
ACT-R 7 Tutorial 11-Jul-17 Unit Seven

Unit 7: Production Rule Learning

In this unit we will discuss how new production rules are learned. As we will see, a
model can acquire new production rules by collapsing two production rules that apply in
succession into a single rule. Through this process the model will transform knowledge
that is stored declaratively into a procedural form. We call this process of forming new
production rules production compilation and refer to the specific act of combining two
productions as a composition.

7.1 The Basic Idea

A good pair of productions for illustrating production compilation is the two that fire in
succession to retrieve a paired associate in the paired model from Unit 4:

(p read-probe
 =goal>
 isa goal
 state attending-probe
 =visual>
 isa visual-object
 value =val
 ?imaginal>
 state free
 ==>
 +imaginal>
 isa pair
 probe =val
 +retrieval>
 isa pair
 probe =val
 =goal>
 state testing
)

(p recall
 =goal>
 isa goal
 state testing
 =retrieval>
 isa pair
 answer =ans
 ?manual>
 state free
 ?visual>
 state free
 ==>
 +manual>
 cmd press-key
 key =ans
 =goal>
 state read-study-item
 +visual>
 cmd clear
)

If these two productions fired and retrieved the chunk for the pair of zinc & 9, production
compilation would compose these two rules into the following single production:

(P PRODUCTION0
 "READ-PROBE & RECALL - CHUNK0-0"
 =GOAL>
 STATE ATTENDING-PROBE
 =VISUAL>
 VALUE "zinc"
 ?IMAGINAL>
 STATE FREE
 ?MANUAL>
 STATE FREE
 ?VISUAL>
 STATE FREE

1

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

 ==>
 =GOAL>
 STATE READ-STUDY-ITEM
 +VISUAL>
 CMD CLEAR
 +MANUAL>
 CMD PRESS-KEY
 KEY "9"
 +IMAGINAL>
 PROBE "zinc"
)

Essentially, this production combines the work of the two and has built into it the paired
associate. In the next two subsections we will describe the general principles used for
composing two production rules together and the factors that control how these
productions compete in the conflict resolution process.

7.2 Forming a New Production

The basic idea behind forming a new production is to combine the tests in the two
conditions into a single set of tests that will recognize when the pair of productions will
apply and combine the two sets of actions into a single set of actions that has the same
overall effect. Since the conditions consist of a set of buffer tests and the actions consist
of a set of buffer transformations (either direct modifications or new requests) this can be
done largely on a buffer-by-buffer basis. The complications occur when there is a buffer
transformation in the action of the first production and either a test of that buffer in the
condition of the second production or another transformation of the same buffer in the
action of the second production. The productions above illustrate both complications
with respect to the goal buffer. Because the change to the state slot of the goal buffer
chunk in the first production is tested as a condition in the second production that test can
be omitted from the tests of the composed production. Then, because that state slot is
changed again by the second production, and the composed production only needs to
reproduce the final state of the original two productions, that first goal change can also be
omitted from the actions of the compiled production. The result of the overlap in the goal
buffer is just a simplification of the production rule but in other cases other responses are
necessary.

Because different modules use their buffers in different ways the production compilation
process needs to be sensitive to those differences. For instance, in the above production
we see that the retrieval buffer request was omitted from the newly formed production,
but the imaginal buffer request was not. The production compilation mechanism is built
around a set of buffer “compilation types” and each buffer is classified as one of the
possible compilation types. For each compilation type there is a set of rules that specify
when two productions that use such a buffer can be combined through compilation, and
for each type there is a set of rules for how to combine the uses of a buffer. By default
there are five types to which the buffers of ACT-R are assigned and we will describe the
mechanisms used for those types in the following sections. It is possible to add new

2

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

types and to adjust the assignment of buffers to types, but that is beyond the scope of the
tutorial.

7.2.1 Motor Type Buffers

Let us first consider the compilation policy for the motor type buffers. The buffers that
fit this type are the manual and vocal buffers. The main distinction of these buffers is
that they never hold a chunk. They are used for requesting actions to a module which can
only process one request at a time and they are only tested through queries. If the first
production makes a request of one of these buffers then it is not possible to compose it
with a second production if that production also makes a request of that buffer or queries
the buffer for anything other than state busy. If both productions make a request, then
there is a danger of jamming if both requests were to occur at the same time, and any
queries that are not checking to see if the module is busy in the second production are
probably there to prevent jamming in the future, so also block the composition.

7.2.2 Perceptual Type Buffers

Now let us consider the compilation policy for the perceptual buffers. These are the
buffers in the perceptual type: visual-location, visual, aural-location, and aural. These
buffers will hold chunks generated by their modules. The important characteristic about
them is that those chunks are based on information in the external world, and thus are not
guaranteed to result in the same request generating the same result at another time. First,
like the motor type buffers, it is not possible to compose two productions which both
make requests of the same perceptual type buffer or if the first production makes a
request and the second production makes a query for other than state busy of that buffer
because of the possibility of jamming. In addition, if the first production makes a request
of one of these buffers then it is not possible to compose it with the second production if
that production tests the contents of the buffer. This is because of the unpredictable
nature of such requests – one does not want to create productions that encapsulate
information that is based on external information which may not be valid ever again (at
least not for most modeling purposes). The idea is that we only want to create new
productions that are “safe”, and by safe we mean that the new production can only match
if the productions that it was generated from would match and that its actions are the
same as those of its parent productions. Basically, for the default mechanism, we do not
want composed productions to be generated that introduce new errors into the model.

Thus, points where a request is made of a perceptual or motor type buffer are points
where there are natural breaks in the compilation process. The standard production
compilation mechanisms will not compose a production that makes such a request with a
following production that operates on the same buffer.

3

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

7.2.3 Retrieval Type Buffer

Next let us consider the compilation policy for the retrieval buffer (the only buffer of the
retrieval type). Because declarative memory is an internal mechanism (i.e., not subject to
the whims of the outside world) it is more predictable and thus offers an opportunity for
economy. The interesting opportunity for economy occurs when the first production
requests a retrieval and the second tests the result of that retrieval. In this case, one can
delete the request and test and instead specialize the composed production. Any variables
specified in the retrieval request and bound in the harvesting of the chunk can be replaced
with the specific values based on the chunk that was actually retrieved. This was what
happened in the example production above where the retrieved paired-associate for zinc
& 9 was built into the new production0. There is one case, however, which blocks the
composition of a production which makes a retrieval request with a subsequent
production. That is when the second production has a query for a retrieval failure. This
cannot be composed because declarative memory grows monotonically and it is not safe
to predict that in the future there will be a retrieval failure. This suggests that it is
preferable, if possible, to write production rules that do not depend on retrieval failures.

7.2.4 Goal and Imaginal Type Buffers

The goal and imaginal buffers are also internal buffers allowing economies to be
achieved. The mechanisms used for these two buffers are very similar, and thus will be
described together. The difference between them arises from the fact that the imaginal
buffer requests take time to complete, and that difference will be described below. First,
we will analyze the process for which they are the same and that is broken down into
cases based on whether the first production involves a request to the buffer or not.

7.2.4.a First production does not make a request

Let C1 and C2 be the conditions for the buffer in the first and second production and A1
and A2 be the corresponding productions’ buffer modification actions for that buffer.
Then, the buffer test for the composed production is C1+(C2-A1) where (C2-A1)
specifies those things tested in C2 that were not created in A1. The modification for the
combined production is A2+(A1~A2) where (A1~A2) indicates those things that were in
A1 that are not undone by A2. If the second production makes a request, then that request
can just be included in the composed production.

7.2.4.b First production makes a request

This case breaks down into two subcases depending on whether the second production
also makes a request.

The second production does not also make a request. In this case the second
production’s buffer test can be deleted since its satisfaction is guaranteed by the first
production. Let C1 be the buffer condition of the first production, A1 be the buffer
modification action of the first production, N1 be the new request in the first production,

4

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

and A2 be the buffer modification of the second production. Then the buffer test of the
composed production is just C1, the goal modification is just A1, and the new request is
A2+(N1~A2).

The second production also makes a request. In this case the two productions cannot
be composed because this would require either skipping over the intermediate request,
which would result in a chunk not being created in the new production which was
generated by the initial two productions, or making two requests to the buffer in one
production which could lead to jamming the module.

7.2.4.c Difference between goal and imaginal

The difference between the two comes down to the use of queries. Because the imaginal
module’s requests take time one typically needs to make queries to test whether it is free
or busy whereas the goal module’s requests complete immediately and thus the state is
never busy. So, for goal type buffers, production compilation is blocked by any queries
in either production because that represents an unusual situation and is thus deemed
unsafe. For imaginal type buffers, productions which have queries are allowed when the
queries and actions between the productions are “consistent”. All of the rules for
composition consistency with the imaginal type buffers are a little too complex to
describe here, but generally speaking if the first production has a request then the second
must either test the buffer for state busy and not also make a request (like motor type
buffers) or explicitly test that the buffer is free and make only modifications to the buffer.

For more details, there is a spreadsheet in the docs directory called compilation.xls which
contains a matrix for each buffer type indicating what combinations of usages of a buffer
between the two productions can be composed.

7.3 Utility of newly created productions

So far we have discussed how new production rules are created but not how they are
used. When a new production is composed it enters the procedural module and is treated
just like the productions which are specified in the model definition. They are matched
against the current state along with all the rest of the productions and among all the
productions which match the current state the one with the highest utility is selected and
fired. When a new production, which we will call New, is composed from old
productions, which we will call Old1 and Old2 and which fired in that order, it is the
case that whenever New could apply Old1 could also apply (Note because New might be
specialized it does not follow that whenever Old1 could apply New could also apply.)
The choice between New, Old1, and any other productions which might also apply will
be determined by their utilities as was discussed in the previous unit, and there the
utilities were either set in the model with the spp command, or were learned on the basis
of rewards.

5

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

A newly learned production New will initially receive a utility of zero by default (that
can be changed with the :nu parameter). Assuming Old1 has a positive utility value, this
means that New will almost always lose in conflict resolution with Old1. However, each
time New is recreated from Old1 and Old2, its utility is updated with a reward equal to
the current utility of Old1, using the same learning equation as discussed in the previous
unit:

() () () ()[]11 −−+−= nUnRnUnU iiii α Difference Learning Equation

As a consequence, even though New may not fire initially, its utility will gradually
approach the utility of Old1. Once the utility of New and Old1 are close enough, New
will occasionally be selected because of noise. Once New is selected itself it will receive
a reward like any other production which fires, and its utility can surpass Old1’s utility if
it is better (it is usually a little better because it typically leads to rewards faster since it
saves a production rule firing and often a retrieval from declarative memory).

7.4 Learning from Instruction

Generally, production compilation allows a problem to be solved with fewer productions
over time and therefore performed faster. In addition to this speed-up, production
compilation results in the drop-out of declarative retrieval as part of the task performance.
As we saw in the example in the first section, production rules are produced that just "do
it" and do not bother retrieving the intervening information. The classic case of where
this applies in experimental psychology is in the learning of experimental instructions.
These instructions are told to the participant and initially the participant needs to interpret
these declarative instructions. However, with practice the participant will come to embed
these instructions into productions that directly perform the task. These productions will
be like the productions we normally write to model participant performance in the task.
Essentially these are productions that participants learn in the warm-up phase of the
experiment. The paired-learning model for this assignment contains an example of a
system that interprets instructions about how to perform a paired associate task and learns
productions that do the task directly.

In the model we use the following chunks to represent the understanding of the
instructions for the paired associate task (in some of our work we have built productions
that read the instructions from the screen and build these chunks but we are skipping that
step here to focus on the mechanisms of this unit):

1. (op1 isa operator pre start action read arg1 create post stimulus-read)
2. (op2 isa operator pre stimulus-read action associate arg1 filled arg2 fill post recalled)
3. (op3 isa operator pre recalled action test-arg2 arg1 respond arg2 wait)
4. (op4 isa operator pre respond action type arg2 response post wait)
5. (op5 isa operator pre wait action read arg2 fill post new-trial)
6. (op6 isa operator pre new-trial action complete-task post start)

6

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

These are represented as operators that indicate what to do in various states during the
course of a paired-associate trial. They consist of a statement of what that state is in the
pre slot and what state will occur after the action in the post slot. In addition, there is an
action slot to specify the action to perform and two slots, arg1 and arg2, for holding
possible arguments needed during the task execution. So to loosely translate the six
operators above:

1. At the start read the word and create an encoding of it as the stimulus
2. After reading the stimulus try to retrieve an associate to the stimulus
3. Test whether an item has been recalled and if it has not then just wait
4. If an item has been recalled type it and then wait
5. Store the response you read with the stimulus
6. This trial is complete so start the next one

The model uses a chunk in the goal buffer to maintain a current state and sub step within
that state and a chunk in the imaginal buffer to hold the items relevant to the current
state. For this task, the arguments are the stimulus and probe for a trial.

The model must retrieve operators from declarative memory which apply to the current
state to determine what to do, and in this simple model we really just need one production
rule which requests the retrieval of an operator relevant to the current state:

(p retrieve-operator
 =goal>
 isa task
 state =state
 step ready
==>
 +retrieval>
 isa operator
 pre =state
 =goal>
 step retrieving-operator)

The particular actions specified in the operators (read, associate, test-arg2, type, and
complete-task) are all general actions not specific to a paired associate task. We assume
that the participant knows how to do these things going into the experiment. This
amounts to assuming that there are productions for processing these actions. For
instance, the following two productions are responsible for reading an item and creating a
chunk in the imaginal buffer which encodes the item into the arg1 slot of that chunk:

(p read-arg1
 =goal>
 isa task

7

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

 step retrieving-operator
 =retrieval>
 isa operator
 action read
 arg1 create
 post =state
 =visual-location>
 isa visual-location
 ?visual>
 state free
 ?imaginal>
 state free
 ==>
 +imaginal>
 isa args
 arg1 fill
 +visual>
 cmd move-attention
 screen-pos =visual-location
 =goal>
 step attending
 state =state)

(p encode-arg1
 =goal>
 isa task
 step attending
 =visual>
 isa text
 value =val
 =imaginal>
 isa args
 arg1 fill
 ?imaginal>
 state free
 ==>
 *imaginal>
 arg1 =val
 =goal>
 step ready)

The first production responds to the retrieval of the operator and requests a visual
attention shift to an item. It also changes the state slot in the goal buffer to the operator’s
post state. The second production modifies the representation in the imaginal buffer with
the value from the chunk in the visual buffer and sets the goal buffer’s step slot to be
ready to retrieve the operator relevant to the next state.

8

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

The paired-learning model responds to the same task as the paired model you had for
Unit 4. However, rather than having specific productions for doing the task it interprets
these operators that represent the instructions for doing this task. For reference, here is
the data that is being modeled again:

Trial Accuracy Latency
1 .000 0.000
2 .526 2.156
3 .667 1.967
4 .798 1.762
5 .887 1.680
6 .924 1.552
7 .958 1.467
8 .954 1.402

The model can be run either with production compilation on or off. To run it with
production compilation off, set the :epl parameter to nil. The following is a run without
production compilation:

? (paired-experiment 10)

Latency:
CORRELATION: 0.972
MEAN DEVIATION: 0.192
Trial 1 2 3 4 5 6 7 8
 0.000 2.026 1.970 1.901 1.825 1.777 1.750 1.727

Accuracy:
CORRELATION: 0.991
MEAN DEVIATION: 0.046
Trial 1 2 3 4 5 6 7 8
 0.000 0.398 0.678 0.797 0.868 0.920 0.939 0.948

When it is run with :epl t, the following is the result:

? (paired-experiment 10)

Latency:
CORRELATION: 0.991
MEAN DEVIATION: 0.089
Trial 1 2 3 4 5 6 7 8
 0.000 2.040 1.948 1.831 1.698 1.630 1.584 1.555

Accuracy:
CORRELATION: 0.993
MEAN DEVIATION: 0.046
Trial 1 2 3 4 5 6 7 8
 0.000 0.405 0.642 0.799 0.863 0.899 0.941 0.942

9

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

As can be seen, whether production compilation is off or on has relatively little effect on
the accuracy of recall but turning it on greatly increases the speed-up over trials in recall
time. This is because we are cutting out productions and retrievals.

If you set the :pct (production compilation trace) parameter to t (and you will also need
to set :v to t) you will see the system print out the new productions as they are compiled
or the reason why two productions could not be compiled. For instance, the following is
a fragment of the trace when we executed the command (paired-task 1 1) to study one
paired-associate for 1 trial with production compilation turned on.

 0.400 PROCEDURAL PRODUCTION-FIRED RETRIEVE-OPERATOR
Production Compilation process started for RETRIEVE-OPERATOR
 Production ENCODE-ARG1 and RETRIEVE-OPERATOR are being composed.
 New production:

(P PRODUCTION1
 "ENCODE-ARG1 & RETRIEVE-OPERATOR"
 =GOAL>
 STEP ATTENDING
 STATE =STATE
 =IMAGINAL>
 ARG1 FILL
 =VISUAL>
 TEXT T
 VALUE =VAL
 ?IMAGINAL>
 STATE FREE
 ==>
 =GOAL>
 STEP RETRIEVING-OPERATOR
 +RETRIEVAL>
 PRE =STATE
 *IMAGINAL>
 ARG1 =VAL
)
Parameters for production PRODUCTION1:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL

The production that was learned, Production1, is a compilation of two of the original
productions:

(p encode-arg1
 =goal>
 isa task
 step attending
 =visual>
 isa text
 value =val
 =imaginal>
 isa args
 arg1 fill

10

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

 ?imaginal>
 state free
 ==>
 *imaginal>
 arg1 =val
 =goal>
 step ready)

(p retrieve-operator
 =goal>
 isa task
 state =state
 step ready
 ==>
 +retrieval>
 isa operator
 pre =state
 =goal>
 step retrieving-operator)

The first production, Encode-arg1, encodes the stimulus, and sets the goal as ready to
retrieve the next operator. This is followed by Retrieve-operator, which makes the
retrieval request. The compiled production is particularly straight forward. Its condition
is just the condition of the first production plus the check for the state slot in the goal of
the second production, and its action combines the actions of the two.

It is worth understanding how the parameters of this new production are calculated. The
value of α is 0.2 (the default). When the production is first created, its utility is set to
zero (the default). The utilities of the initial rules in the system are all set to 5 (using the
:iu parameter which sets the starting utility for all of the initial productions), so a value of
zero means that it will almost certainly lose the competition with the parent production
the next time it might be applicable. However, each time it is recreated, it receives a
reward which is the same as the utility of the first parent production. Suppose that when
the parents fire in sequence again and this same production is recreated, the first parent
still has a utility of 5. The utility of the new rule is then updated:

1
)05(2.0

)]1()([)1()(

=
−+=

−−+−= niUniRniUniU α

A utility of 1 is still not sufficient to be selected in competition with a production of
utility 5. Thus it will need to be recreated a number of times before it will have a
significant chance of being chosen in conflict resolution. The speed of this learning is
determined by the setting of α. If it is set to 1, productions will typically get very good
values immediately and be tried on the first opportunity. If you do that and run (paired-

11

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

task 1 10) you will discover in just a few trials it is selecting and firing newly learned
productions which are then also going through production compilation:

 25.486 PROCEDURAL PRODUCTION-FIRED PRODUCTION8
Production Compilation process started for PRODUCTION8
 Production RETRIEVE-OPERATOR and PRODUCTION8 are being composed.
 New production:

(P PRODUCTION29
 "RETRIEVE-OPERATOR & PRODUCTION8 - OP6"
 =GOAL>
 STATE NEW-TRIAL
 STEP READY
 ==>
 =GOAL>
 STEP RETRIEVING-OPERATOR
 +RETRIEVAL>
 PRE START
 +GOAL>
 STATE START
 STEP RETRIEVING-OPERATOR
)

After just a couple more trials we will start to find productions that are the composition of
multiple previously composed productions and it will soon end up with a production like
this:

(P PRODUCTION52
 "PRODUCTION1 & PRODUCTION31 - OP2"
 =GOAL>
 STATE STIMULUS-READ
 STEP ATTENDING
 =IMAGINAL>
 ARG1 FILL
 =VISUAL>
 TEXT T
 VALUE "zinc"
 ?IMAGINAL>
 STATE FREE
 ==>
 =GOAL>
 STATE RECALLED
 STEP RETRIEVING-OPERATOR
 +RETRIEVAL>
 PRE RECALLED
 *IMAGINAL>
 ARG1 "zinc"
 ARG2 "9"
)

Which responds to seeing “zinc” on the screen by placing both “zinc” and “9” in the
imaginal buffer chunk’s slots.

12

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

7.5 Assignment

Your assignment is to make a model that learns the past tense of verbs in English. The
learning process of the English past tense is characterized by the so-called U-shaped
learning in the learning of irregular verbs. That is, at a certain age children inflect
irregular verbs like “to break” correctly, so they say “broke” if they want to use the past
tense. But at a later age, they overgeneralize, and start saying “breaked”, and then at an
even later stage they again inflect irregular verbs correctly. Some people, such as Pinker
and Marcus, interpret this as evidence that a rule is learned to create regular past tense
(add “ed” to the stem). According to Pinker and Marcus, after this rule has been learned,
it is overgeneralized so that it will also produce regularized versions of irregular verbs.

Part of the model is already given in the file past-tense. The assignment is to make a
model that learns a production which represents the regular rule for making the past tense
and specific productions for producing the past tense of each irregular verb. So eventually
it should learn productions which act like this:

IF the goal is to make the past tense of a verb
THEN copy that verb and add –ed

IF the goal is to make the past tense of the verb have
THEN the past tense is had

The code that is provided does two things. It adds correct past tenses to declarative
memory, reflecting the fact that a child hears and then encodes correct past tenses in the
environment. It also creates goals which indicate to the model that it should generate the
past tense of a verb found in the imaginal buffer and then runs the model to generate one.
The model will be given two correct past tenses for every one that it must generate.

Here are examples of correctly formed past tenses:

PAST-TENSE1
verb have
stem had
suffix blank

is a correct encoding of the irregular verb have and:

PAST-TENSE234
verb use
stem use
suffix ed

is a correct encoding of the regular verb use.

At the start of the model’s run it will have a chunk in the goal buffer which looks like
this:

13

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

STARTING-GOAL-0
 STATE START

and a chunk in the imaginal buffer which looks like this:

CHUNK2-0
 VERB some-verb

where the verb slot holds the verb for which the model must produce a past tense. The
model has to fill in the stem and suffix slots of the chunk in the imaginal buffer to
indicate the past tense form of the verb and then set the state slot of the chunk in the goal
buffer to done. Once the state slot is set to done, one of the three productions provided
with the model should fire to simulate the final encoding and “use” of the word, each of
which has a different reward. There are three possible cases:

- An irregular inflection, this is when there is a value in the stem slot and the
suffix is marked explicitly as blank. This use has the highest reward, because
irregular verbs tend to be short.

- A regular inflection, in which the stem slot is the same as the verb slot and the
suffix slot has a value which is not blank. This has a slightly lower reward.

- Non-inflected when neither the stem or suffix slots are set in the chunk. The
non-inflection case applies when the model cannot come up with a past tense
at all, either because it has no example to retrieve, no production to create it,
or no strategy to come up with anything based on a retrieved past tense. The
non-inflection solution receives the lowest reward because the past tense
would have to be indicated by some other method, for example by adding
“yesterday” or some other explicit reference to time.

One important thing to notice is that all three solutions receive a reward. The model
receives no feedback as to whether the past tenses it produces are correct – any past tense
is considered a success and rewarded. The only feedback it receives is the correctly
constructed verbs that it hears from the environment.

You can run the model with the past-tense command. It takes as an argument the number
of words you want the model to generate:

(past-tense 5000)

As keyword parameters you can specify whether or not you want ACT-R to be verbose
(i.e. set the :v parameter to t) or whether ACT-R should continue with the run you started
in an earlier past-tense call. To make the model verbose you would add “:v t” to the call
to past-tense and to continue you would add “:cont t”. Thus, if you wanted the model to
continue running for 1000 more verbs you would call this:

(past-tense 1000 :cont t)

14

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

During the run, the simulation will display four numbers in a row, reflecting the results of
the last 100 verbs generated. The first number is the proportion correct of irregular verbs.
The second number is the proportion of irregular verbs that are inflected regularly. An
increase in this number indicates a regular rule is active i.e. irregular verbs are having
“ed” added to them. The third number is the proportion of irregular verbs that are not
inflected at all. The fourth number is the proportion of inflected irregular verbs that are
inflected correctly (the non-inflected verbs are not counted for this measure). It is in this
last column that you should see a U-shape.

It usually requires more than 5000 trials to see the effect (often 15000~20000 trials are
necessary). The :cont (continue) option in the past-tense function allows you to run
more trials without resetting the model. After the model is done, the report-irreg
function gives a report where results are summarized for 1000 trials at a time. The 100
trial summaries displayed during the past-tense function run are really only there to
make sure the model is still doing things, and in what direction the results are going. You
can pass t as an optional parameter to the report-irreg function to have it generate a
graph of the data. What you are looking for from the model is a graph that looks
something like this:

15

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

It starts out with a high percentage correct, dips down, and then shows an increasing
trend (this simplified version of the task will probably not get all the way back to 100%
correct). That is the U-shaped learning result. An important thing to look at with the
output in the graph is the vertical scale. The graph will adjust the y-intercept to display
all of the results and the model should always be getting most of the trials where it does
inflect the verb correct (if it’s dropping below .75 there’s probably a problem with the
model).

This model differs from other models in the tutorial in that it does not model a particular
experiment, but rather some long term development. This has a couple of consequences
for the model. One of those is that using perceptual/motor modules does not contribute
much to the objective of the model. Thus things like the "hearing" of past tenses and the
eventual generation of the verb in speech are not modeled for the purpose of this exercise.
It could be modeled, but it is not what the model and exercise are about. Therefore
explicitly adding already processed perceived past tenses to declarative memory and just
setting differing rewards for generation of certain classes of verb tenses serves as a
reasonable compromise.

The other consequence of the nature of this task is that runs of the model may differ
considerably. Here are images of two other runs of the same model as shown above:

On the one hand this is not so bad, as children also differ with respect to U-shaped
learning. One reason for the relative unpredictability is the fact that this simulation runs
with a very limited vocabulary (extending the vocabulary results in a model that runs
extremely slowly which is not practical as an exercise). Another reason is that the effects
of noise in the model can have an impact that creates noticeable effects over the long
term running of the model and we are only showing the results of a single run – this isn’t
the average of many simulated children but one child over many simulated weeks of

16

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

practice. This also makes comparing this model to data difficult, and hard data on the
phenomenon are scarce, although the phenomenon of the U-shape is reported often. A
few children have been followed in a longitudinal study, and there is a spreadsheet
included with the unit materials (data.xls) that shows those results for comparison.

In terms of the assignment, the objective is to write a model that learns the appropriate
productions for producing past tenses. There is no parameter adjustment or data fitting
required. All one needs to do is write productions which can generate past tenses based
on retrieving previous past tenses, and which through production compilation will over
time result in productions which directly apply the regular rule or produce the specific
past tense.

The key to a successful model is to implement two different retrieval strategies in the
model. The model can either try to remember the past tense for the specific verb or the
model can try to generate a past tense based on retrieving any past-tense. These should
be competing strategies, and only one applied on any given attempt. If the chosen
strategy fails to produce a result the model should “give up” and not inflect the verb. The
reason for doing that is that language generation is a rapid process and not something for
which a lot of time per word can be allocated.

Additionally, the productions you write should make no explicit reference to either ed or
blank because that is what the model is to eventually learn, i.e., you do not write a
production that says add ed, but through the production compilation mechanism such a
production is learned. Although the experiment code is only outfitted with a limited set
of words, the frequency with which the words are presented to the model is in accordance
with the frequency they appear in real life, and because of that, if your model learns
appropriate productions it should generate the U-shaped learning automatically (although
it won’t always look the same on every run). Unlike the other models in the tutorial,
there is a fairly small set of “good” solutions to this task which will result in the
generation of the U-shaped learning because the model’s starting productions will need to
result in the learning of specific productions over time to work correctly. One final thing
to note is that even a “correct” model may sometimes fail to show the U-shape, but on
most runs (90% or more) it should show up in some form.

There are two important things to make sure to address when writing your model. It must
set the state slot of the chunk in the goal buffer to done on every trial, and the chunk in
the imaginal buffer must have one of the forms described above: either a chunk with
values in each of the verb, stem and suffix slots or a chunk with only a value in the verb
slot. Those conditions are necessary so that one of the provided productions will fire and
propagate a reward. If it does not do so, then there will be no reward propagated to
promote the utility learning for that trial and the reward from a later trial will be
propagated back to the productions which fired on the trial which didn’t get a reward.
That later reward will be very negative because there are 200 seconds between trials, and
that will make it very difficult, if not impossible, to produce the U-shaped learning.
Essentially this represents the model saying something every time it tries to produce a

17

ACT-R 7 Tutorial 11-Jul-17 Unit Seven

past-tense while speaking. If the model does not respond on a trial then a warning will be
output indicating which verb was provided and the time that trial started:

#|Warning: Model did not receive a reward when presented GET at
time 200.0. |#

One final thing to note is that when the model doesn’t give up it should produce a
reasonable answer. One aspect of being reasonable is that the resulting chunk in the
imaginal buffer should have the same value in the verb slot that it started with.
Similarly, if there is a value in the stem slot, then it should be either that verb or the
correct irregular form of that verb. For example, if it starts with “have” in the verb slot
acceptable values would be “have” or “had” in the stem slot, but if it starts with a regular
verb, like “use” the only acceptable value for the stem would be “use” because it
shouldn’t be trying to create some irregular form for a regular verb. If the model does
produce an unreasonable result there will be a warning printed showing the starting verb
and the result which the model created like this:

#|Warning: Incorrectly formed verb. Presented CALL and produced
VERB GET STEM GOT SUFFIX BLANK. |#

That indicates the model was asked to produce the past tense for “call” and responded
with the correct past tense for the different verb “get”. Your model should not produce
any incorrectly formed verb warnings when it runs.

18

	Unit 7: Production Rule Learning
	7.1 The Basic Idea
	7.2 Forming a New Production
	7.2.1 Motor Type Buffers
	7.2.2 Perceptual Type Buffers
	7.2.3 Retrieval Type Buffer
	7.2.4 Goal and Imaginal Type Buffers
	7.2.4.a First production does not make a request
	7.2.4.b First production makes a request
	7.2.4.c Difference between goal and imaginal

	7.3 Utility of newly created productions
	7.4 Learning from Instruction
	7.5 Assignment

