command is now outdated.
See Important Update Note at the end of next subsection.

(Goal-Focus {chunk}*) 
Sets the focus to chunk , or prints the current focus if none is supplied. If more than one
chunk is specified, then the focus is set to the first one and the other ones are kept in a list
for use by Run-Many. Returns the new focus.

 (Goal-Stack)
Displays the focus, then the current contents of the goal stack from top to bottom. Each
goal is followed by its goal value G. Returns the goal stack, i.e. a list of the focus followed
by each goal on the stack in descending order.

(Help { command }*)
Displays a short description of command, or prints the whole list of commands if none is
given.

(IA chunkj chunki)
Displays the IA value between chunkj and chunki and return the value.

ACT-R Users Manual

 Page 5

(Load-Model file {directory})
Loads the model file in directory . If directory is not supplied, then file is considered relative
to the directory of the file in which the command appears, if applicable.

(Mod-Chunk chunk {slot value}*)
Modifies chunk by setting each slot to value. Returns the modified chunk.

 (Mod-Focus {slot value}*)
Same as Mod-Chunk, with the chunk set to the focus. Returns the modified focus.

(New-Name {name})
Generates and returns a new unique chunk name based on the template name (“chunk” if
no name is specified). Useful when using the functional form of the Add-DM command in
scripts to make sure that the new chunk created does not have the same name as an existing
one.

 (No-Output {command}*)
Evaluates a number of ACT-R command while turning all printing off. Useful in reducing
output when passing results between commands. Returns the output of the last command.

(Output-Stream file {:echo echo})
Causes all production output (i.e., anything produced by !output! commands) to be sent to
the specified file. If the :echo keyword is supplied with a non-nil value, then the output is
directed to the specified file, and a copy is also sent to the Listener window. The output
stream created should always be explicitly closed using Close-Output before clearing,
resetting or quitting ACT-R. Returns the stream.

(P production lhs ==> rhs)
Defines production as composed of a matching side lhs and an action side rhs. Returns the
new production. See Section 6 for details.

(Parameters production {parameter value}*)
Sets a number of parameter to value for production. Each possible parameter and its current
value can be obtained using the production-parameter command . Parameters can be
omitted and appear in any order. A warning is issued if any value is of the wrong type or
range. Returns the list of values, or :error for failed settings. See Section 6 for details.

(PBreak {production}*)
Sets breakpoints for productions. If production is about to fire, then the instantiation is
displayed as if by Production Trace, but the production does not actually fire. Instead, a
Lisp break occurs, allowing one to examine and/or change declarative memory, establish
other breakpoints, etc. Then continue or abort as indicated by the Lisp environment. Use
PUnbreak to remove breakpoints. Returns the list of productions with break points.

(PDisable {production}*)
Disables productions. production is not allowed to match or fire, but it can be printed by PP
and re-enabled by PEnable. Returns the list of disabled productions, including failed
compiled productions.

(PEnable {production}*)
Enables productions. Undoes the effect of PDisable. Returns the list of disabled
productions, including failed compiled productions.

ACT-R Users Manual

 Page 6

(PMatches)
Prints out all production instantiations that match against the current state of declarative
memory. Returns the conflict set, i.e. the list of matching productions.

(Pop-Goal)
Pops the top goal off the stack and installs it as the focus, similarly to the !pop! production
command. Returns the new focus.

(PP {production}*)
Prints the specified productions or all enabled ones if none is supplied. Returns the list of
productions printed.

(Production-Parameter production {parameter}*)
Displays the value of parameter for production. If no parameter is specified, then all active
(as defined by global parameters) parameters are displayed and the production is returned.
If parameters are specified, then they are printed with their values and the list of values is
returned. See Section 6 for details.

(PSet {set | set {command }* | {(set {command }*)}*})
Parameters Set. Prints, defines and activates sets of parameters. If no argument is given,
then the current parameter sets are printed. If the name of a set is given, then the
commands composing that set are executed. Otherwise, one or more sets are defined by
specifying the name of a new set (or an old one to be redefined) and a number of
parameter-setting commands (e.g. sgp, Sdp, spp, parameters, or any other commands)
composing that set.

(Pstep {length})
Runs the production system as with the Run command. Displays the list of instantiations
at each cycle and asks the user to choose between stepping once more, stopping the run,
running without stepping, or selecting one of the instantiations to fire.

(PUnbreak {production}*)
Removes breakpoints for productions. Undoes the effect of PBreak. If no production is
given, all breakpoints are removed. Returns the list of productions with break points.

(Push-Goal chunk)
Pushes the focus on the goal stack and installs chunk as the new focus, similarly to the
!push! production command. Returns the new focus.

(Rehearse-Chunk {chunk}*)
Rehearses chunk by increasing its base-level (if base-level learning is on) and associative
strengths (if associative learning is on) as if the chunk had been retrieved. If chunk is a list,
the the first element is the chunk to rehearse and the rest are the context elements for
purposes of strengthening the associative links. Useful to simulate an accurate prior history
when both base-level and associative learning are on.

(Reload {seed})
Reloads the current model, including any updates made to the model file. A random seed
can be provided for an initial randomization.

ACT-R Users Manual

 Page 7

(Reset {seed})
Resets ACT-R to its state after loading the last model, i.e. it undoes all interactive
commands, production firings, etc. Faster than reload, but does not include updates made
to the model file since the previous loading. . A random seed can be provided for an initial
randomization.

(Reset-IA)
Resets default IA values using present connectivity.

(Run {length})
Runs the production system for at most length cycles if length is an integer, length units of
(ACT-R) time if length is a real value, or until no production can be instantiated, the top
goal is !pop!ped or a !stop! command is issued by a production. Returns the run latency
and number of cycles.

(Run-Many {iteration})
Runs the production system by focusing in sequence on each chunk defined by the last
Goal-Focus then calling Run, iterations times.

(SDM {ISA type} {slot value}*)
Searches declarative memory. All chunks of type type (if specified, otherwise all chunks are
considered) with slot value equal to value are displayed. Returns the list of chunks
matching the condition(s).

(Sdp {specification | {(specification)}*})
specification ::= {chunk | ({chunk}*)} {{:parameter value}* | {:parameter}*}
Show/Set Declarative Parameters. Any number of chunk parameter specifications can be
given, each enclosed in parentheses. If only one is given, then the parentheses are optional.
Each specification is composed of a chunk specification, followed by a parameter
specification. The chunk specification specifies the chunk, or list of chunks to which it
applies. If it is omitted then it applies to all chunks. The parameter specification is similar
to the argument of sgp. If it is omitted, then all active (as determined by the current setting
of global parameters) parameters for the chunk are printed and the chunk itself is returned.
If a number of chunk parameters are specified, then those parameters are printed with their
current values for the chunk, and a list of the values is returned. If a number of parameter-
value pairs are specified, then each chunk parameter is set to its new value, and the list of
values is returned, or :error for failed settings. See section 4 for details.

(Set-All-Base-Levels {baselevel | references {creation-time } })
Sets the base levels of all chunks. See Set-Base-Levels for parameters. Returns the new
base level.

 (Set-Compilation-Parameters {parameter value}*)
Sets various parameters for initializing compiled productions. The arguments are the same
as for the command Parameters (minus production). Returns the argument.

(Set-Base-Levels {(chunk baselevel) | (chunk references {creation-time })}*)
Sets the base level activations of chunks. If Base Level Learning is off, then the base level of
chunk should be supplied directly. Otherwise, the number of past references and perhaps
the creation-time should be provided. Returns the list of base levels.

(Set-DM {(chunkname isa chunktype {slot value}*)}*)
Same as Add-DM.

ACT-R Users Manual

 Page 8

 (Set-G G {:threshold threshold})
Sets the value of the goal value G and perhaps the goal-threshold, as a percentage of G..
Provided for compatibility only. Use sgp.

(Set-General-Base-Levels {(chunk baselevel) | (chunk references creation-time)}*)
Same as Set-Base-Levels.

(Set-IA {(chunkj chunki sji)}*)
Same as Add-IA.

(Set-Similarities {(chunkj chunki similarity)}*)
Sets the similarity value between chunkj and chunki.. Returns the list of similarity values.

 (Sgp {{:parameter value}* | {:parameter}*})
Show/Set Global Parameters. If no argument is specified, the list of all global parameters is
printed, together with their shorthand keywords for use in sgp and their current value (nil
is returned). If a list of keywords is specified, then each parameter is printed with its current
value, and the list of values is returned. If a list of keyword-value pairs specified, then each
parameter is set to its value and the list of values is returned. A warning is printed if a value
is of the wrong type or range for parameter, in which case the keyword :error is returned
instead of the value. See Section 3 for details.

(Similarity chunkj chunki)
Displays the similarity value between chunkj and chunki.. Returns the similarity value.

(Spp {specification | {(specification)}*})
specification ::= {production | ({production}*)} {{:parameter value}* | {:parameter}*} Show/Set
Production Parameters. Any number of production parameter specifications can be given,
each enclosed in parentheses. If only one is given, then the parentheses are optional. Each
specification is composed of a production specification, followed by a parameter
specification. The production specification specifies the production, or list of productions
to which it applies. If it is omitted then it applies to all productions. The parameter
specification is similar to the argument of sgp. If it is omitted, then all active (as
determined by the current setting of global parameters) parameters for the production are
printed and the production itself is returned. If a number of production parameters are
specified, then those parameters are printed with their current values for the production,
and a list of the values is returned. If a number of parameter-value pairs are specified, then
each production parameter is set to its new value, and the list of values is returned, or
:error for failed settings. See section 6 for details.

(Update-activation)
Updates the activations of all chunks. This involves recomputing all the learned quantities,
and helps to update all the cached values.

 (Trace-Stream file {:echo echo})
Causes all trace output to be sent to the specified file. The arguments work as for Output-
Stream, and the resulting stream should always be closed using Close-Trace. A finer
degree of control over trace dispatching can be achieved through the use of sgp. Returns
the stream.

ACT-R Users Manual

 Page 9

(WhyNot {production}*)
Attempts to match production(s) against the current state of declarative memory. A detailed
matching trace is displayed as by Exact Matching Trace and Partial Matching Trace, and if
any instantiations result they are also displayed. Returns the conflict set, i.e. the list of
matching productions.

(WhyNot-Dependency {dependency}*)
Attempts to compile dependency into production, with Production Compilation Trace,
Exact Matching Trace and Partial Matching Trace on. Returns the list of productions
compiled.

Combining Commands

 More complex tasks can be accomplished by combining several commands together by sending the
output from a command to another command and so on. A distinction must first be drawn between a
command and its underlying function, which has the same name as the command with the “-fct” suffix
appended. A command typically does not evaluate its arguments and, when any number of arguments
may be supplied, they are given one after the other without being included in a list. The functions
underlying commands, on the other hand, do evaluate their arguments and usually require multiple
arguments to be specified as a list. In practice, that means that when results from a command or function
are passed to another, then the function form must be used for the latter rather than the command form.
E.g., to delete chunks three, five and seven, the command form would be:

(Delete-Chunk three five seven)

whereas the function form would require quoting the arguments and including them in a list:

(Delete-Chunk-fct ‘(three five seven))

As an example of command combination, to delete all chunks of type addition-fact, you could write:

(Delete-Chunk-fct (SDM isa addition-fact))

The internal SDM command will print and return the list of chunks of type addition-fact, which is then
passed to the Delete-Chunk-fct function to be removed from memory. If you do not want the SDM
command to print the list of chunks which it returns, you can use the no-output command to turn off
printing during execution of its argument, while still returning the same value:

(Delete-Chunk-fct (no-output (SDM isa addition-fact)))

Some functions take their arguments in a slightly more complex form than a list. To find out the
functional form equivalent to a command, use the Lisp function macroexpand:

(macroexpand '(Mod-Chunk dime on left next nickel))

will return (Mod-Chunk-fct ‘dime ‘(on left next nickel)), indicating that Mod-Chunk-fct takes two
arguments, first the chunk to be modified, then the list of slot-value pairs.

IMPORTANT UPDATE NOTE: Unlike previous versions fo the system, the values returned by the ACT-R
commands do not directly correspond to chunks and productions but instead to their names. The above list of
commands should be sufficient to write code interacting with the ACT-R system. ACT-R users should try to only

ACT-R Users Manual

 Page 10

use the above list of commands, and refrain from accessing the internal representation or use internal ACT-R
functions.

Outdated Commands

A number of command names have been changed in ACT-R 4.0 from earlier versions to systematize the
use of the hyphen “-” as a word separator in commands and to remove references to the phrase “working
memory” and its derivatives (“wm”, “wme”) with the more accurate “declarative memory” and related
concepts (“dm”, “chunk” and “goal”). The outdated commands can still be used, but usage of their
replacements is recommended. The outdated commands are listed below with their replacements. That
information can also be obtained by using the Help function with those commands.

(ActivationSources)
See Activation-Sources.

(ActrTime {delay})
See Actr-Time.

(AddIA {(wmej wmei sji)}*)
See Add-IA.

(AddWM {(wmename isa wmetype {slot value}*)}*)
See Add-DM.

(ClearAll)
See Clear-All.

(ClearGoalStack)
See Clear-Goal-Stack.

(ClearProductions)
See Clear-Productions.

(ClearWM)
See Clear-DM.

(CloseOutput)
See Close-Output.

(CloseTrace)
See Close-Trace.

(CopyWme {wme}*)
See Copy-Chunk.

(DeleteWM {wme}*)
See Delete-Chunk.

(Focus-on-Wme wme)
See Focus-on-Goal.

ACT-R Users Manual

 Page 11

(GetBaseLevel {wme}*)
See Get-Base-Level.

(GoalStack)
See Goal-Stack.

(ModFocus {slot value}*)
See Mod-Focus.

(ModWME wme {slot value}*)
See Mod-Chunk.

(OutputStream file {:echo echo})
See Output-Stream.

(Pop-Wme)
See Pop-Goal.

(Push-Wme wme)
See Push-Goal.

(ResetIA)
See Reset-IA.

(SetAllBaseLevels {baselevel | references {creation-time } })
See Set-All-Base-Levels.

(SetAnalogizedParameters {parameter value}*)
See Set-Compiled-Parameters.

(SetBaseLevels {(wme baselevel) | (wme references {creation-time })}*)
See Set-Base-Levels.

(SetG G {:threshold threshold})
See Set-G.

(SetGeneralBaseLevels {(wme baselevel) | (wme creation-time references)}*)
See Set-General-Base-Levels.

(SetIA {(wmej wmei sji)}*)
See Set-IA.

(SetSimilarities {(wmej wmei similarity)}*)
See Set-Similarities.

(SetWM {(wmename isa wmetype {slot value}*)}*)
See Set-DM.

(SWM {ISA type} {slot value}*)
See SDM.

(Swp {specification | {(specification)}*})
See Sdp.

ACT-R Users Manual

 Page 12

(TraceStream file {:echo echo})
See Trace-Stream.

(WM {wme }*)
See DM.

(WMESlotValue wme slot)
See Chunk-Slot-Value.

(WMEType {type | (type (:include supertype)} {slot | (slot value)}*)
See Chunk-Type.

(WMFocus {wme}*)
See Goal-Focus.

ACT-R Users Manual

 Page 13

Section 2 Models

Clear-All command

 Although a fully interactive mode is possible, in general ACT-R models should be developed in a file or
files instead of the listener to make saving and resetting easier. A call to (Clear-All) should always be at
the top of the main model file, to clear previous models and define from where to reset the current model:

(Clear-All {save-model})
Clears everything from the ACT-R state, including chunk types, chunks, productions,
global variables, etc. A call to Clear-All MUST be put at the top of each model file. If the
optional argument save-model is t or is not specified, both the name of the file and its
contents after the call to clear-all are saved for use by the commands reload and reset
respectively. If the argument is nil, neither is saved and neither command can be used. If
the argument is a value other than t or nil (e.g. compiled), then only the file name is saved,
not its contents, and reset becomes equivalent to reload. This setting can be useful if the
model file must be compiled for efficiency purposes, making its contents unsavable.

It should be followed by a call to the sgp command (see Section 3) if any global parameters and traces
need to be set.

Load and Reset

If preliminary model files need to be included (e.g. the example file integers as the standard
representation of integers and arithmetic facts), they should be loaded immediately after the clearing and
setting of global parameters, using either the Lisp load command or the ACT-R load-model command
(see the Equation example):

(Load-Model file {directory})
Loads the model file in directory . If directory is not supplied, then file is considered relative
to the directory of the file in which the command appears, if applicable.

When the model has been run and needs to be reset to its starting point, use the (reset) command:

(Reset {seed})
Resets ACT-R to its state after loading the last model, i.e. it undoes all interactive
commands, production firings, etc. Faster than reload, but does not include updates made
to the model file since the previous loading. . A random seed can be provided for an initial
randomization.

Reset works by saving, when it encounters the initial (Clear-All), the contents of the model file after the
Clear-All command and any other files it loads after it. Resetting then consists in reevaluating the saved
contents without re-reading the file itself. This implies that if the model file has been modified since it
was loaded, then it must be reloaded rather than reset, using the reload command:

(Reload {seed})
Reloads the current model, including any updates made to the model file. A random seed
can be provided for an initial randomization.

ACT-R Users Manual

 Page 14

For reset, reload and load-model to work properly, the main model file should be loaded using load-
model, rather than other commands such as Eval Buffer which may be available in the Lisp environment.
In some Lisp implementations such as Macintosh Common Lisp and Allegro Common Lisp, using the
Lisp command load will also work. Also, if the model includes some Lisp definitions, those should be
either included before the Clear-All command or in a separate file to be loaded beforehand, either from
the model file or independently.

General Model Format

 The general model format should therefore be:

<load or define Lisp functions (if necessary)>

(Clear-All) ;; this command should only appear in the main model file

<set global parameters>

<load related models (if necessary)>

<define chunk types>

<define chunks>

<define chunk parameters (if necessary)>

<define productions>

<define production parameters (if necessary)>

<general commands, commented trace of model run, and other miscellaneous>

Model and Running

 The core of the model should define declarative memory (using commands such as Chunk-Type, Add-
DM and others described in Section 4), select the initial goal stack focus (using the Goal-Focus command
described in Section 5) then procedural memory (using commands such as p and parameters described in
Section 6). Keeping to that order helps avoid having items such as chunks being used before they are
defined. The main command to run the model is the run command:

(Run {length})
Runs the production system for at most length cycles if length is an integer, length units of
(ACT-R) time if length is a real value, or until no production can be instantiated, the top
goal is !pop!ped or a !stop! command is issued by a production. Returns the run latency
and number of cycles.

ACT-R Users Manual

 Page 15

The Pstep command lets the user step through a run and perhaps guide ACT-R by selecting the
instantiation to fire:

(Pstep {length})
Runs the production system as with the Run command. Displays the list of instantiations
at each cycle and asks the user to choose between stepping once more, stopping the run,
running without stepping, or selecting one of the instantiations to fire.

ACT-R Users Manual

 Page 16

Section 3 Global Parameters and Traces

Sgp command

 The sgp command (for Set Global Parameters) is used to query and set the value of global parameters
and toggle traces, both interactively and in model files. Since the internal variable names of some global
parameters have been changed from ACT-R 2.0, it is strongly recommended to update the setf Lisp
commands used to set them in previous models to the corresponding sgp command. The syntax of sgp is:

(Sgp {{:parameter value}* | {:parameter}*})
Show/Set Global Parameters. If no argument is specified, the list of all global parameters is
printed, together with their shorthand keywords for use in sgp and their current value (nil
is returned). If a list of keywords is specified, then each parameter is printed with its current
value, and the list of values is returned. If a list of keyword-value pairs specified, then each
parameter is set to its value and the list of values is returned. A warning is printed if a value
is of the wrong type or range for parameter, in which case the keyword :error is returned
instead of the value.

When sgp is called without arguments (i.e. (sgp)), the list of global parameters is printed. Each line
includes the full name of the parameter, a two- or three-letter keyword for use when setting its value with
sgp, and its current value. The parameters are listed in groups separated by dotted lines, each containing
a number of related parameters. Each group and its parameters is detailed below. A value of NIL means
that the function corresponding to the parameter is disabled. A value of T means that it is enabled. Other
types of values are specified when acceptable. Note that values are set as specified and are NOT evaluated.

Rational Analysis

Enable Rational Analysis
keyword: ERA default value: NIL
Enables the rational activation and expected gain computations.

G
keyword: G default value: 20.0
The value of the goal in the PG-C evaluation (ACT Equation 3.1). Must be a positive
number.

Expected Gain S
keyword: EGS default value: NIL
If enabled, the S-value of the Gaussian noise added to the PG-C evaluation for each
instantiation (ACT equation 3.4). Must be a positive number. The variance can be accessed
as EGN.

Enable Randomness
keyword: ER default value: NIL
If enabled, ties among instantiations are broken randomly, rather than according to some
unspecified but deterministic order.

Utility Threshold

ACT-R Users Manual

 Page 17

keyword: UT default value: 0.0
The threshold for the utility (PG-C) of a production below which it will not be considered
during conflict resolution. Setting it to NIL is equivalent to disabling the threshold, i.e.
considering all productions.

Activation parameters

Goal Activation
keyword: GA default value: 1.0
The total level of source activation, i.e. the Wj in ACT equation 3.5. That level is divided
evenly among chunks in the slot values of the current focus (see ARL paper). Must be a
positive number.

Base Level Constant
keyword: BLC default value: 0.0
A constant added to all chunk base levels, i.e. (ß in ACT equation 3.6). Can be any number.

Activation Noise S
keyword: ANS default value: NIL
If enabled, the S-value of the Gaussian noise added to each chunk activation at every cycle.

Must be a positive number. The variance (2
2

 in ACT equation 3.6) can be accessed as AN.

Permanent Activation Noise S
keyword: PAN default value: NIL
If enabled, the S-value of the Gaussian noise added to each chunk activation at creation.

Must be a positive number. The variance (1
2

 in ACT equation 3.6) can be accessed as

PAN.

Latency parameters

Latency Factor
keyword: LF default value: 1.0
The multiplicative factor F in ACT equation 3.10. Must be a positive number.

Latency Exponent
keyword: LE default value: 1.0
The exponent factor f in ACT equation 3.10. Must be a positive number.

Default Action Time
keyword: DAT default value: 0.05
The default action time of a production, i.e. the right-hand side part of the a parameter in
ACT equation 3.3. Must be a positive number, usually interpreted in milliseconds. This
default has been changed from 1.0 in previous ACT-R versions.

ACT-R Users Manual

 Page 18

Partial Matching parameters

For further details on partial matching, see Section 7 in this manual and the papers cited in the
bibliography.

Partial Matching
keyword: PM default value: NIL
Enables partial matching.

Mismatch Penalty
keyword: MP default value: 1.5
Penalty subtracted from the activation of a chunk for a complete mismatch in a slot pattern.
Multiplied by 1.0 - similarity for partial mismatches. Must be a positive number.

Retrieval Threshold
keyword: RT default value: NIL
When enabled, chunks with activation levels below this threshold cannot be retrieved.
Works with both partial and exact (standard) matching. Can be any number.

Learning parameters

Optimized Learning
keyword: OL default value: T
If enabled, an efficient approximation to the formulas for production strength learning and
base level learning is used (see the discussion of ACT equation 4.1).

Base Level Learning
keyword: BLL default value: NIL
If enabled, used as d in ACT equation 4.1 for learning the base level activations of chunks.
Must be a positive number, with 0.5 the standard value.

Associative Learning
keyword: AL default value: NIL
If enabled, used as assoc in ACT equation 4.3 for learning the associative strength between
pairs of chunks. Must be a positive number.

Strength Learning
keyword: SL default value: NIL
If enabled, used as d in ACT equation 4.4 for learning the strength of productions. Must be
a positive number, preferably less than 1.0.

Parameters Learning
keyword: PL default value: NIL
If enabled, the parameters a, b, q and r will be learned for each production according to
ACT equations 4.5 and 4.6. Can also be set to the decay rate in the ACT equations 4.7 and
4.8.

ACT-R Users Manual

 Page 19

Traces

 These traces are enumerated here roughly in the order they would appear during each production cycle.
They can be enabled by being set to T, which sends the trace output to the standard output (Lisp listener),
or to any file name, pathname or stream if output is to be directed to another destination. Each trace
message starts on a new line and is indented by a number of spaces proportional to the current depth of
the goal stack.

Exact Matching Trace
keyword: EMT default value: NIL
If enabled, prints a message during production matching every time a condition is
evaluated.

Partial Matching Trace
keyword: PMT default value: NIL
If enabled, prints a message during production matching every time a condition is
evaluated when Partial Matching is enabled.

Production Compilation Trace
keyword: PCT default value: T
If enabled, prints the main steps of the production compilation process.

Activation Trace
keyword: ACT default value: NIL
If enabled, prints a trace of the main steps during computation of chunk activation.

Conflict Resolution Trace
keyword: CRT default value: NIL
If enabled, prints the name of each production as it is matched curing conflict resolution.

Conflict Set Trace
keyword: CST default value: NIL
If this option is enabled, prints the number of instantiations in the conflict set, and, when
rational analysis is enabled, the number of instantiations that were considered and the
expected gain of the instantiation that will fire.

Matches Trace
keyword: MT default value: NIL
If enabled, prints all the instantiations generated. A setting of SHORT will simply print the
list of variables and their values for each instantiation, and a setting of T will print the
whole production(s) with the variables replaced by their values.

Production Trace
keyword: PT default value: NIL
If enabled, prints the selected production instantiation before firing it. A setting of SHORT
will simply print the list of variables and their values, and a setting of T will print the whole
production with the variables replaced by their values.

Cycle Trace
keyword: CT default value: T
If enabled, prints the cycle number, current time and name of selected production.

ACT-R Users Manual

 Page 20

Latency Trace
keyword: LT default value: T
If enabled, prints the latency of the production matching (when rational analysis is enabled
- see ACT equations 3.10) and the latency of the action side of the production.

Output Trace
keyword: OT default value: T
If enabled, prints the output of !output! commands on the right-hand side of productions.

Declarative Memory Trace
keyword: DMT default value: NIL
If enabled, prints a message when a chunk is created, deleted or modified.

Goal Trace
keyword: GT default value: NIL
If enabled, prints a message when the focus is changed.

Verbose
keyword: V default value: T
If enabled, the traces are printed as enabled. If disabled, turns off all trace output
regardless of which is enabled. Disabling this trace is useful to easily turn off all trace
output when running in batch mode where performance is key.

Obtaining Parameter Value

 To print and return the value of some but not all parameters, sgp can be called with just the list of those
parameters. For example, to print the value of G, GThreshold and Conflict Resolution Trace:

(sgp :g :gth :crt)

which will also return the list of their (default here) values:

(20.0 0.05 NIL)

Setting Parameters and Traces

To set global parameters and traces, simply call the sgp command with as arguments the series of one- to
three-letters keywords preceded by the keyword specifier : (no space), followed by the desired value.
For example, to set the Goal value G to 10.0 and to turn Activation Trace on:

(sgp :g 10.0 :act t)

In general, sgp will check that the values supplied fall within the required type and range for the
parameter, and reject those that don't while printing a warning message. Note again that turning
Verbose off is a quick way to shut off all the traces for maximum running efficiency.

ACT-R Users Manual

 Page 21

Section 4 Declarative Memory

Defining Chunk Types

 Each chunk is of a particular type, which must be defined before an element of that type can be created.
Types are defined using the Chunk-Type command:

(Chunk-Type {type | (type (:include supertype))} {slot | (slot value)}*)
Defines a new chunk type, which may include a supertype from which type inherits its slots,
and a number of slot, each with an optional initial value. If no argument is passed to
Chunk-Type, then a list of the existing types is printed. Return the chunk type defined or
the list of all chunk types if no argument is given.

The ACT-R type hierarchy only allows single inheritance, i.e. only one (previously defined) type can be
defined as the parent of a new type, which inherits all the slots of the parent. Chunks of the new type will
match any production template specifying the type of the parent or further ancestors.

Defining Chunks

Chunks can be added using the Add-DM command:

(Add-DM {(chunkname isa chunktype {slot value}*)}*)
Adds chunks to declarative memory. The new chunk chunkname is of chunk type chunktype,
with each slot being initialized to value. Returns the list of added chunks.

Chunktype must have been previously defined as including each slot. Note that not all slots of the chunk
need to be initialized (in which case they will contain the standard value NIL), and that they can appear
in any order. If a symbol which hasn't yet been defined as a chunk appears as a slot value in a chunk (or
production) definition, it will be defined by default as a chunk of the built-in type chunk, which has no
slots. Chunks can be redefined of being of a different type, in which case the new type and slot/values
definition will replace the old, although the rest of the chunk history will remain unchanged and a
warning message will be printed.

A chunk can be modified using the Mod-Chunk command:

(Mod-Chunk chunk {slot value}*)
Modifies chunk by setting each slot to value. Returns the modified chunk.

Chunks can be deleted using the Delete-Chunk command:

(Delete-Chunk {chunk}*)
Deletes chunks from declarative memory. Do not use if chunk is still used in other chunks
or productions. Returns the list of deleted chunks.

A warning message will be printed if a deleted chunk is still used as a value in another chunk or
production, and the resulting effect is undefined (in other words: don't do it).

ACT-R Users Manual

 Page 22

Search and Display

 The contents of declarative memory, or just some selected chunks, can be displayed using the DM
command:

(DM {chunk }*)
Displays the specified chunks, or the entire contents of declarative memory if none is
supplied. For each chunk, its name is printed followed by its current activation, then its
type and slot-value pairs. The current focus is displayed preceded by two asterisks (“**”).
Returns the list of chunks printed.

Declarative memory can also be searched for chunks fitting a particular pattern using the SDM
command:

(SDM {ISA type} {slot value}*)
Searches declarative memory. All chunks of type type (if specified, otherwise all chunks are
considered) with slot value equal to value are displayed. Returns the list of chunks
matching the condition(s).

For example, to display all chunks of type addition-fact with a value of slot sum of five:

(SDM isa addition-fact sum 5)

Individual slot values can be obtained using the Chunk-Slot-Value command:

(Chunk-Slot-Value chunk slot)
Returns the value of slot of chunk.

Chunk Activation

 To each chunk is associated a quantity called activation, described in ACT equation 3.5, which is the sum
of its base level and the activation spread from the current activation sources. The base level of chunks
(see ACT equation 4.1) can be queried using the Get-Base-Level command and set using the Set-Base-
Levels and Set-All-Base-Levels command:

(Get-Base-Level {chunk}*)
Returns base level activation of chunks. Returns the list of base levels.

(Set-Base-Levels {(chunk baselevel) | (chunk references {creation-time })}*)
Sets the base level activations of chunks. If Base Level Learning is off, then the base level of
chunk should be supplied directly. Otherwise, the number of past references and perhaps
the creation-time should be provided. Returns the list of base levels.

 (Set-All-Base-Levels {baselevel | references {creation-time } })
Sets the base levels of all chunks. See Set-Base-Levels for parameters. Returns the new
base level.

For example, with Base Level Learning on, to specify that chunk 3+4=7 was created at time -1000.0 and
has been accessed 10 times since:

ACT-R Users Manual

 Page 23

(Set-Base-Levels (3+4=7 -1000.0 10))

The rest of a chunk's activation is computed by summing the product of each activation source level times
the Interactive Activation (IA) value from the source to the chunk. The activation sources are the set of
chunks in the slots of the focus, at a level of Goal Activation divided by the number of sources. They can
be displayed using the Activation-Sources command:

(Activation-Sources)
Displays the current activation sources with their level. Returns the list of sources.

IA values can be queried and set using the IA and Add-IA command respectively:

(IA chunkj chunki)
Displays the IA value between chunkj and chunki and return the value.

 (Add-IA {(chunkj chunki sji)}*)
Adds inter-associativity (IA) values between chunks. Sji is defined as the new IA value
from chunkj to chunki. Returns the list of added IAs.

IA values which are not explicitly specified are initialized using ACT equation 4.2: the value of the IA
value Sji between chunkj and chunki is log(m/n) if chunkj appears as a slot value of chunki and 0.0
otherwise. m is the number of chunks in declarative memory and n is the fan of chunkj, i.e. the number of
chunks in which chunkj appears as a slot value.

Declarative Memory Parameters

Sdp Command

 Base-levels, IA values and other declarative memory parameters can also be displayed, returned and set
using the more general Sdp command:

(Sdp {specification | {(specification)}*})
specification ::= {chunk | ({chunk}*)} {{:parameter value}* | {:parameter}*}
Show/Set Declarative Parameters. Any number of chunk parameter specifications can be
given, each enclosed in parentheses. If only one is given, then the parentheses are optional.
Each specification is composed of a chunk specification, followed by a parameter
specification. The chunk specification specifies the chunk, or list of chunks to which it
applies. If it is omitted then it applies to all chunks. The parameter specification is similar
to the argument of sgp. If it is omitted, then all active (as determined by the current setting
of global parameters) parameters for the chunk are printed and the chunk itself is returned.
If a number of chunk parameters are specified, then those parameters are printed with their
current values for the chunk, and a list of the values is returned. If a number of parameter-
value pairs are specified, then each chunk parameter is set to its new value, and the list of
values is returned, or :error for failed settings.

This command uses a syntax similar to sgp, where any number of parameter keywords can be specified in
any order, perhaps followed by an assigned value. Again, values are NOT evaluated. The list of chunk
parameters follows, with their keywords and default values, and a description:

Name

ACT-R Users Manual

 Page 24

keyword: :name
The name of the chunk. Cannot be set.

Activation
keyword: :activation default value: 0.0
The chunk activation, Ai in ACT equation 3.5. Cannot be set directly.

Source
keyword: :source default value: NIL
The chunk source level, Wj in ACT equation 3.5. Can be set to NIL (0.0) or any number.

Base Level
keyword: :base-level default value: Base Level Constant
The chunk base level, Bi in ACT equation 3.5. Can be set to any number, only when Base
Level Learning is disabled.

Creation Time
keyword: :creation-time default value: 0.0
The time at which the chunk was created. Used in Base Level Learning approximation
equation to compute L (see discussion of ACT equation 4.1). Can be set to any number.

References
keyword: :references default value: (1.0)
The number and, when Optimized Learning is off, list of production matching times of
chunk. Used in ACT equation 4.1. Can be set to the number or the list of references.

Source Spread
keyword: :source-spread default value: 0.0
The spreading activation to chunk, the second term in ACT equation 3.5. Cannot be set
directly.

IAs
keyword: :ias default value: see above section
The Interactive Activation values to chunk i, Sji in ACT equation 3.5. Can be set to a list of
chunk-number pairs used to update the IAs to i.

Creation Cycle
keyword: :creation-cycle default value: 0.0
The production cycle at which the chunk was created, used to compute F in ACT equation
4.3. Can be set to any number.

Needed
keyword: :needed default value: 0.0
The number of times the chunk has been retrieved, F(Ni) in ACT equation 4.3. Can be set to
any number.

Contexts
keyword: :contexts default value: 0.0
The number of production cycles the chunk was in context, scaled by its source level at the
time, F(Cj) in ACT equation 4.3. Can be set to any number.

Permanent Noise

ACT-R Users Manual

 Page 25

keyword: :permanent-noise default value: 0.0
The permanent chunk noise, in ACT equation 3.6. Can be set to any number.

Similarities
keyword: :similarities default value: ((chunk . 1.0))
The similarity values used in partial matching (see ACT equation 3.8). Can be set to a list of
chunk-number pairs used to update the similarities to chunk.

Use of Sdp Command

 For example, in the Tower of Hanoi model, to print all active parameters for all chunks:

(Sdp)

To print the activation, base level and source spread for chunks penny, nickel, dime and quarter:

(Sdp (penny nickel dime quarter) :activation :base-level :source-spread)

To set the base level of those chunks to their monetary values, then print the same information as above:

(Sdp (penny :base-level 0.01) (nickel :base-level 0.05)

 (dime :base-level 0.1) (quarter :base-level 0.25)

 ((penny nickel dime quarter)

 :activation :base-level :source-spread))

ACT-R Users Manual

 Page 26

Section 5 Goal Stack

ACT-R provides for a simple goal-stacking mechanism. At any point in time, (at most) one chunk is the
focus, aka the (top) goal. This element is the root from which all productions must match. A chunk can
be designated as the focus, replacing the current one if one had previously been selected, using the Goal-
Focus command:

(Goal-Focus {chunk}*)
Sets the focus to chunk , or prints the current focus if none is supplied. If more than one
chunk is specified, then the focus is set to the first one and the other ones are kept in a list
for use by Run-Many. Returns the new focus.

The slot values of the focus element can also be modified using the Mod-Focus command:

(Mod-Focus {slot value}*)
Same as Mod-Chunk, with the chunk set to the focus. Returns the modified focus.

The focus can also be manipulated by productions, which can push the focus on the goal stack, replacing
it with a new one, pop the top goal off the goal stack to replace the current focus, or simply switch the
focus without manipulating the stack (see Section 6). The contents of the goal stack can be inspected and
cleared using the Goal-Stack and Clear-Goal-Stack commands respectively:

(Goal-Stack)
Displays the focus, then the current contents of the goal stack from top to bottom. Each
goal is followed by its goal value G. Returns the goal stack, i.e. a list of the focus followed
by each goal on the stack in descending order.

 (Clear-Goal-Stack)
Clears the goal stack by popping all goals and restoring the top goal as the focus.

ACT-R Users Manual

 Page 27

Section 6 Procedural MemoryGeneral Production Syntax

An ACT-R production consists of two halves: a matching part aka the left-hand side (lhs) and an action
side aka the right-hand side (rhs). A production is declared using the p command:

(p production-name

 { =chunk>

 isa chank-type

 { {-} slot {value | =variable }}*

 | !eval! expression

 | !bind! =variable expression }*

==>

 { =chunk>

 { isa chunk-type }

 { slot {value | =variable }}*

 | !push! =variable

 | !pop!

 | !focus-on! =variable

 | !output! (“output-string” {expression }*)

 | !eval! expression

 | !bind! =variable expression

 | !delete! =variable

 | !copy! =variable {chunk

 | !stop!

 | !restart! }*

)

The opening “(p”, delimiting “==>” and final “)” are all required. production-name is the name of the
production, and lhs and rhs are the two sides of the production separated by the delimiter. Each side is
composed of a number of chunk patterns used to match (for the lhs), create or modify (for the rhs) chunks
in declarative memory, and some special commands appearing between exclamation marks “!”.

Productions Left-hand side

Variables can be bound to any element in declarative memory except the special element NIL used to
initialize slots. They are represented by an equal sign “=“ followed by the variable name. A left-hand
side chunk pattern is composed of the variable bound to the chunk followed by the chunk selector “>“, a
type identification consisting of isa followed by the chunk type, then any number of conditions on its slot
values. A condition consists of the slot name, followed by a value or variable. If a value is specified, then
the content of the slot must equal the value for the condition to succeed. If a variable is specified and that
variable has not appeared earlier in the lhs, then the condition succeeds and the variable is bound, i.e. its
value later in the production is set to the value of the slot. If that value then appears later in a condition
then its previously set value is sued to test the condition. If the negation marker “-” appears before the
slot name, then the test is negated, i.e. it succeeds if it would otherwise fail and vice versa.

A chunk will match a chunk pattern it is of the required chunk type (or one of its descendants - see the
chunk type hierarchy in Section 4) and if all the slot conditions are satisfied. The first chunk pattern

ACT-R Users Manual

 Page 28

must match to the focus. If a variable which has been previously bound is matched at the head of a
chunk pattern, it is matched against the pattern in what is called a direct retrieval. If it hasn’t yet been
bound, all chunks in declarative memory are matched against the pattern independently in what is called
an indirect retrieval. A set of bindings for all the variables appearing on the lhs of a production is called
an instantiation of that production.

A number of special commands can appear on the lhs of a production:

!eval! expression
expression is evaluated by Lisp. If the result is NIL, then matching fails, otherwise it
succeeds. expression can be any legal Lisp expression and can include ACT-R variables
previously bound in the lhs. Failures are traced by Exact Matching Trace. This command,
inserted in parentheses, can also be used to directly specify a slot value.

 !bind! variable expression
expression is evaluated by Lisp and variable is bound to the result. If the result is NIL then
matching fails, and succeeds otherwise. Failures are traced by Exact Matching Trace.

Productions Right-hand side

The syntax of the right-hand side is similar to the left-hand side’s, but the semantics is different. When a
chunk pattern appears in the right-hand side, if the corresponding variable has been bound in the left-
hand side the chunk will be modified, otherwise it will be created. The chunk type only needs to be
specified is it hasn’t previously been. Slot/value pairs now indicate how to modify or initialize the chunk
slots. All variables appearing as slot values must have been previously bound, except for return
variables. If a previously unbound variable appears as a slot value of a chunk which will be pushed on
the stack (see below), it will be bound to the value of that slot when the chunk is popped off the stack. It will
then be copied to the chunk slots in which it appears later in the right-hand side (see examples factorial
and fibonacci for a simple and complex usage of return variables, respectively).

A number of special commands can also appear on the rhs of a production:

!push! variable
Pushes the current focus on top of the stack and replaces it with the subgoal variable, which
must have previously bound. The previous focus can be restored by a later production
using the !pop! command. This command is traced by Goal Trace.

!pop!
Pops the current focus and restores as the focus the top goal of the stack. If the stack is
empty, then the focus becomes NIL and the production system stops. This command is
traced by Goal Trace.

!focus-on! variable
Replaces the current focus with the goal variable, which must have been previously bound.
The current focus is not saved on the stack. This command is traced by Goal Trace.

!restart!
Pops all the goals on the stack and restores the top-most goal. This command is traced by
Goal Trace.

ACT-R Users Manual

 Page 29

!output! (“output-string” {expression }* | {expression }*)
Prints a message to Output Trace , which defaults to T, i.e. the Listener window, but can be
redirected to any file or turned off by being set to NIL. The message consists of output-
string, with the special dispatchers in the string replaced by the evaluation of the
expressions, in order. In most cases, the only dispatcher needed is the two-character
sequence ~S, which tries to print the best representation of the result of expression. If the
default format is used, then the output string can be omitted and the values to be printed
can be simply listed. For other dispatchers, see the Lisp command format. This command
is controlled by Output Trace.

!eval! expression
expression is evaluated by LISP. This command is used strictly for the side-effects of
expression, and unlike its left-hand side version does not test the resulting value.

!bind! variable expression
expression is evaluated by Lisp and variable is bound to the result.

!delete! variable
Deletes the chunk bound to variable. This command is traced by Declarative Memory
Trace.

!copy! variable {chunk }*
Copies each chunk (specified by a variable or expression) then binds variable to the list of
chunk copies.

!stop!
Stops the production system after this cycle.

Production Parameters

Spp and related commands

 Conflict resolution is the process by which the system chooses among several competing instantiations.
The value PG - C of a production instantiation is determined by a number of quantities associated with a
production (see ACT equations equations 3.2, 3.3, 4.5 and 4.6) and which can be displayed and set using
the production-parameter and parameters commands, respectively, or the more general spp command:

(Production-Parameter production {parameter}*)
Displays the value of parameter for production. If no parameter is specified, then all active
(as defined by global parameters) parameters are displayed and the production is returned.
If parameters are specified, then they are printed with their values and the list of values is
returned.

(Parameters production {parameter value}*)
Sets a number of parameter to value for production. Each possible parameter and its current
value can be obtained using the production-parameter command . Parameters can be
omitted and appear in any order. A warning is issued if any value is of the wrong type or
range. Returns the list of values, or :error for failed settings.

ACT-R Users Manual

 Page 30

(Spp {specification | {(specification)}*})
specification ::= {production | ({production}*)} {{:parameter value}* | {:parameter}*} Show/Set
Production Parameters. Any number of production parameter specifications can be given,
each enclosed in parentheses. If only one is given, then the parentheses are optional. Each
specification is composed of a production specification, followed by a parameter
specification. The production specification specifies the production, or list of productions
to which it applies. If it is omitted then it applies to all productions. The parameter
specification is similar to the argument of sgp. If it is omitted, then all active (as
determined by the current setting of global parameters) parameters for the production are
printed and the production itself is returned. If a number of production parameters are
specified, then those parameters are printed with their current values for the production,
and a list of the values is returned. If a number of parameter-value pairs are specified, then
each production parameter is set to its new value, and the list of values is returned, or
:error for failed settings. See section 6 for details.

These commands use a syntax similar to sgp, where any number of parameter keywords can be specified
in any order, perhaps followed by an assigned value. The list of production parameters follows, with their
keywords and default values, and a description:

Name
keyword: :name
The name of the production. Cannot be set.

Strength
keyword: :strength default value: 0.0
The production strength, Sp in ACT equation 3.10. Can be set to any number, only when
Production Strength Learning is off.

Creation Time
keyword: :creation-time default value: 0.0
The time at which the production was created. Used in Production Strength Learning.
Can be any number.

References
keyword: :references default value: (1.0)
The number and, when Optimized Learning is off, list of firing times for production. Used
in ACT equation 4.4. Can be set to the number or the list of references.

Q
keyword: :q default value: 1.0
The estimated probability that the production will achieve its intended effect. Used to
randomly determine the success of production firing if Chance isn’t specified. Should be a
probability, i.e. a number between 0.0 and 1.0.

A
keyword: :a default value: Default Action Time
The estimated effort spent executing the production, usually interpreted as the amount of
time. Used to increment the Time counter if Effort isn’t specified. Should be a positive
number.

R

ACT-R Users Manual

 Page 31

keyword: :r default value: 1.0
The estimated probability that the production will lead to eventual success. Should be a
probability, i.e. a number between 0.0 and 1.0.

B
keyword: :b default value: 1.0
The estimated effort spent after executing the production, usually interpreted as the
amount of time. Should be a positive number.

PG-C
keyword: :pg-c default value: (q*r) * G - (a + b)
The current PG-C value of the production when rational analysis is enabled. Cannot be set
directly.

Value
keyword: :value default value: 0.0
The value of the production when rational analysis is disabled. Can be any Lisp expression
evaluating to a number.

Successes
keyword: :successes default value: 0.0
The m in ACT equation 4.5 and n in 4.6, i.e. the actual number of successful firings of
production. Is learned by Parameters Learning. A prior can be set to any positive number
or list of times.

Failures
keyword: :failures default value: 0.0
The n in ACT equation 4.6, i.e. the actual number of failures of production. Is learned by
Parameters Learning. A prior can be set to any positive number or list of times.

Efforts
keyword: :efforts default value: 0.0
The sum of Ei in ACT equation 4.6, i.e. the actual sum of efforts spent successfully executing
production. Is learned by Parameters Learning. A prior can be set to any positive number
or list of efforts.

Eventual Successes
keyword: :eventual-successes default value: 0.0
The m in the r version of ACT equation 4.5 and n in the b version of 4.6, i.e. the actual
number of eventual successes. Is learned by Parameters Learning. A prior can be set to
any positive number or list of times.

Eventual Failures
keyword: :eventual-failures default value: 0.0
The n in the r version of ACT equation 4.5, i.e. the actual number of eventual failures. Is
learned by Parameters Learning . A prior can be set to any positive number or list of times.

Eventual Efforts
keyword: :eventual-efforts default value: 0.0
The sum of Ei in the b version of ACT equation 4.5, i.e. the actual sum of efforts spent after
executing the production until reaching eventual success. Is learned by Parameters
Learning . A prior can be set to any positive number or list of efforts.

ACT-R Users Manual

 Page 32

Q-alpha
keyword: :q-alpha default value: 1.0
The alpha in the Parameters Learning ACT equation 4.5, i.e. the prior number of successful
firings of production. Should be a positive number. SET SUCCESSES INSTEAD.

Q-beta
keyword: :q-beta default value: 0.0
The beta in the same equation, i.e. the prior number of failures of production. Should be a
positive number. SET FAILURES INSTEAD.

A-z
keyword: :a-z default value: Default Action Time
The z in ACT equation 4.6, i.e. the prior amount of effort spent on the production. Should
be a positive number. Also a-b for compatibility purposes. SET EFFORTS INSTEAD

A-v
keyword: :a-v default value: 1 .0
The v in the same equation, i.e. the prior number of firings of production. Should be a
positive number. SET SUCCESSES INSTEAD.

R-alpha
keyword: :r-alpha default value: 1.0
The alpha in the r version of ACT equation 4.5, i.e. the prior number of eventual successes.
Should be a positive number. SET EVENTUAL-SUCCESSES INSTEAD.

R-beta
keyword: :r-beta default value: 0.0
The beta in the same equation, i.e. the prior number of eventual failures. Should be a
positive number. SET EVENTUAL-FAILURES INSTEAD.

B-z
keyword: :b-z default value: 1.0
The z in the b version of ACT equation 4.6, i.e. the prior amount of effort spent after firing
the production. Should be a positive number. Also b-b for compatibility purposes. SET
EVENTUAL-EFFORTS INSTEAD.

B-v
keyword: :b-v default value: 1.0
The v in the same equation, i.e. the prior number of firings of production. Should be a
positive number. SET EVENTUAL-SUCCESSES INSTEAD.

Chance
keyword: :chance default value: 1.0
The “real-world” probability that the production action will achieve its intended effect.
Used to randomly determine the success of production firing. Q will be learned from this
quantity if learning is enabled. Can be any Lisp expression evaluating to a probability.

Effort
keyword: :effort default value: NIL
The “real-world” effort spent executing the production, usually interpreted as the amount
of time. Used to increment the Time counter. A and B will be learned from this quantity if
learning is enabled. Can be any Lisp expression evaluating to a positive number.

ACT-R Users Manual

 Page 33

Success
keyword: :success default value: NIL
When set to T, defines the production to be the end of a successful run, leading to the
learning of R and B if Parameters Learning is enabled. Can be any Lisp expression.

Failure
keyword: :failure default value: NIL
When set to T, defines the production to be the end of a failed run. If both Success and
Failure are set in the same production, then that production ends the run, i.e. clears the run
history, without either success and failure. Can be any Lisp expression.

Use of Spp Command

 A number of parameters (value, chance, effort, success and failure) can take as value an arbitrary Lisp
expression, possibly including variables from the production. Those expressions are evaluated for every
instantiation. All other parameters are set as specified and are NOT evaluated.

For example, in the Tower of Hanoi model, to print all active parameters for all productions:

(spp)

To print only the strength and pg-c for productions move-disk and clear-disk:

(spp (move-disk clear-disk) :strength :pg-c)

To set the strength of move-disk to 1.0 and its a to 1.0 and the r of clear-disk to 0.5 and its b to 2.0, then
print all active parameters for both productions:

(spp (move-disk :strength 1.0 :a 1.0)

 (clear-disk :r 0.5 :b 2.0)

 ((move-disk clear-disk)))

To define move-disk as a success production and clear-disk as a failure (after switching parameters
learning on):

(spp (move-disk :success t) (clear-disk :failure t))

Display and Selection

 The contents of procedural memory or some selected productions can be displayed and returned using
the pp command:

(PP {production}*)
Prints the specified productions or all enabled ones if none is supplied. Returns the list of
productions printed.

Note that disabled productions are not printed by the (pp) command, but will be if given explicitly as
arguments. Productions can be disabled and reactivated using the PDisable and PEnable commands
respectively:

ACT-R Users Manual

 Page 34

(PDisable {production}*)
Disables productions. production is not allowed to match or fire, but it can be printed by PP
and re-enabled by PEnable. Returns the list of disabled productions, including failed
compiled productions.

(PEnable {production}*)
Enables productions. Undoes the effect of PDisable. Returns the list of disabled
productions, including failed compiled productions.

Breakpoints can be set and removed for productions by using the PBreak and PUnbreak productions
respectively:

(PBreak {production}*)
Sets breakpoints for productions. If production is about to fire, then the instantiation is
displayed as if by Production Trace, but the production does not actually fire. Instead, a
Lisp break occurs, allowing one to examine and/or change declarative memory, establish
other breakpoints, etc. Then continue or abort as indicated by the Lisp environment. Use
PUnbreak to remove breakpoints. Returns the list of productions with break points.

(PUnbreak {production}*)
Removes breakpoints for productions. Undoes the effect of PBreak. If no production is
given, all breakpoints are removed. Returns the list of productions with break points.

To determine which production instantiations match the current state of memory, and why a particular
production does not, use the PMatches and whynot productions respectively:

(PMatches)
Prints out all production instantiations that match against the current state of declarative
memory. Returns the conflict set, i.e. the list of matching productions.

(WhyNot {production}*)
Attempts to match production(s) against the current state of declarative memory. A detailed
matching trace is displayed as by Exact Matching Trace and Partial Matching Trace, and if
any instantiations result they are also displayed. Returns the conflict set, i.e. the list of
matching productions.

ACT-R Users Manual

 Page 35

Section 7 Partial Matching

Enabling Partial Matching

 Partial matching enables ACT-R to display errors of omission and commission, as described in the papers
cited in the bibliography. It consists in modifying the pattern matching algorithm for production lhs from
an exact backtracking search to a sequential, activation-penalty matching. It can be activated and traced
by the global parameter partial matching and trace partial matching trace, respectively:

Partial Matching
keyword: PM default value: NIL
Enables partial matching.

Partial Matching Trace
keyword: PMT default value: NIL
If enabled, prints a message during production matching every time a condition is
evaluated when Partial Matching is enabled.

Penalty and Threshold

 Partial matching does not apply to the matching of the focus (first pattern in each production lhs) or to
the type-checking of chunks. For all chunks after the focus, a mismatch between an actual slot value and
the desired pattern results not in outright failure, but in the subtraction from the activation of the chunk
of an amount equal to the mismatch penalty constant times the degree of mismatch between desired and
actual value. If, after matching, the modified activation of the chunk remains above a retrieval threshold,
then the match is successful, otherwise it fails. For indirect matches, only the chunk with the highest
resulting activation matches (thus no multiple instantiations of a production), and no backtracking occurs
to consider other less active elements if matching fails later in the production. Note that retrieval
threshold defaults to NIL and therefore MUST be set when partial matching is activated (it can also be
set to work with standard matching).

The mismatch penalty and retrieval threshold global parameters are:

Mismatch Penalty
keyword: MP default value: 1.5
Penalty subtracted from the activation of a chunk for a complete mismatch in a slot pattern.
Multiplied by 1.0 - similarity for partial mismatches. Must be a positive number.

Retrieval Threshold
keyword: RT default value: NIL
When enabled, chunks with activation levels below this threshold cannot be retrieved.
Works with both partial and exact (standard) matching. Can be any number.

ACT-R Users Manual

 Page 36

Similarities

 The degree of match, aka the similarity (which is equal to 1.0 - the degree of mismatch), between two
values defaults to 1.0 if the two values are identical chunks, and 0.0 if they are different chunks and not
chunks at all. Similarities between chunks can be queried and set using the similarity and Set-
Similarities commands respectively (note that similarities are symmetrical, i.e. the similarity between
chunkj and chunki is equal to the similarity between chunki and chunkj, and Set-Similarities sets both at
the same time):

(Similarity chunkj chunki)
Displays the similarity value between chunkj and chunki.. Returns the similarity value.

(Set-Similarities {(chunkj chunki similarity)}*)
Sets the similarity value between chunkj and chunki.. Returns the list of similarity values.

ACT-R Users Manual

 Page 37

Section 8 Production Compilation

Overview

 Declarative examples to be compiled into productions are stored in chunks of the predefined type
dependency. When a goal of type dependency is successfully popped, an attempt is made to compile a
production based on that dependency. The resulting production is strictly based on the contents of the
slots of the dependency, as detailed below. Note that if the dependency is popped by a production
defined as a failure (by the :failure parameter) or is popped because no production can apply, then no
production compilation is attempted.

Dependencies

The predefined chunk type dependency contains the following slots, which as usual default to NIL and
can be left unspecified if not needed:

Goal
The goal to which the compiled production will apply.

Modified
An appropriately modified copy of the goal if it needs to be modified.

Stack
A subgoal or list of subgoals used to solve the goal. They are generated in listing order and
!push!ed on the stack in reverse listing order. The slot can also contain the values success
or failure, in which case the production will be marked as a success or a failure and the
goal will be popped.

Constraints
A constraint or list of constraints used to specify the left-hand side mapping between the
goal and the right-hand side. The most simple constraint consists of the name of a chunk,
to be expanded into its full description. A description constraint is a possibly partial chunk
description consisting of a list of chunk name, type and slot-value pairs similar to those
appearing in the Add-DM command. An eval constraint is a list containing an !eval!
command. Those constraints will be inserted in the left-hand side of the compiled
production in listing order.

Actions
A production rhs command or list of commands (each command in its own list), to be
inserted at the end of the right-hand side of the compiled production.

Generals
A value or list of values which should be variabilized in the compiled production instead of
appearing as constants.

Specifics
A value or list of values which should appear as constants in the compiled production
instead of being variabilized.

ACT-R Users Manual

 Page 38

Dont-Cares
A value or list of values which should be left out of the compiled production together with
the slots in which they appear

Differents
A list (or list of lists) of values which, when the first one appears as a slot value in a
production lhs chunk slot, leads to the insertion of a negation test for that slot against the
rest of the values in the list.

Compiled Productions

The name of the new production is automatically generated based on the goal type. Chunk headers
(appearing followed by the selector >) and chunks which appear more than once in the production are
variabilized. Other chunks and non-chunk values are left as constant. The special dependency slots
generals, specifics and dont-cares can be used to override this variabilization rule. Negation tests can be
generated using the differents dependency slot.

(p goaltype-production

 goal

 {constraints}*

==>

 {subgoals}*

 {modified}

 {!pop! | !focus-on! subgoal}

 {!push! subgoal}*

 {actions}*)

The left-hand side of the compiled production consists of the goal description followed by the list of
constraints. The right-hand side consists of the list of subgoals and the modified goal if specified (only
the modified part of which is actually repeated, but the whole goal counts for variabilization purposes),
followed by a !pop! command if success or failure was specified, the respective !push! statements in
reverse order (the first may be aggregated with the optional !pop! into a !focus-on!) and finally the
actions.

The progress of the production compilation mechanism can be traced using production compilation
trace, which is set by default:

Production Compilation Trace
keyword: PCT default value: T
If enabled, prints the main steps of the production compilation process.

The initial parameters (see Section 6) of the compiled productions can be set using the Set-Compilation-
Parameters command:

(Set-Compilation-Parameters {parameter value}*)
Sets various parameters for initializing compiled productions. The arguments are the same
as for the command Parameters (minus production). Returns the argument.

Finally, the production compilation process can be applied to selected dependencies with the whynot-
dependency command:

ACT-R Users Manual

 Page 39

(WhyNot-Dependency {dependency}*)
Attempts to compile dependency into production, with Production Compilation Trace,
Exact Matching Trace and Partial Matching Trace on. Returns the list of productions
compiled.

ACT-R Users Manual

 Page 40

Section 9 Hooks

 A number of hooks are provided to better monitor and/or alter ACT-R’s runtime behavior. Users need
to be at least moderately proficient in Lisp to use this advanced feature. The hooks are global variables
which, if set to a proper function definition, can be used to transfer control of the production system to the
user’s code at a number of places in each run cycle. The list of hooks with their arguments and values
(when applicable) is:

conflict-set-hook-fn
argument: Conflict Set returned value: Instantiations & Latency
The conflict set hook function is called after all the instantiations have been generated but
before one is chosen by the conflict resolution mechanism. It takes one argument which is
the conflict set, i.e. the list of instantiations. It should return two values: an instantiation or
instantiations and a latency. If the first value returned is a list of instantiations, then that
list becomes the conflict set, which is passed to the conflict resolution process as usual, and
the second value is ignored. If the first value is an instantiation, then it is selected as the
one to fire without calling the conflict resolution, and the second argument is interpreted as
the cycle’s matching latency.

firing-hook-fn
argument: Instantiation returned value: NIL
The firing hook function is called just before the selected instantiation is to fire, and is given
the instantiation as argument.

cycle-hook-fn
argument: Instantiation returned value: NIL
The cycle hook function is called at the end of each cycle, and is given the instantiation just
fired as argument.

end-run-hook-fn
argument: Latency returned value: NIL
The end run hook function is called when the run command is completed, and is given as
argument the total latency of the command, i.e. the difference between the present time and
the time it was called.

Ultimately I hope to document the set of internal functions used to manipulate those data structures but
until then you should just poke around the code and figure it out. Hopefully, it should be simple enough,
but if you have any problem feel free to contact me at cl+@cmu.edu.

ACT-R Users Manual

 Page 41

Section 10 Bibliography

The main ACT-R reference is:

Anderson, J. R., & Lebiere, C. (1998). The Atomic Components of Thought. Hillsdale, NJ: Erlbaum.

The previous ACT-R reference was:

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Erlbaum.

Partial matching in ACT-R was first introduced in:

Lebiere, C., Anderson, J. R., & Reder, L. M. (1994). Error modeling in the ACT-R production system. In
Proceedings of the 16th Annual Conference of the Cognitive Science Society, pp. 555-559. Erlbaum.

Further use of partial matching and the introduction of the constraint on total source activation can be
found in:

Anderson, J. R., Reder, L. M., & Lebiere, C. (1996). Working memory: Activation limitations on retrieval.
Cognitive Psychology, 30, 221-256.

ACT-R Users Manual

 Page 42

Glossary

Activation-Sources

(Activation-Sources)
Displays the current activation sources with their level. Returns the list of sources.

Actr-Time

(Actr-Time {delay})
Returns the current ACT-R time and, if delay is specified, adds it to the current time.

Add-IA

(Add-IA {(chunkj chunki sji)}*)
Adds inter-associativity (IA) values between chunks. Sji is defined as the new IA value
from chunkj to chunki. Returns the list of added IAs.

Add-DM

(Add-DM {(chunkname isa chunktype {slot value}*)}*)
Adds chunks to declarative memory. The new chunk chunkname is of chunk type chunktype,
with each slot being initialized to value. Returns the list of added chunks.

Chunk-Slot-Value

(Chunk-Slot-Value chunk slot)
Returns the value of slot of chunk.

Chunk-Type

(Chunk-Type {type | (type (:include supertype)} {slot | (slot value)}*)
Defines a new chunk type, which may include a supertype from which type inherits its slots,
and a number of slot, each with an optional initial value. If no argument is passed to
Chunk-Type, then a list of the existing types is printed. Return the chunk type defined or
the list of all chunk types if no argument is given.

Clear-All

(Clear-All)
Clears everything from the ACT-R state, including chunk types, chunks, productions,
global variables, etc. A call to Clear-All MUST be put at the top of each model file.

Clear-DM

(Clear-DM)
Clears all chunks from declarative memory. It is especially strongly recommended to use
Clear-All or Reset instead for resetting purposes.

ACT-R Users Manual

 Page 43

Clear-Goal-Stack

(Clear-Goal-Stack)
Clears the goal stack by popping all goals and restoring the top goal as the focus.

Clear-Productions

(Clear-Productions)
Clears all productions from production memory. It is strongly recommended to use Clear-
All or Reset instead for resetting purposes.

Close-Output

(Close-Output)
Closes the current output stream file established by a call to Output-Stream.

Close-Trace

(Close-Trace)
Closes the current trace stream file established by a call to Trace-Stream.

Copy-Chunk

(Copy-Chunk {chunk}*)
Makes a new copy of each chunk and returns the list of copies.

Delete-Chunk

(Delete-Chunk {chunk}*)
Deletes chunks from declarative memory. Do not use if chunk is still used in other chunks
or productions. Returns the list of deleted chunks.

DM

(DM {chunk }*)
Displays the specified chunks, or the entire contents of declarative memory if none is
supplied. For each chunk, its name is printed followed by its current activation, then its
type and slot-value pairs. The current focus is displayed preceded by two asterisks (“**”).
Returns the list of chunks printed.

Focus-on-Goal

(Focus-on-Goal chunk)
Replaces the focus with chunk , similarly to the !focus-on! production command. Returns
the new focus.

Get-Base-Level

(Get-Base-Level {chunk}*)
Returns base level activation of chunks. Returns the list of base levels.

ACT-R Users Manual

 Page 44

Get-Name

(Get-Name {chunk-or-production}*)
Returns the list of names of chunks and/or productions.

Goal-Focus

(Goal-Focus {chunk}*)
Sets the focus to chunk , or prints the current focus if none is supplied. If more than one
chunk is specified, then the focus is set to the first one and the other ones are kept in a list
for use by Run-Many. Returns the new focus.

Goal-Stack

(Goal-Stack)
Displays the focus, then the current contents of the goal stack from top to bottom. Each
goal is followed by its goal value G. Returns the goal stack, i.e. a list of the focus followed
by each goal on the stack in descending order.

Help

(Help { command }*)
Displays a short description of command, or prints the whole list of command if none is
given.

IA

(IA chunkj chunki)
Displays the IA value between chunkj and chunki and return the value.

Load-Model

(Load-Model file {directory})
Loads the model file in directory . If directory is not supplied, then file is considered relative
to the directory of the file in which the command appears, if applicable.

Mod-Chunk

(Mod-Chunk chunk {slot value}*)
Modifies chunk by setting each slot to value. Returns the modified chunk.

Mod-Focus

(Mod-Focus {slot value}*)
Same as Mod-Chunk, with the chunk set to the focus. Returns the modified focus.

No-Output

(No-Output {command}*)
Evaluates a number of ACT-R command while turning all printing off. Useful in reducing
output when passing results between commands. Returns the output of the last command.

ACT-R Users Manual

 Page 45

Output-Stream

(Output-Stream file {:echo echo})
Causes all production output (i.e., anything produced by !output! commands) to be sent to
the specified file. If the :echo keyword is supplied with a non-nil value, then the output is
directed to the specified file, and a copy is also sent to the Listener window. The output
stream created should always be explicitly closed using Close-Output before clearing,
resetting or quitting ACT-R. Returns the stream.

P

(P production lhs ==> rhs)
Defines production as composed of a matching side lhs and an action side rhs. Returns the
new production. See Section 6 for details.

Parameters

(Parameters production {parameter value}*)
Sets a number of parameter to value for production. Each possible parameter and its current
value can be obtained using the production-parameter command . Parameters can be
omitted and appear in any order. A warning is issued if any value is of the wrong type or
range. Returns the list of values, or :error for failed settings. See Section 6 for details.

PBreak

(PBreak {production}*)
Sets breakpoints for productions. If production is about to fire, then the instantiation is
displayed as if by Production Trace, but the production does not actually fire. Instead, a
Lisp break occurs, allowing one to examine and/or change declarative memory, establish
other breakpoints, etc. Then continue or abort as indicated by the Lisp environment. Use
PUnbreak to remove breakpoints. Returns the list of productions with break points.

PDisable

(PDisable {production}*)
Disables productions. production is not allowed to match or fire, but it can be printed by PP
and re-enabled by PEnable. Returns the list of disabled productions, including failed
compiled productions.

PEnable

(PEnable {production}*)
Enables productions. Undoes the effect of PDisable. Returns the list of disabled
productions, including failed compiled productions.

ACT-R Users Manual

 Page 46

PMatches

(PMatches)
Prints out all production instantiations that match against the current state of declarative
memory. Returns the conflict set, i.e. the list of matching productions.

Pop-Goal

(Pop-Goal)
Pops the top goal off the stack and installs it as the focus, similarly to the !pop! production
command. Returns the new focus.

PP

(PP {production}*)
Prints the specified productions or all enabled ones if none is supplied. Returns the list of
productions printed.

Production-Parameter

(Production-Parameter production {parameter}*)
Displays the value of parameter for production. If no parameter is specified, then all active
(as defined by global parameters) parameters are displayed and the production is returned.
If parameters are specified, then they are printed with their values and the list of values is
returned. See Section 6 for details.

PSet

(PSet {set | set {command }* | {(set {command }*)}*})
Parameters Set. Prints, defines and activates sets of parameters. If no argument is given,
then the current parameter sets are printed. If the name of a set is given, then the
commands composing that set are executed. Otherwise, one or more sets are defined by
specifying the name of a new set (or an old one to be redefined) and a number of
parameter-setting commands (e.g. sgp, Sdp, spp, parameters, or any other commands)
composing that set.

Pstep

(Pstep {length})
Runs the production system as with the Run command. Displays the list of instantiations
at each cycle and asks the user to choose between stepping once more, stopping the run,
running without stepping, or selecting one of the instantiations to fire.

PUnbreak

(PUnbreak {production}*)
Removes breakpoints for productions. Undoes the effect of PBreak. If no production is
given, all breakpoints are removed. Returns the list of productions with break points.

ACT-R Users Manual

 Page 47

Push-Goal

(Push-Goal chunk)
Pushes the focus on the goal stack and installs chunk as the new focus, similarly to the
!push! production command. Returns the new focus.

Reload

(Reload {seed})
Reloads the current model, including any updates made to the model file. A random seed
can be provided for an initial randomization.

Reset

(Reset {seed})
Resets ACT-R to its state after loading the last model, i.e. it undoes all interactive
commands, production firings, etc. Faster than reload, but does not include updates made
to the model file since the previous loading. . A random seed can be provided for an initial
randomization.

Reset-IA

(Reset-IA)
Resets default IA values using present connectivity.

Run

(Run {length})
Runs the production system for at most length cycles if length is an integer, length units of
(ACT-R) time if length is a real value, or until no production can be instantiated, the top
goal is !pop!ped or a !stop! command is issued by a production. Returns the run latency
and number of cycles.

Run-Many

(Run-Many {iteration})
Runs the production system by focusing in sequence on each chunk defined by the last
Goal-Focus then calling Run, iterations times.

SDM

(SDM {ISA type} {slot value}*)
Searches declarative memory. All chunks of type type (if specified, otherwise all chunks are
considered) with slot value equal to value are displayed. Returns the list of chunks
matching the condition(s).

ACT-R Users Manual

 Page 48

Sdp

(Sdp {specification | {(specification)}*})
specification ::= {chunk | ({chunk}*)} {{:parameter value}* | {:parameter}*}
Show/Set Declarative Parameters. Any number of chunk parameter specifications can be
given, each enclosed in parentheses. If only one is given, then the parentheses are optional.
Each specification is composed of a chunk specification, followed by a parameter
specification. The chunk specification specifies the chunk, or list of chunks to which it
applies. If it is omitted then it applies to all chunks. The parameter specification is similar
to the argument of sgp. If it is omitted, then all active (as determined by the current setting
of global parameters) parameters for the chunk are printed and the chunk itself is returned.
If a number of chunk parameters are specified, then those parameters are printed with their
current values for the chunk, and a list of the values is returned. If a number of parameter-
value pairs are specified, then each chunk parameter is set to its new value, and the list of
values is returned, or :error for failed settings. See section 4 for details.

Set-All-Base-Levels

(Set-All-Base-Levels {baselevel | references {creation-time } })
Sets the base levels of all chunks. See Set-Base-Levels for parameters. Returns the new
base level.

Set-Compilation-Parameters

(Set-Compilation-Parameters {parameter value}*)
Sets various parameters for initializing compiled productions. The arguments are the same
as for the command Parameters (minus production). Returns the argument.

Set-Base-Levels

(Set-Base-Levels {(chunk baselevel) | (chunk references {creation-time })}*)
Sets the base level activations of chunks. If Base Level Learning is off, then the base level of
chunk should be supplied directly. Otherwise, the number of past references and perhaps
the creation-time should be provided. Returns the list of base levels.

Set-DM

(Set-DM {(chunkname isa chunktype {slot value}*)}*)
Same as Add-DM.

Set-G

(Set-G G {:threshold threshold})
Sets the value of the goal value G and perhaps the goal-threshold, as a percentage of G..
Provided for compatibility only. Use sgp.

Set-General-Base-Levels

(Set-General-Base-Levels {(chunk baselevel) | (chunk references creation-time)}*)
Same as Set-Base-Levels.

ACT-R Users Manual

 Page 49

Set-IA

(Set-IA {(chunkj chunki sji)}*)
Same as Add-IA.

Set-Similarities

(Set-Similarities {(chunkj chunki similarity)}*)
Sets the similarity value between chunkj and chunki.. Returns the list of similarity values.

Sgp

(Sgp {{:parameter value}* | {:parameter}*})
Show/Set Global Parameters. If no argument is specified, the list of all global parameters is
printed, together with their shorthand keywords for use in sgp and their current value (nil
is returned). If a list of keywords is specified, then each parameter is printed with its current
value, and the list of values is returned. If a list of keyword-value pairs specified, then each
parameter is set to its value and the list of values is returned. A warning is printed if a value
is of the wrong type or range for parameter, in which case the keyword :error is returned
instead of the value. See Section 3 for details.

Similarity

(Similarity chunkj chunki)
Displays the similarity value between chunkj and chunki.. Returns the similarity value.

Spp

(Spp {specification | {(specification)}*})
specification ::= {production | ({production}*)} {{:parameter value}* | {:parameter}*} Show/Set
Production Parameters. Any number of production parameter specifications can be given,
each enclosed in parentheses. If only one is given, then the parentheses are optional. Each
specification is composed of a production specification, followed by a parameter
specification. The production specification specifies the production, or list of productions
to which it applies. If it is omitted then it applies to all productions. The parameter
specification is similar to the argument of sgp. If it is omitted, then all active (as
determined by the current setting of global parameters) parameters for the production are
printed and the production itself is returned. If a number of production parameters are
specified, then those parameters are printed with their current values for the production,
and a list of the values is returned. If a number of parameter-value pairs are specified, then
each production parameter is set to its new value, and the list of values is returned, or
:error for failed settings. See section 6 for details.

Update-Activation

(Update-activation)
Updates the activations of all chunks. This involves recomputing all the learned quantities,
and helps to update all the cached values.

ACT-R Users Manual

 Page 50

Trace-Stream

(Trace-Stream file {:echo echo})
Causes all trace output to be sent to the specified file. The arguments work as for Output-
Stream, and the resulting stream should always be closed using Close-Trace. A finer
degree of control over trace dispatching can be achieved through the use of sgp. Returns
the stream.

WhyNot

(WhyNot {production}*)
Attempts to match production(s) against the current state of declarative memory. A detailed
matching trace is displayed as by Exact Matching Trace and Partial Matching Trace, and if
any instantiations result they are also displayed. Returns the conflict set, i.e. the list of
matching productions.

WhyNot-Dependency

(WhyNot-Dependency {dependency}*)
Attempts to compile dependency into production, with Production Compilation Trace,
Exact Matching Trace and Partial Matching Trace on. Returns the list of productions
compiled.

ActivationSources

(ActivationSources)
See Activation-Sources.

ActrTime

(ActrTime {delay})
See Actr-Time.

AddIA

(AddIA {(wmej wmei sji)}*)
See Add-IA.

AddWM

(AddWM {(wmename isa wmetype {slot value}*)}*)
See Add-DM.

ClearAll

(ClearAll)
See Clear-All.

ClearGoalStack

(ClearGoalStack)
See Clear-Goal-Stack.

ACT-R Users Manual

 Page 51

ClearProductions

(ClearProductions)
See Clear-Productions.

ClearWM

(ClearWM)
See Clear-DM.

CloseOutput

(CloseOutput)
See Close-Output.

CloseTrace

(CloseTrace)
See Close-Trace.

CopyWme

(CopyWme {wme}*)
See Copy-Chunk.

DeleteWM

(DeleteWM {wme}*)
See Delete-Chunk.

Focus-on-Wme

(Focus-on-Wme wme)
See Focus-on-Goal.

GetBaseLevel

(GetBaseLevel {wme}*)
See Get-Base-Level.

GoalStack

(GoalStack)
See Goal-Stack.

ModFocus

(ModFocus {slot value}*)
See Mod-Focus.

ACT-R Users Manual

 Page 52

ModWME

(ModWME wme {slot value}*)
See Mod-Chunk.

OutputStream

(OutputStream file {:echo echo})
See Output-Stream.

Pop-Wme

(Pop-Wme)
See Pop-Goal.

Push-Wme

(Push-Wme wme)
See Push-Goal.

ResetIA

(ResetIA)
See Reset-IA.

SetAllBaseLevels

(SetAllBaseLevels {baselevel | references {creation-time } })
See Set-All-Base-Levels.

SetAnalogizedParameters

(SetAnalogizedParameters {parameter value}*)
See Set-Compiled-Parameters.

SetBaseLevels

(SetBaseLevels {(wme baselevel) | (wme references {creation-time })}*)
See Set-Base-Levels.

SetG

(SetG G {:threshold threshold})
See Set-G.

SetGeneralBaseLevels

(SetGeneralBaseLevels {(wme baselevel) | (wme creation-time references)}*)
See Set-General-Base-Levels.

ACT-R Users Manual

 Page 53

SetIA

(SetIA {(wmej wmei sji)}*)
See Set-IA.

SetSimilarities

(SetSimilarities {(wmej wmei similarity)}*)
See Set-Similarities.

SetWM

(SetWM {(wmename isa wmetype {slot value}*)}*)
See Set-DM.

SWM

(SWM {ISA type} {slot value}*)
See SDM.

Swp

(Swp {specification | {(specification)}*})
See Sdp.

TraceStream

(TraceStream file {:echo echo})
See Trace-Stream.

WM

(WM {wme }*)
See DM.

WMESlotValue

(WMESlotValue wme slot)
See Chunk-Slot-Value.

WMEType

(WMEType {type | (type (:include supertype)} {slot | (slot value)}*)
See Chunk-Type.

WMFocus

(WMFocus {wme}*)
See Goal-Focus.

Enable Rational Analysis
keyword: ERA default value: NIL
Enables the rational activation and expected gain computations.

ACT-R Users Manual

 Page 54

G parameter
keyword: G default value: 20.0
The value of the goal in the PG-C evaluation (ACT Equation 3.1). Must be a positive
number.

Expected Gain S
keyword: EGS default value: NIL
If enabled, the S-value of the Gaussian noise added to the PG-C evaluation for each
instantiation (ACT equation 3.4). Must be a positive number. The variance can be accessed
as EGN.

Enable Randomness
keyword: ER default value: NIL
If enabled, ties among instantiations are broken randomly, rather than according to some
unspecified but deterministic order.

Utility Threshold
keyword: UT default value: 0.0
The threshold for the utility (PG-C) of a production below which it will not be considered
during conflict resolution. Setting it to NIL is equivalent to disabling the threshold, i.e.
considering all productions.

Goal Activation
keyword: GA default value: 1.0
The total level of source activation, i.e. the Wj in ACT equation 3.5. That level is divided
evenly among chunks in the slot values of the current focus (see ARL paper). Must be a
positive number.

Base Level Constant
keyword: BLC default value: 0.0
A constant added to all chunk base levels, i.e. (ß in ACT equation 3.6). Can be any number.

Activation Noise
keyword: ANS default value: NIL
If enabled, the S-value of the Gaussian noise added to each chunk activation at every cycle.

Must be a positive number. The variance (2
2

 in ACT equation 3.6) can be accessed as AN.

Permanent Activation Noise S
keyword: PAN default value: NIL
If enabled, the S-value of the Gaussian noise added to each chunk activation at creation.

Must be a positive number. The variance (1
2

 in ACT equation 3.6) can be accessed as

PAN.

Latency Factor
keyword: LF default value: 1.0
The multiplicative factor F in ACT equation 3.10. Must be a positive number.

Latency Exponent
keyword: LE default value: 1.0
The exponent factor f in ACT equation 3.10. Must be a positive number.

ACT-R Users Manual

 Page 55

Default Action Time
keyword: DAT default value: 0.05
The default action time of a production, i.e. the right-hand side part of the a parameter in
ACT equation 3.3. Must be a positive number, usually interpreted in milliseconds. This
default has been changed from 1.0 in previous ACT-R versions.

Partial Matching
keyword: PM default value: NIL
Enables partial matching.

Mismatch Penalty
keyword: MP default value: 1.5
Penalty subtracted from the activation of a chunk for a complete mismatch in a slot pattern.
Multiplied by 1.0 - similarity for partial mismatches. Must be a positive number.

Retrieval Threshold
keyword: RT default value: NIL
When enabled, chunks with activation levels below this threshold cannot be retrieved.
Works with both partial and exact (standard) matching. Can be any number.

Optimized Learning
keyword: OL default value: T
If enabled, an efficient approximation to the formulas for production strength learning and
base level learning is used (see the discussion of ACT equation 4.1).

Base Level Learning
keyword: BLL default value: NIL
If enabled, used as d in ACT equation 4.1 for learning the base level activations of chunks.
Must be a positive number, with 0.5 the standard value.

Associative Learning
keyword: AL default value: NIL
If enabled, used as assoc in ACT equation 4.3 for learning the associative strength between
pairs of chunks. Must be a positive number.

Strength Learning
keyword: SL default value: NIL
If enabled, used as d in ACT equation 4.4 for learning the strength of productions. Must be
a positive number, preferably less than 1.0.

Parameters Learning
keyword: PL default value: NIL
If enabled, the parameters a, b, q and r will be learned for each production according to
ACT equations 4.5 and 4.6. Can also be set to the decay rate in the ACT equations 4.7 and
4.8.

Exact Matching Trace
keyword: EMT default value: NIL
If enabled, prints a message during production matching every time a condition is
evaluated.

ACT-R Users Manual

 Page 56

Partial Matching Trace
keyword: PMT default value: NIL
If enabled, prints a message during production matching every time a condition is
evaluated when Partial Matching is enabled.

Analogy Trace
keyword: AT default value: T
If enabled, prints the main steps of the analogy process.

Activation Trace
keyword: ACT default value: NIL
If enabled, prints a trace of the main steps during computation of chunk activation.

Conflict Resolution Trace
keyword: CRT default value: NIL
If enabled, prints the name of each production as it is matched curing conflict resolution.

Conflict Set Trace
keyword: CST default value: NIL
If this option is enabled, prints the number of instantiations in the conflict set, and, when
rational analysis is enabled, the number of instantiations that were considered and the
expected gain of the instantiation that will fire.

Matches Trace
keyword: MT default value: NIL
If enabled, prints all the instantiations generated. A setting of SHORT will simply print the
list of variables and their values for each instantiation, and a setting of T will print the
whole production(s) with the variables replaced by their values.

Production Trace
keyword: PT default value: NIL
If enabled, prints the selected production instantiation before firing it. A setting of SHORT
will simply print the list of variables and their values, and a setting of T will print the whole
production with the variables replaced by their values.

Cycle Trace
keyword: CT default value: T
If enabled, prints the cycle number, current time and name of selected production.

Latency Trace
keyword: LT default value: T
If enabled, prints the latency of the production matching (when rational analysis is enabled
- see ACT equations 3.10) and the latency of the action side of the production.

Output Trace
keyword: OT default value: T
If enabled, prints the output of !output! commands on the right-hand side of productions.

Declarative Memory Trace
keyword: DMT default value: NIL
If enabled, prints a message when a chunk is created, deleted or modified.

ACT-R Users Manual

 Page 57

Goal Trace
keyword: GT default value: NIL
If enabled, prints a message when the focus is changed.

Verbose
keyword: V default value: T
If enabled, the traces are printed as enabled. If disabled, turns off all trace output
regardless of which is enabled. Disabling this trace is useful to easily turn off all trace
output when running in batch mode where performance is key.

:Name
keyword: :name
The name of the item. Cannot be set.

:Activation
keyword: :activation default value: 0.0
The chunk activation, Ai in ACT equation 3.5. Cannot be set directly.

:Source
keyword: :source default value: NIL
The chunk source level, Wj in ACT equation 3.5. Can be set to NIL (0.0) or any number.

:Base-Level
keyword: :base-level default value: Base Level Constant
The chunk base level, Bi in ACT equation 3.5. Can be set to any number, only when Base
Level Learning is disabled.

:Creation-Time
keyword: :creation-time default value: 0.0
The time at which the chunk was created. Used in Base Level Learning approximation
equation to compute L (see discussion of ACT equation 4.1). Can be set to any number.

:References
keyword: :references default value: (1.0)
The number and, when Optimized Learning is off, list of production matching times of
chunk. Used in ACT equation 4.1. Can be set to the number or the list of references.

:Source-Spread
keyword: :source-spread default value: 0.0
The spreading activation to chunk, the second term in ACT equation 3.5. Cannot be set
directly.

:IAs
keyword: :ias default value: see above section
The Interactive Activation values to chunk i, Sji in ACT equation 3.5. Can be set to a list of
chunk-number pairs used to update the IAs to i.

:Creation-Cycle
keyword: :creation-cycle default value: 0.0
The production cycle at which the chunk was created, used to compute F in ACT equation
4.3. Can be set to any number.

ACT-R Users Manual

 Page 58

:Needed
keyword: :needed default value: 0.0
The number of times the chunk has been retrieved, F(Ni) in ACT equation 4.3. Can be set to
any number.

:Context
keyword: :contexts default value: 0.0
The number of production cycles the chunk was in context, scaled by its source level at the
time, F(Cj) in ACT equation 4.3. Can be set to any number.

:Similarities
keyword: :similarities default value: ((chunk . 1.0))
The similarity values used in partial matching (see ACT equation 3.8). Can be set to a list of
chunk-number pairs used to update the similarities to chunk.

!push!

!push! variable
Pushes the current focus on top of the stack and replaces it with the subgoal variable, which
must have previously bound. The previous focus can be restored by a later production
using the !pop! command. This command is traced by Goal Trace.

!pop!

!pop!
Pops the current focus and restores as the focus the top goal of the stack. If the stack is
empty, then the focus becomes NIL and the production system stops. This command is
traced by Goal Trace.

!focus-on!

!focus-on! variable
Replaces the current focus with the goal variable, which must have been previously bound.
The current focus is not saved on the stack. This command is traced by Goal Trace.

!restart!

!restart!
Pops all the goals on the stack and restores the top-most goal. This command is traced by
Goal Trace.

!output!

!output! (“output-string” {expression }* | {expression }*)
Prints a message to Output Trace , which defaults to T, i.e. the Listener window, but can be
redirected to any file or turned off by being set to NIL. The message consists of output-
string, with the special dispatchers in the string replaced by the evaluation of the
expressions, in order. In most cases, the only dispatcher needed is the two-character
sequence ~S, which tries to print the best representation of the result of expression. If the
default format is used, then the output string can be omitted and the values to be printed
can be simply listed. For other dispatchers, see the Lisp command format. This command
is controlled by Output Trace.

ACT-R Users Manual

 Page 59

!eval!

!eval! expression
expression is evaluated by LISP. This command is used strictly for the side-effects of
expression, and unlike its left-hand side version does not test the resulting value.

!bind!

!bind! variable expression
expression is evaluated by Lisp and variable is bound to the result.

!delete!

!delete! variable
Deletes the chunk bound to variable. This command is traced by Declarative Memory
Trace.

!copy!

!copy! variable {chunk }*
Copies each chunk (specified by a variable or expression) then binds variable to the list of
chunk copies.

!stop!

!stop!
Stops the production system after this cycle.

:Name
keyword: :name
The name of the item. Cannot be set.

:Strength
keyword: :strength default value: 0.0
The production strength, Sp in ACT equation 3.10. Can be set to any number, only when
Production Strength Learning is off.

:Creation-Time
keyword: :creation-time default value: 0.0
The time at which the production was created. Used in Production Strength Learning.
Can be any number.

:References
keyword: :references default value: (1.0)
The number and, when Optimized Learning is off, list of firing times for production. Used
in ACT equation 4.4. Can be set to the number or the list of references.

:Q
keyword: :q default value: 1.0
The estimated probability that the production will achieve its intended effect. Used to
randomly determine the success of production firing if Chance isn’t specified. Should be a
probability, i.e. a number between 0.0 and 1.0.

ACT-R Users Manual

 Page 60

:A
keyword: :a default value: Default Action Time
The estimated effort spent executing the production, usually interpreted as the amount of
time. Used to increment the Time counter if Effort isn’t specified. Should be a positive
number.

:R
keyword: :r default value: 1.0
The estimated probability that the production will lead to eventual success. Should be a
probability, i.e. a number between 0.0 and 1.0.

:B
keyword: :b default value: 1.0
The estimated effort spent after executing the production, usually interpreted as the
amount of time. Should be a positive number.

:PG-C
keyword: :pg-c default value: (q*r) * G - (a + b)
The current PG-C value of the production when rational analysis is enabled. Cannot be set
directly.

:Value
keyword: :value default value: 0.0
The value of the production when rational analysis is disabled. Can be any Lisp expression
evaluating to a number.

:Successes
keyword: :successes default value: 0.0
The m in ACT equation 4.5 and n in 4.6, i.e. the actual number of successful firings of
production. Is learned by Parameters Learning. A prior can be set to any positive number
or list of times.

:Failures
keyword: :failures default value: 0.0
The n in ACT equation 4.6, i.e. the actual number of failures of production. Is learned by
Parameters Learning. A prior can be set to any positive number or list of times.

:Efforts
keyword: :efforts default value: 0.0
The sum of Ei in ACT equation 4.6, i.e. the actual sum of efforts spent successfully executing
production. Is learned by Parameters Learning. A prior can be set to any positive number
or list of efforts.

:Eventual-Successes
keyword: :eventual-successes default value: 0.0
The m in the r version of ACT equation 4.5 and n in the b version of 4.6, i.e. the actual
number of eventual successes. Is learned by Parameters Learning. A prior can be set to
any positive number or list of times.

:Eventual-Failures
keyword: :eventual-failures default value: 0.0
The n in the r version of ACT equation 4.5, i.e. the actual number of eventual failures. Is
learned by Parameters Learning . A prior can be set to any positive number or list of times.

ACT-R Users Manual

 Page 61

:Eventual-Efforts
keyword: :eventual-efforts default value: 0.0
The sum of Ei in the b version of ACT equation 4.5, i.e. the actual sum of efforts spent after
executing the production until reaching eventual success. Is learned by Parameters
Learning . A prior can be set to any positive number or list of efforts.

:Q-alpha
keyword: :q-alpha default value: 1.0
The alpha in the Parameters Learning ACT equation 4.5, i.e. the prior number of successful
firings of production. Should be a positive number. SET SUCCESSES INSTEAD.

:Q-beta
keyword: :q-beta default value: 0.0
The beta in the same equation, i.e. the prior number of failures of production. Should be a
positive number. SET FAILURES INSTEAD.

:A-z
keyword: :a-z default value: Default Action Time
The z in ACT equation 4.6, i.e. the prior amount of effort spent on the production. Should
be a positive number. Also a-b for compatibility purposes. SET EFFORTS INSTEAD

:A-v
keyword: :a-v default value: 1 .0
The v in the same equation, i.e. the prior number of firings of production. Should be a
positive number. SET SUCCESSES INSTEAD.

:R-alpha
keyword: :r-alpha default value: 1.0
The alpha in the r version of ACT equation 4.5, i.e. the prior number of eventual successes.
Should be a positive number. SET EVENTUAL-SUCCESSES INSTEAD.

:R-beta
keyword: :r-beta default value: 0.0
The beta in the same equation, i.e. the prior number of eventual failures. Should be a
positive number. SET EVENTUAL-FAILURES INSTEAD.

:B-z
keyword: :b-z default value: 1.0
The z in the b version of ACT equation 4.6, i.e. the prior amount of effort spent after firing
the production. Should be a positive number. Also b-b for compatibility purposes. SET
EVENTUAL-EFFORTS INSTEAD.

:B-v
keyword: :b-v default value: 1.0
The v in the same equation, i.e. the prior number of firings of production. Should be a
positive number. SET EVENTUAL-SUCCESSES INSTEAD.

:Chance
keyword: :chance default value: NIL
The “real-world” probability that the production will achieve its intended effect. Used to
randomly determine the success of production firing. Q will be learned from this quantity
if learning is enabled. Can be any Lisp expression evaluating to a probability.

ACT-R Users Manual

 Page 62

:Effort
keyword: :effort default value: NIL
The “real-world” effort spent executing the production, usually interpreted as the amount
of time. Used to increment the Time counter. A and B will be learned from this quantity if
learning is enabled. Can be any Lisp expression evaluating to a positive number.

:Success
keyword: :success default value: NIL
When set to T, defines the production to be the end of a successful run, leading to the
learning of R and B if Parameters Learning is enabled. Can be any Lisp expression.

:Failure
keyword: :failure default value: NIL
When set to T, defines the production to be the end of a failed run. If both Success and
Failure are set in the same production, then that production ends the run, i.e. clears the run
history, without either success and failure. Can be any Lisp expression.

conflict-set-hook-fn
argument: Conflict Set returned value: Instantiations & Latency
The conflict set hook function is called after all the instantiations have been generated but
before one is chosen by the conflict resolution mechanism. It takes one argument which is
the conflict set, i.e. the list of instantiations. It should return two values: an instantiation or
instantiations and a latency. If the first value returned is a list of instantiations, then that
list becomes the conflict set, which is passed to the conflict resolution process as usual, and
the second value is ignored. If the first value is an instantiation, then it is selected as the
one to fire without calling the conflict resolution, and the second argument is interpreted as
the cycle’s matching latency.

firing-hook-fn
argument: Instantiation returned value: NIL
The firing hook function is called just before the selected instantiation is to fire, and is given
the instantiation as argument.

cycle-hook-fn
argument: Instantiation returned value: NIL
The cycle hook function is called at the end of each cycle, and is given the instantiation just
fired as argument.

end-run-hook-fn
argument: Latency returned value: NIL
The end run hook function is called when the run command is completed, and is given as
argument the total latency of the command, i.e. the difference between the present time and
the time it was called.

