
ACT-R 7 Tutorial 11-Jul-17 Unit Seven Code Details

Unit7 Model Code Description

The paired associate model for this unit uses the same experiment code as the paired
associate model from unit 4. So in this document we will only be looking at the past
tense model. This is another example of an experiment and model that do not use the
perceptual and motor components of ACT-R.

(defvar *report*)
(defvar *word*)
(defvar *repcount*)
(defvar *trial*)

(defun make-word-freq-list (l &optional (start 0))
 (when l
 (let ((count (third l)))
 (cons (list (+ start count) (first l) (fourth l)
 (if (eq (second l) 'I) 'blank 'ed))
 (make-word-freq-list (nthcdr 4 l) (+ start count))))))

(defparameter *word-list*
 (make-word-freq-list '(have I 12458 had
 do I 4367 did
 make I 2312 made
 get I 1486 got
 use R 1016 use
 look R 910 look
 seem R 831 seem
 tell I 759 told
 show R 640 show
 want R 631 want
 call R 627 call
 ask R 612 ask
 turn R 566 turn
 follow R 540 follow
 work R 496 work
 live R 472 live
 try R 472 try
 stand I 468 stood
 move R 447 move
 need R 413 need
 start R 386 start
 lose I 274 lost)))

(defparameter *total-count* (caar (last *word-list*)))

(defun random-word ()
 (let ((num (act-r-random *total-count*)))
 (cdr (find-if (lambda (x) (< num (first x))) *word-list*))))

(defun make-one-goal ()
 (setf *word* (random-word))

 (set-buffer-chunk 'imaginal
 (car (define-chunks-fct
 (list (list 'verb (first *word*))))))
 (goal-focus starting-goal))

(defun add-past-tense-to-memory ()

ACT-R 7 Tutorial 11-Jul-17 Unit Seven Code Details

 (let ((word (random-word)))
 (set-buffer-chunk 'imaginal
 (car (define-chunks-fct
 (list (mapcan (lambda (x y) (list x y))
 '(verb stem suffix) word)))))
 (clear-buffer 'imaginal)))

(defun report-irreg (&optional (graph nil) (trials 1000))
 (format t "~% Irreg Reg None Overreg~%")
 (let ((data (mapcar 'fourth (rep-f-i *report* trials))))
 (when (and graph data)
 (graph-it data)))
 nil)

(defun graph-it (data)
 (let* ((win (open-exp-window "Irregular Verbs correct" :width 500 :height 475))
 (low (apply 'min data))
 (zoom (min .9 (/ (floor low .1) 10))))
 (allow-event-manager win)
 (clear-exp-window)
 (add-text-to-exp-window :x 5 :y 5 :text "1.0" :width 22)
 (add-text-to-exp-window :x 5 :y 400 :text (format nil "~0,2f" zoom) :width 22)
 (add-text-to-exp-window :x 5 :y 200 :text (format nil "~0,2f"
 (+ zoom (/ (- 1.0 zoom) 2)))
 :width 22)

 (add-text-to-exp-window :x 200 :y 420 :text "Trials" :width 100)
 (add-line-to-exp-window '(30 10) '(30 410) :color 'black)
 (add-line-to-exp-window '(450 410) '(25 410) :color 'black)
 (dotimes (i 10)
 (add-line-to-exp-window (list 25 (+ (* i 40) 10))
 (list 35 (+ (* i 40) 10))
 :color 'black))

 (when (= (length data) 1)
 (push (first data) data))
 (do* ((increment (max 1.0 (floor (/ 450.0 (length data)))))
 (range (floor 400 (- 1.0 zoom)))
 (intercept (+ range 10))
 (p1 (butlast data) (cdr p1))
 (p2 (cdr data) (cdr p2))
 (last-x 30 this-x)
 (last-y (- intercept (floor (* range (car p1))))
 (- intercept (floor (* range (car p1)))))
 (this-x (+ last-x increment)
 (+ last-x increment))
 (this-y (- intercept (floor (* range (car p2))))
 (- intercept (floor (* range (car p2))))))
 ((null (cdr p1)) (add-line-to-exp-window
 (list last-x last-y) (list this-x this-y) :color 'red))
 (add-line-to-exp-window (list last-x last-y)
 (list this-x this-y)
 :color 'red))
 (allow-event-manager win)))

(defun rep-f-i (l n)
 (when l
 (let ((x (if (> (length l) n) (subseq l 0 n) l))
 (y (if (> (length l) n) (subseq l n) nil))
 (irreg 0)
 (reg 0)

ACT-R 7 Tutorial 11-Jul-17 Unit Seven Code Details

 (none 0)
 (error 0))
 (dolist (i x)
 (when (first i)
 (case (second i)
 (reg
 (incf reg))
 (irreg
 (incf irreg))
 (none
 (incf none))
 (t
 (incf error)))))

 (let* ((total (+ irreg reg none))
 (data
 (if (zerop total)
 (list 0 0 0 0)
 (list (/ irreg total) (/ reg total)
 (/ none total) (if (> (+ irreg reg) 0) (/ irreg (+ irreg reg)) 0)))))
 (format t "~{~6,3F~^ ~}~%" data)
 (cons data (rep-f-i y n))))))

(defun add-to-report (the-chunk)
 (let ((stem (chunk-slot-value-fct the-chunk 'stem))
 (word (chunk-slot-value-fct the-chunk 'verb))
 (suffix (chunk-slot-value-fct the-chunk 'suffix))
 (irreg (eq (third *word*) 'blank)))

 (if (eq (first *word*) word)
 (cond
 ((and (eq stem word) (eq suffix 'ed))
 (push-last (list irreg 'reg) *report*))
 ((and (null suffix) (null stem))
 (push-last (list irreg 'none) *report*))
 ((and (eq stem (second *word*)) (eq suffix 'blank))
 (push-last (list irreg 'irreg) *report*))
 (t
 (print-warning "Incorrectly formed verb. Presented ~s and produced ~{~s~^ ~}."
 (first *word*)
 (mapcan (lambda (x y) (list x y))
 '(verb stem suffix) (list word stem suffix)))
 (push-last (list irreg 'error) *report*)))
 (progn
 (print-warning "Incorrectly formed verb. Presented ~s and produced ~{~s~^ ~}."
 (first *word*)
 (mapcan (lambda (x y) (list x y))
 '(verb stem suffix) (list word stem suffix)))
 (push-last (list irreg 'error) *report*)))))

(defvar *last-reward-time*)

(defun past-tense (n &key (cont nil)(repfreq 100)(v nil))
 (unless cont
 (reset)
 (format t "~%")
 (setf *report* nil)
 (setf *trial* 0 *repcount* 0 *last-reward-time* 0))

 (sgp-fct (list :v v))

 (dotimes (i n)

ACT-R 7 Tutorial 11-Jul-17 Unit Seven Code Details

 (let ((previous-reward *last-reward-time*)
 (start-time (get-time)))
 (add-past-tense-to-memory)
 (add-past-tense-to-memory)
 (make-one-goal)
 (run 200)
 (when (= previous-reward *last-reward-time*)
 (print-warning "Model did not receive a reward when given the verb ~a at time ~f."
 (first *word*) start-time))
 (add-to-report (buffer-read 'imaginal))
 (clear-buffer 'imaginal)
 (incf *repcount*)
 (incf *trial*)
 (when (>= *repcount* repfreq)
 (format t "Trial ~6D : " *trial*)
 (rep-f-i (subseq *report* (- *trial* repfreq)) repfreq)
 (setf *repcount* 0))

 (run-full-time 200))))

(defun response-check (reward)
 (declare (ignore reward))
 (setf *last-reward-time* (get-time)))

Start by defining some global variables to hold the responses and current trial values:

(defvar *report*)
(defvar *word*)
(defvar *repcount*)
(defvar *trial*)

Define a function to build the word list for use in the experiment. The list for each verb
will include a count for generating a random verb based on its frequency in English and
the verb and its correct past tense.

(defun make-word-freq-list (l &optional (start 0))
 (when l
 (let ((count (third l)))
 (cons (list (+ start count) (first l) (fourth l)
 (if (eq (second l) 'I) 'blank 'ed))
 (make-word-freq-list (nthcdr 4 l) (+ start count))))))

Construct the list of words using the make-word-freq-list function:

(defparameter *word-list*
 (make-word-freq-list '(have I 12458 had
 do I 4367 did
 make I 2312 made
 get I 1486 got
 use R 1016 use
 look R 910 look
 seem R 831 seem
 tell I 759 told
 show R 640 show
 want R 631 want
 call R 627 call
 ask R 612 ask
 turn R 566 turn
 follow R 540 follow
 work R 496 work

ACT-R 7 Tutorial 11-Jul-17 Unit Seven Code Details

 live R 472 live
 try R 472 try
 stand I 468 stood
 move R 447 move
 need R 413 need
 start R 386 start
 lose I 274 lost)))

Set a variable to the number of words from which to draw to get the right frequencies:

(defparameter *total-count* (caar (last *word-list*)))

Define a function to pick a random word from the set based on the relative frequencies:

(defun random-word ()
 (let ((num (act-r-random *total-count*)))
 (cdr (find-if (lambda (x) (< num (first x))) *word-list*))))

Make-one-goal picks a random verb and then creates a chunk that only has a value in the
verb slot to place in the imaginal buffer and put the starting goal chunk in place:

(defun make-one-goal ()
 (setf *word* (random-word))

Use the set-buffer-chunk command to place a chunk that is built with the define-chunks
function (because we do not want to put it into declarative memory) into the imaginal
buffer and then copy the starting-goal chunk into the goal buffer.

 (set-buffer-chunk 'imaginal
 (car (define-chunks-fct
 (list (list 'verb (first *word*))))))
 (goal-focus starting-goal))

This function adds a correctly formed past tense to the declarative memory of the model
by placing it into the imaginal buffer and then clearing the buffer so that the chunk gets
merged into declarative memory normally.

(defun add-past-tense-to-memory ()
 (let ((word (random-word)))
 (set-buffer-chunk 'imaginal
 (car (define-chunks-fct
 (list (mapcan (lambda (x y) (list x y))
 '(verb stem suffix) word)))))
 (clear-buffer 'imaginal)))

The report-irreg function prints out the performance of the model averaged over every
1000 trials by default and draws the graph if the first optional parameter is true:

(defun report-irreg (&optional (graph nil) (trials 1000))
 (format t "~% Irreg Reg None Overreg~%")
 (let ((data (mapcar 'fourth (rep-f-i *report* trials))))
 (when (and graph data)

ACT-R 7 Tutorial 11-Jul-17 Unit Seven Code Details

 (graph-it data)))
 nil)

The graph-it function uses the experiment window generation tools to draw a graph of the
model’s performance for over generalized irregular verbs (the U-shaped learning):

(defun graph-it (data)
 (let* ((win (open-exp-window "Irregular Verbs correct" :width 500 :height 475))
 (low (apply 'min data))
 (zoom (min .9 (/ (floor low .1) 10))))
 (allow-event-manager win)
 (clear-exp-window)
 (add-text-to-exp-window :x 5 :y 5 :text "1.0" :width 22)
 (add-text-to-exp-window :x 5 :y 400 :text (format nil "~0,2f" zoom) :width 22)
 (add-text-to-exp-window :x 5 :y 200 :text (format nil "~0,2f"
 (+ zoom (/ (- 1.0 zoom) 2)))
 :width 22)

 (add-text-to-exp-window :x 200 :y 420 :text "Trials" :width 100)
 (add-line-to-exp-window '(30 10) '(30 410) :color 'black)
 (add-line-to-exp-window '(450 410) '(25 410) :color 'black)
 (dotimes (i 10)
 (add-line-to-exp-window (list 25 (+ (* i 40) 10))
 (list 35 (+ (* i 40) 10))
 :color 'black))

 (when (= (length data) 1)
 (push (first data) data))
 (do* ((increment (max 1.0 (floor (/ 450.0 (length data)))))
 (range (floor 400 (- 1.0 zoom)))
 (intercept (+ range 10))
 (p1 (butlast data) (cdr p1))
 (p2 (cdr data) (cdr p2))
 (last-x 30 this-x)
 (last-y (- intercept (floor (* range (car p1))))
 (- intercept (floor (* range (car p1)))))
 (this-x (+ last-x increment)
 (+ last-x increment))
 (this-y (- intercept (floor (* range (car p2))))
 (- intercept (floor (* range (car p2))))))
 ((null (cdr p1)) (add-line-to-exp-window
 (list last-x last-y) (list this-x this-y) :color 'red))
 (add-line-to-exp-window (list last-x last-y)
 (list this-x this-y)
 :color 'red))
 (allow-event-manager win)))

The rep-f-i function does the analysis of the responses for output in report-irreg:

(defun rep-f-i (l n)
 (when l
 (let ((x (if (> (length l) n) (subseq l 0 n) l))
 (y (if (> (length l) n) (subseq l n) nil))
 (irreg 0)
 (reg 0)
 (none 0)
 (error 0))
 (dolist (i x)
 (when (first i)
 (case (second i)
 (reg

ACT-R 7 Tutorial 11-Jul-17 Unit Seven Code Details

 (incf reg))
 (irreg
 (incf irreg))
 (none
 (incf none))
 (t
 (incf error)))))

 (let* ((total (+ irreg reg none))
 (data
 (if (zerop total)
 (list 0 0 0 0)
 (list (/ irreg total) (/ reg total)
 (/ none total) (if (> (+ irreg reg) 0) (/ irreg (+ irreg reg)) 0)))))
 (format t "~{~6,3F~^ ~}~%" data)
 (cons data (rep-f-i y n))))))

The add-to-report function takes the name of a chunk and classifies the past tense that it
contains, saves that classification for later analysis, and prints a warning if it’s a badly
formed past tense:

(defun add-to-report (the-chunk)
 (let ((stem (chunk-slot-value-fct the-chunk 'stem))
 (word (chunk-slot-value-fct the-chunk 'verb))
 (suffix (chunk-slot-value-fct the-chunk 'suffix))
 (irreg (eq (third *word*) 'blank)))

 (if (eq (first *word*) word)
 (cond
 ((and (eq stem word) (eq suffix 'ed))
 (push-last (list irreg 'reg) *report*))
 ((and (null suffix) (null stem))
 (push-last (list irreg 'none) *report*))
 ((and (eq stem (second *word*)) (eq suffix 'blank))
 (push-last (list irreg 'irreg) *report*))
 (t
 (print-warning "Incorrectly formed verb. Presented ~s and produced ~{~s~^ ~}."
 (first *word*)
 (mapcan (lambda (x y) (list x y))
 '(verb stem suffix) (list word stem suffix)))
 (push-last (list irreg 'error) *report*)))
 (progn
 (print-warning "Incorrectly formed verb. Presented ~s and produced ~{~s~^ ~}."
 (first *word*)
 (mapcan (lambda (x y) (list x y))
 '(verb stem suffix) (list word stem suffix)))
 (push-last (list irreg 'error) *report*)))))

Create a variable for keeping track of when the last reward was presented to the model.

(defvar *last-reward-time*)

The past-tense function presents a number of trials to the model. For every one that the
model has to generate it first receives two correct ones into declarative memory.

(defun past-tense (n &key (cont nil)(repfreq 100)(v nil))

ACT-R 7 Tutorial 11-Jul-17 Unit Seven Code Details

If the cont parameter is nil then the model needs to be reset and all of the data collected
previously cleared:

 (unless cont
 (reset)
 (format t "~%")
 (setf *report* nil)
 (setf *trial* 0 *repcount* 0 *last-reward-time* 0))

Set the model’s :v parameter based on the parameter passed to past-tense using the
functional form of sgp:

 (sgp-fct (list :v v))

For n trials present the model with two correct past tenses and then run it to generate one:

 (dotimes (i n)

Record the time of the last reward and the starting time to a use for a safety check to
make sure the model has responded on this trial and provide a warning if it did not

 (let ((previous-reward *last-reward-time*)
 (start-time (get-time)))

Add two past tenses to declarative memory

 (add-past-tense-to-memory)
 (add-past-tense-to-memory)

Generate a new goal and verb for the imaginal buffer and run the model up to 200 seconds

 (make-one-goal)
 (run 200)

If the model did not respond (indicated by no new reward having been given) then print a
warning to indicate which verb was given and at what time

 (when (= previous-reward *last-reward-time*)
 (print-warning "Model did not receive a reward when given the verb ~a at time ~f."
 (first *word*) start-time))

Record the model’s response and print the data every repfreq trials

 (add-to-report (buffer-read 'imaginal))
 (clear-buffer 'imaginal)
 (incf *repcount*)
 (incf *trial*)
 (when (>= *repcount* repfreq)
 (format t "Trial ~6D : " *trial*)
 (rep-f-i (subseq *report* (- *trial* repfreq)) repfreq)
 (setf *repcount* 0))

ACT-R 7 Tutorial 11-Jul-17 Unit Seven Code Details

Run the model for 200 seconds before presenting the next trial

 (run-full-time 200))))

This function gets called every time there is a reward presented to the model because
the :reward-notify-hook parameter is set to this function’s name in the model definition.
It records the time of the reward presentation so the past-tense function can verify that a
reward was provided on every trial.

(defun response-check (reward)
 (declare (ignore reward))
 (setf *last-reward-time* (get-time)))

The first two new commands used in this unit are functions for manipulating the contents
of buffers.

set-buffer-chunk is a function that can be used to set a buffer to hold a copy of a
particular chunk. It takes two parameters which must be the name of a buffer and the
name of a chunk respectively. It copies that chunk into the specified buffer (clearing any
chunk which may have been in the buffer at that time) and returns the name of the chunk
which is now in the buffer. This acts very much like the goal-focus command, except
that it works for any buffer. An important difference however is that the goal-focus
command actually schedules an event which uses set-buffer-chunk to put the chunk in the
goal buffer. That is important because scheduled events display in the model trace and
are changes to which the model can react. Typically, the schedule-set-buffer-chunk
command is more appropriate than set-buffer-chunk for that reason and you can find the
details on that command in the reference manual.

clear-buffer is a function that can be used to clear a chunk from a buffer the same way a
–buffer> action in a production will. It takes one parameter which should be the name of
a buffer and that buffer is emptied and the chunk merged into declarative memory.

The other two new commands in this unit are more general purpose tools.

push-last is a macro for adding an item to the end of a list. It takes two parameters, any
item and a list. It destructively adds the item to the end of the list.

print-warning is a macro for displaying ACT-R warning messages. It takes parameters
similar to the format command (a format string and then any number of parameters after
that). It will use that format string to display the parameters provided inside of a block
quote which starts with “Warning:”. It will print the output regardless of the settings of
the :v and :cmdt parameters.

	Unit7 Model Code Description

