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Unit 6: Selecting Productions on the Basis of Their Utilities and 
Learning these Utilities

Occasionally, we have had cause to set parameters of productions so that one production 
will be preferred over another in the conflict resolution process.  Now we will examine 
how production utilities are computed and used in conflict resolution.  We will also look 
at how these utilities are learned.

6.1 The Utility Theory

Each production has a utility associated with it which can be set directly as we have seen 
in some of the previous units.  In this unit we will describe how those utilities can be 
learned from experience. Like activations, utilities have noise added to them. The noise is 
controlled by the utility noise parameter s which is set with the parameter :egs. The noise 
is distributed according to a logistic distribution with a mean of 0 and a variance of
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If  there  are  a  number  of  productions  competing  with  expected  utility  values  Uj the 
probability of choosing production i is described by the formula
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where the summation j is over all the productions which currently have their conditions 
satisfied.   Note  however  that  that  equation  only  serves  to  describe  the  production 
selection process.  It is not actually computed by the system.  The production with the 
highest utility (after noise is added) will be the one chosen to fire.

6.2 Building Sticks Example

We will  illustrate  these  ideas  with  an example  from problem solving.  Lovett  (1998) 
looked at participants solving the building-sticks problem illustrated in the figure below. 
This is an isomorph of Luchins waterjug problem that has a number of experimental 
advantages.  Participants are given an unlimited supply of building sticks of three lengths 
and are told that their objective is to create a target stick of a particular length.  There are 
two basic strategies they can select – they can either start with a stick smaller than the 
desired length and add sticks (like the addition strategy in Luchins waterjugs) or they can 
start with a stick that is too long and “saw off” lengths equal to various sticks until they 
reach the desired length (like the subtraction strategy).  The first is called the undershoot 
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strategy and the second is called the overshoot strategy.  Subjects show a strong tendency 
to hillclimb and choose as their first stick a stick that will get them closest to the target 
stick.  
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current:

building:

UNDERSHOOT UNDERSHOOTOVERSHOOT
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current:

building:

desired:
current:

building:

desired:
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possible first moves
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a b c a b c a b c

You can go through a version of this by loading the model bst.  By calling the command 
(bst-test 1 'human) you will run through a pair of problems in a version of the task built to 
run with a model (this is not the original experiment) and it will return a list of two items 
indicating which strategy, overshoot or undershoot, that you chose first.  

The experiment will look something like this:

To do the task you will see four lines initially.  The top three are black and correspond to 
the building sticks you have available.   The fourth line is green and that is the target 
length you are attempting to build.  The current stick you have built so far will be blue 
and below the target stick.  You will build the current stick by pressing the button to the  
left of a stick you would like to use next.  If your current line is shorter than the target the 
new stick will be added to the current stick, and if your current line is longer than the 
target  the  new  stick  will  be  subtracted  from  the  current  stick.   When  you  have 
successfully matched the target length the word “Done” will appear below the current 
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stick and you will progress to the next trial.  At any time you can hit the button labeled 
Reset to clear the current stick and start over.

As it turns out, both of these problems can only be solved by the overshoot strategy.  
However, the first one looks like it can be solved more easily by the undershoot strategy.  
The exact lengths of the sticks in pixels are:

A = 15  B = 200  C = 41 Goal = 103

The difference between B and the goal is 97 pixels while the difference between C and 
the goal is only 62 pixels – a 35 pixel difference of differences.   However,  the only 
solution to the problem is B – 2C – A.  The same solution holds for the second problem:

A = 10  B = 200 C = 29 Goal = 132

But in this case the difference between B and the goal is 68 pixels while the difference 
between C and the goal is 103 pixels – a 35 pixel difference of differences in the other 
direction.   You  can  run  the  model  on  these  problems  and  it  will  tend  to  choose 
undershoot for the first and overshoot for the second but not always.  You can run the 
model multiple  times by calling the function bst-test with one argument which is the 
number of runs through the two trials.  If you only specify one pair of trials then the 
model will perform the task using a visible window so that you can watch it, but if there 
is more than one pair of trials specified then the model will use a virtual window.  The 
following is the outcome of 100 trials:

> (bst-test 100)
(25 73)

The two numbers in the list returned are the number of times overshoot was chosen on 
the first problem and the second problem respectively.  

The model for the task involves many productions for encoding the screen and selecting 
sticks.  However, the behavior of the model is really controlled by four productions that 
make the decision as to whether to apply the overshoot or the undershoot strategy. 

(p decide-over
   =goal>
      isa       try-strategy
      state     choose-strategy
      strategy  nil
   =imaginal>
      isa       encoding
      under     =under
      over      =over
   !eval! (< =over (- =under 25))
  ==>
   =imaginal>
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   =goal>
      state     prepare-mouse
      strategy  over
   +visual-location>
      isa       visual-location
      kind      oval
      screen-y  60)

(p force-over
   =goal>
      isa       try-strategy
      state     choose-strategy
    - strategy  over
  ==>
   =goal>
      state     prepare-mouse
      strategy  over
   +visual-location>
      isa       visual-location
      kind      oval
      screen-y  60)

(p decide-under
   =goal>
      isa       try-strategy
      state     choose-strategy
      strategy  nil
   =imaginal>
      isa       encoding
      over      =over
      under     =under
   !eval! (< =under (- =over 25))
  ==>
   =imaginal>
   =goal>
      state     prepare-mouse
      strategy  under
   +visual-location>
      isa       visual-location
      kind      oval
      screen-y  85)

(p force-under
   =goal>
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      isa       try-strategy
      state     choose-strategy
    - strategy  under
  ==>
   =goal>
      state     prepare-mouse
      strategy  under
   +visual-location>
      isa       visual-location
      kind      oval
      screen-y  85)

The key information is in the over and under slots of the chunk in the imaginal buffer. 
The over slot encodes the pixel difference between stick b and the target stick, and the 
under slot encodes the difference between the target stick and stick c.  These values have 
been computed by prior productions that encode the problem.  If one of these differences 
appears to get the model much closer to the target (more than 25 pixels closer than the 
other) then the decide-under or decide-over productions can fire to choose the strategy. 
In all situations, the other two productions, force-under and force-over, can apply.  Thus, 
if there is a clear difference in how close the two sticks are to the target stick there will be 
three productions (one decide, two force) that can apply and if there is not then just the 
two force productions can apply.  The choice among the productions is determined by 
their relative utilities which we can see using the Procedural tool in the environment, or 
by using the spp command:

> (spp force-over force-under decide-over decide-under)
Parameters for production FORCE-OVER:
 :utility 13.182
 :u  10.000
 :at  0.050
Parameters for production FORCE-UNDER:
 :utility 10.511
 :u  10.000
 :at  0.050
Parameters for production DECIDE-OVER:
 :utility 16.094
 :u  13.000
 :at  0.050
Parameters for production DECIDE-UNDER:
 :utility 19.609
 :u  13.000
 :at  0.050

The utility values, u, were set by the following spp commands in the model:

(spp decide-over :u 13)
(spp decide-under :u 13)
(spp force-over :u 10)
(spp force-under :u 10)

The  :u parameters for the force productions are set to 10 while they are set to a more 
optimistic 13 for the decide productions.  The :utility parameter shows the last computed 
utility value for the production during a conflict-resolution event and includes the utility 
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noise.  Thus, we see that even though the true utility for decide-over is 13 it had a utility 
of 16.094 the last  time it  was matched in conflict-resolution.   Unless a production is 
explicitly assigned a value for u it is given a default of 0.  Therefore, the above four 
productions are the only ones in the model with non-zero utilities.

Let  us consider  how these productions  apply in  the case of  the two problems in the 
model.  Since the difference between the under and over differences is 35 pixels, there 
will  be one decide  and two force productions  that  match  for both problems.   Let  us 
consider the probability of choosing each production according to the equation. 
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In the model, the parameter  s is set at 3.  First, consider the probability of the decide 
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Similarly, the probability of the two force productions can be shown to be .248.  Thus, 
there is a .248 probability that a force production will fire that has the model try to solve 
the problem in the direction other than it appears.

6.3 Utility Learning

So far we have only considered the situation where the production parameters are static. 
The utilities of productions can also be learned as the model runs based on rewards that 
are received by the model.  When utility learning is enabled, they are updated according 
to a simple integrator model (e.g. see Bush & Mosteller, 1955) .. If Ui(n-1) is the utility of 
a production i after its n-1st application and Ri(n) is the reward the production receives 
for its nth application, then its utility Ui(n) after its nth application will be

( ) ( ) ( ) ( )[ ]11 −−+−= nUnRnUnU iiii α Difference Learning Equation

where α is the learning rate and is typically set at .2 (this can be changed by adjusting the 
:alpha parameter with the sgp command).   This is also basically the Rescorla-Wagner 
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learning rule (Rescorla & Wagner, 1972).  According to this equation the utility of a 
production  will  be  gradually  adjusted  until  it  matches  the  average  reward  that  the 
production receives.

There are a couple of things to mention about the rewards.  The rewards can occur at any 
time, and are not necessarily associated with any particular production.  A number of 
productions  may  have  fired  before  a  reward  is  delivered.   The  reward  Ri(n)  that 
production  i will  receive  will  be  the  external  reward  received  minus  the  time  from 
production  i’s selection to the reward.  This serves to give less reward to more distant 
productions.  This is like the temporal discounting in reinforcement learning but proves to 
be  more  robust  within  the  ACT-R  architecture  (not  suggesting  it  is  generally  more 
robust).  This reinforcement goes back to all the productions which have been selected 
between the current reward and the previous reward.

It is possible to provide rewards to a model at any time by calling the trigger-reward 
command,  and it  is  also possible  to attach  rewards to  specific  productions which are 
applied  when  those  productions  fire.   Attaching  rewards  to  productions  is  often  a 
convenient way to provide rewards to a model.  For instance, in the building sticks task 
there is one production that fires when an action has been successful and another which 
fires when it has not:

(p read-done
   =goal>
     isa      try-strategy
     state    read-done
   =visual>
     isa      text
     value    "done"
==>
   +goal>
     isa      try-strategy
     state    start)

(p pick-another-strategy
   =goal>
     isa      try-strategy
     state    wait-for-click
   ?manual>
     state    free
   =visual-location> 
     isa      visual-location
   > screen-y 100
==>
   =goal>
      state choose-strategy)
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One can associate rewards with these outcomes by setting the reward values of those 
productions:

(spp read-done :reward 20)
(spp pick-another-strategy :reward 0)

When read-done fires it will propagate a reward of 20 back to the previous productions 
which have been fired.  Of course, productions earlier in the chain will receive smaller 
values because the time to the reward is subtracted from the reward.   If pick-another-
strategy  fires,  a  reward  of  0  will  be  propagated  back  –  which  means  that  previous 
productions  will  actually  receive  a  negative  reward  because  of  the  time  that  passed. 
Consider  what  happens  when  a  sequence  of  productions  leads  to  a  dead  end,  pick-
another-strategy fires, another sequence of productions fire that leads to a solution, and 
then read-done fires.   The reward associated with read-done will propagate back only to 
the production which fired after pick-another-strategy and no further because the reward 
only goes back as far as the last reward.  Note that the production read-done will receive 
its  own reward,  but  pick-another-strategy will  not  receive  any of  read-done’s  reward 
since it will have received the reward from its own firing.

6.4 Learning in the Building Sticks Task

The following are the percent choice of overshoot for each of the problems in the testing 
set from an experiment with a building sticks task reported in Lovett & Anderson (1996):

  a     b      c        Goal   %OVERSHOOT
 15    250     55        125      20
 10    155     22        101      67
 14    200     37        112      20
 22    200     32        114      47
 10    243     37        159      87
 22    175     40         73      20
 15    250     49        137      80
 10    179     32        105      93
 20    213     42        104      83
 14    237     51        116      13
 12    149     30         72      29
 14    237     51        121      27
 22    200     32        114      80
 14    200     37        112      73
 15    250     55        125      53

The majority of these problems look like they can be solved by undershoot and in some 
cases the pixel difference is greater than 25.  However, the majority of the problems can 
only be solved by overshoot.  The first and last problems are interesting because they are 
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identical and look strongly like they are undershoot problems. It is the only problem that 
can be solved either by overshoot or undershoot. Only 20% of the participants solve the 
first problem by overshoot but after the sequence of problems this rises to 53% for the 
last problem.

The same bst model used to run the tests above can also perform this experiment, and 
will show performance similar to the data if the utility learning mechanism is enabled by 
setting the :ul parameter to t with the  sgp command.  The bst-experiment function will 
enable utility learning for the model and run it through the experiment multiple times 
averaging the results.  The following is the performance of the model on a 100 simulation 
run:

> (bst-experiment 100)
CORRELATION:  0.803
MEAN DEVIATION: 17.129

Trial 1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   
     23.0 60.0 59.0 70.0 91.0 42.0 80.0 86.0 59.0 34.0 33.0 22.0 54.0 72.0 56.0

DECIDE-OVER : 13.1506
DECIDE-UNDER: 11.1510
FORCE-OVER  : 12.1525
FORCE-UNDER : 6.5943

Also  printed  out  are  the  average  values  of  the  utility  parameters  for  the  critical 
productions after each run through the experiment over these 100 runs.  As can be seen, 
the two over productions have increased their utility while the under productions have 
had a drop off.  On average, the force-over production has a slightly higher value than 
the  decide-under production.   It  is  this  change  in  values  that  creates  the  increased 
tendency to choose the overshoot strategy.

This model also turns on the utility learning trace, the :ult parameter, which works similar 
to the activation trace shown in the previous unit.  If you enable the trace in the model by 
setting the :v parameter to t then every time there is a reward given to the model the trace 
will show the utility changes for all of the productions affected by that reward.  Here is an 
example from a run showing the positive reward for successfully completing a trial:

     5.163   PROCEDURAL             PRODUCTION-FIRED READ-DONE 
     5.163   UTILITY                PROPAGATE-REWARD 20 
 Utility updates with Reward = 20.0   alpha = 0.2
  Updating utility of production START-TRIAL
   U(n-1) = 0.0   R(n) = 14.837 [20.0 - 5.163 seconds since selection]
   U(n) = 2.9674
  Updating utility of production FIND-NEXT-LINE
   U(n-1) = 0.0   R(n) = 14.887 [20.0 - 5.113 seconds since selection]
   U(n) = 2.9774
  Updating utility of production ATTEND-LINE
   U(n-1) = 0.0   R(n) = 14.937 [20.0 - 5.063 seconds since selection]
   U(n) = 2.9874
  Updating utility of production ENCODE-LINE-A
   U(n-1) = 0.0   R(n) = 15.0720005 [20.0 - 4.928 seconds since selection]
   U(n) = 3.0144002
  Updating utility of production FIND-NEXT-LINE
   U(n-1) = 2.9774   R(n) = 15.122 [20.0 - 4.878 seconds since selection]
   U(n) = 5.40632
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  Updating utility of production ATTEND-LINE
   U(n-1) = 2.9874   R(n) = 15.172 [20.0 - 4.828 seconds since selection]
   U(n) = 5.42432
  Updating utility of production ENCODE-LINE-B
   U(n-1) = 0.0   R(n) = 15.3220005 [20.0 - 4.678 seconds since selection]
   U(n) = 3.0644002
  Updating utility of production FIND-NEXT-LINE
   U(n-1) = 5.40632   R(n) = 15.372 [20.0 - 4.628 seconds since selection]
   U(n) = 7.399456
  Updating utility of production ATTEND-LINE
   U(n-1) = 5.42432   R(n) = 15.422 [20.0 - 4.578 seconds since selection]
   U(n) = 7.4238563
  Updating utility of production ENCODE-LINE-C
   U(n-1) = 0.0   R(n) = 15.557 [20.0 - 4.443 seconds since selection]
   U(n) = 3.1114001
  Updating utility of production FIND-NEXT-LINE
   U(n-1) = 7.399456   R(n) = 15.607 [20.0 - 4.393 seconds since selection]
   U(n) = 9.040965
  Updating utility of production ATTEND-LINE
   U(n-1) = 7.4238563   R(n) = 15.657 [20.0 - 4.343 seconds since selection]
   U(n) = 9.070485
  Updating utility of production ENCODE-LINE-GOAL
   U(n-1) = 0.0   R(n) = 15.792 [20.0 - 4.208 seconds since selection]
   U(n) = 3.1584
  Updating utility of production ENCODE-UNDER
   U(n-1) = 0.0   R(n) = 15.927 [20.0 - 4.073 seconds since selection]
   U(n) = 3.1854
  Updating utility of production ENCODE-OVER
   U(n-1) = 0.0   R(n) = 16.062 [20.0 - 3.938 seconds since selection]
   U(n) = 3.2124002
  Updating utility of production DECIDE-UNDER
   U(n-1) = 13.0   R(n) = 16.112 [20.0 - 3.888 seconds since selection]
   U(n) = 13.6224
  Updating utility of production MOVE-MOUSE
   U(n-1) = 0.0   R(n) = 16.162 [20.0 - 3.838 seconds since selection]
   U(n) = 3.2324002
  Updating utility of production CLICK-MOUSE
   U(n-1) = 0.0   R(n) = 16.713 [20.0 - 3.287 seconds since selection]
   U(n) = 3.3425999
  Updating utility of production LOOK-FOR-CURRENT
   U(n-1) = 0.0   R(n) = 17.063 [20.0 - 2.937 seconds since selection]
   U(n) = 3.4126
  Updating utility of production ATTEND-LINE
   U(n-1) = 9.070485   R(n) = 17.112999 [20.0 - 2.887 seconds since selection]
   U(n) = 10.6789875
  Updating utility of production ENCODE-LINE-CURRENT
   U(n-1) = 0.0   R(n) = 17.248 [20.0 - 2.752 seconds since selection]
   U(n) = 3.4496
  Updating utility of production CALCULATE-DIFFERENCE
   U(n-1) = 0.0   R(n) = 17.383 [20.0 - 2.617 seconds since selection]
   U(n) = 3.4766
  Updating utility of production CONSIDER-C
   U(n-1) = 0.0   R(n) = 17.433 [20.0 - 2.567 seconds since selection]
   U(n) = 3.4866002
  Updating utility of production CHOOSE-C
   U(n-1) = 0.0   R(n) = 17.568 [20.0 - 2.432 seconds since selection]
   U(n) = 3.5136
  Updating utility of production MOVE-MOUSE
   U(n-1) = 3.2324002   R(n) = 17.618 [20.0 - 2.382 seconds since selection]
   U(n) = 6.10952
  Updating utility of production CLICK-MOUSE
   U(n-1) = 3.3425999   R(n) = 17.668 [20.0 - 2.332 seconds since selection]
   U(n) = 6.2076797
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  Updating utility of production LOOK-FOR-CURRENT
   U(n-1) = 3.4126   R(n) = 17.868 [20.0 - 2.132 seconds since selection]
   U(n) = 6.3036804
  Updating utility of production ATTEND-LINE
   U(n-1) = 10.6789875   R(n) = 17.918 [20.0 - 2.082 seconds since selection]
   U(n) = 12.12679
  Updating utility of production ENCODE-LINE-CURRENT
   U(n-1) = 3.4496   R(n) = 18.053 [20.0 - 1.947 seconds since selection]
   U(n) = 6.37028
  Updating utility of production CALCULATE-DIFFERENCE
   U(n-1) = 3.4766   R(n) = 18.188 [20.0 - 1.812 seconds since selection]
   U(n) = 6.41888
  Updating utility of production CONSIDER-C
   U(n-1) = 3.4866002   R(n) = 18.238 [20.0 - 1.762 seconds since selection]
   U(n) = 6.43688
  Updating utility of production CONSIDER-A
   U(n-1) = 0.0   R(n) = 18.373 [20.0 - 1.627 seconds since selection]
   U(n) = 3.6746
  Updating utility of production CHOOSE-A
   U(n-1) = 0.0   R(n) = 18.508 [20.0 - 1.492 seconds since selection]
   U(n) = 3.7015998
  Updating utility of production MOVE-MOUSE
   U(n-1) = 6.10952   R(n) = 18.558 [20.0 - 1.442 seconds since selection]
   U(n) = 8.599216
  Updating utility of production CLICK-MOUSE
   U(n-1) = 6.2076797   R(n) = 19.045 [20.0 - 0.955 seconds since selection]
   U(n) = 8.775144
  Updating utility of production LOOK-FOR-CURRENT
   U(n-1) = 6.3036804   R(n) = 19.395 [20.0 - 0.605 seconds since selection]
   U(n) = 8.921945
  Updating utility of production ATTEND-LINE
   U(n-1) = 12.12679   R(n) = 19.445 [20.0 - 0.555 seconds since selection]
   U(n) = 13.590432
  Updating utility of production ENCODE-LINE-CURRENT
   U(n-1) = 6.37028   R(n) = 19.58 [20.0 - 0.42 seconds since selection]
   U(n) = 9.012224
  Updating utility of production CALCULATE-DIFFERENCE
   U(n-1) = 6.41888   R(n) = 19.715 [20.0 - 0.285 seconds since selection]
   U(n) = 9.078104
  Updating utility of production CHECK-FOR-DONE
   U(n-1) = 0.0   R(n) = 19.765 [20.0 - 0.235 seconds since selection]
   U(n) = 3.9529998
  Updating utility of production FIND-DONE
   U(n-1) = 0.0   R(n) = 19.815 [20.0 - 0.185 seconds since selection]
   U(n) = 3.963
  Updating utility of production READ-DONE
   U(n-1) = 0.0   R(n) = 19.95 [20.0 - 0.05 seconds since selection]
   U(n) = 3.9900002

6.5 Additional Chunk-type Capabilities

Before  discussing  the  assignment  task  for  this  unit  we  will  look  at  a  few  of  the 
productions in this model which appear to be doing things differently than previous units.

6.5.1 Default chunk-type slot values

If we look at the actions of the productions encode-line-goal and click-mouse we see that 
they seem to be missing the cmd slot in the requests to the visual and manual buffers 
which we have seen previously, and instead are declaring a chunk-type with an isa:
(p encode-line-goal

11



ACT-R 7 Tutorial 11-Jul-17 Unit Six

   ...
  ==>
   =imaginal>
      goal-loc   =pos
      length     =length
   =goal>
      state      encode-under
   +visual>
      isa        move-attention
      screen-pos =c)

(p click-mouse
   ...
  ==>
   =goal>
      state  wait-for-click
   +manual>
      isa    click-mouse)

Up to this point it has been stated that the isa declarations are optional and not a part of a 
request or condition, but if that is true how are those requests doing the right thing since 
we’ve said that visual and manual requests require the cmd slot be specified to indicate 
the action to perform?

The answer to that question is that there is an additional process which happens when 
declaring a chunk-type with isa both in creating chunks and in specifying the conditions 
and actions  of a production.   That additional  process relies on the ability to indicate 
default values for a slot when creating a chunk-type.  Up until now when we have created 
chunk-types we have only specified the set of slots which it can include, but in addition 
to that one can specify default initial values for specific slots.  If a chunk-type indicates 
that a slot should have a value by default, then when that chunk-type is declared any slots 
with default values that are not specified in the chunk definition or production statement 
will automatically be included with their default values.

To specify a default value for a slot in a chunk-type one needs to specify a list of two 
items for the slot where the first item is the slot name and the second is the default value,  
instead of just a symbol for the slot name.  Here are some example chunk-types some of 
which have default values for slots:

(chunk-type a slot)
(chunk-type b (slot 1))
(chunk-type c slot (slot2 t))

The chunk-type b has a default value of 1 for the slot named slot and chunk-type c has a 
default value of t for the slot named slot2.  If we create some chunks specifying those 
chunk-types, some of which include a value for the slots with default values and others 
which don’t, we can see how the default values are filled in for the chunks that don’t 
specify those slots:

12



ACT-R 7 Tutorial 11-Jul-17 Unit Six

> (define-chunks (c1 isa a)
                 (c2 isa b)
                 (c3 isa b slot 3)
                 (c4 isa c)
                 (c5 isa c slot2 nil))

> (pprint-chunks C1 C2 C3 C4 C5)
C1

C2
   SLOT  1

C3
   SLOT  3

C4
   SLOT2  T

C5

The same process applies to conditions and actions in a production.  The chunk-types 
move-attention and click-mouse are created by the visual and motor modules and include 
default values for the cmd slot essentially like this (there’s also an additional component 
to the real chunk-type specifications which will be discussed in the next section):

(chunk-type move-attention (cmd move-attention) screen-pos)
(chunk-type click-mouse (cmd click-mouse))

Therefore, this request:

   +visual>
      isa        move-attention
      screen-pos =c

is equivalent to this:

   +visual>
      cmd        move-attention
      screen-pos =c

and  we  can  see  that  by  printing  out  the  representation  of  the  production  which  the 
procedural  module  has  for  the  encode-line-goal  production  using  the  pp  (print 
production) command:

> (pp encode-line-goal)
(P ENCODE-LINE-GOAL
    =GOAL>
       STATE ATTENDING
   =IMAGINAL>
       C-LOC =C
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       GOAL-LOC NIL
   =VISUAL>
       SCREEN-POS =POS
       WIDTH =LENGTH
       LINE T
   ?VISUAL>
       STATE FREE
==>
   =IMAGINAL>
       GOAL-LOC =POS
       LENGTH =LENGTH
   =GOAL>
       STATE ENCODE-UNDER
   +VISUAL>
       SCREEN-POS =C
       CMD MOVE-ATTENTION
)

Notice how the isa information is not part of the request to the visual module in the actual 
representation of the production but the cmd slot has been included in the request.  This 
would also result in the same request, but is a little bit redundant:

   +visual>
      isa        move-attention
      cmd        move-attention
      screen-pos =c

The same thing holds for the manual request in the click-mouse production:

> (pp click-mouse)
(P CLICK-MOUSE
   =GOAL>
       STATE MOVE-MOUSE
   ?MANUAL>
       STATE FREE
 ==>
   =GOAL>
       STATE WAIT-FOR-CLICK
   +MANUAL>
       CMD CLICK-MOUSE
)

6.5.2 Chunk-type hierarchy

Now we will look at the conditions in the encode-line-goal and read-done productions.

(p encode-line-goal
   =goal>
      isa        try-strategy
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      state      attending
   =imaginal>
      isa        encoding
      c-loc      =c
      goal-loc   nil
   =visual>
      isa        line
      screen-pos =pos
      width      =length
   ?visual>
      state      free
  ==>
   ...)

(p read-done
   =goal>
      isa    try-strategy
      state  read-done
   =visual>
      isa    text
      value  "done"
  ==>
   ...)

Previously in the tutorial it was stated that the chunks placed into the  visual buffer are 
created  with  slots  from  the  chunk-type  visual-object.   However,  if  we  look  at  the 
conditions  in  those  productions  they  are  specifying  chunk-types  of  line  and  text 
respectively in the visual buffer conditions.

In addition to the chunk-type visual-object the vision module defines several other chunk-
types for the objects which it can create.  Those other chunk-types, like line and text, are 
actually subtypes of the type visual-object.  A subtype contains all of the slots that its 
parent chunk-type contains, but may also contain additional slots or different default slot 
values for the slots which it has.  When the vision module encodes a feature into a chunk 
it actually uses the slots of one of the specific types, like line or text to create the chunk.  

In  general  one  can  create  an  arbitrary  hierarchy  of  chunk-types  with  each  subtype 
inheriting the slots and default values of its parent chunk-type (or even multiple parent 
chunk-types).  A hierarchy of chunk-types can be helpful to the modeler in specifying 
chunks and productions, but other than through the inclusion of default slot values, such a 
hierarchy has no effect on the actual chunks or productions in the model.

To create a chunk-type which is a subtype of another chunk-type that parent type must be 
specified in the definition of the subtype.  That is done by using a list to specify the name 
of the subtype which includes a list which has the keyword :include and the name of a 
parent chunk-type for each parent type to be included.  This example creates chunk-types 
a and b, and then a chunk-type named c which is a subtype of chunk-type a and a chunk-
type d which is a subtype of both a and b:
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(chunk-type a slot1)
(chunk-type b slot2)
(chunk-type (c (:include a)) slot3)
(chunk-type (d (:include a) (:include b)) slot4)

One might think these definitions would be equivalent to the ones above:

(chunk-type a slot1)
(chunk-type b slot2)
(chunk-type c slot1 slot3)
(chunk-type d slot1 slot2 slot4)

However, those are different because while the resulting chunk-types in both cases do 
have the same sets of slots, the chunk-types in the second case are not actually subtypes 
of the other types, they just happen to have slots with the same names.  The difference is 
that with the true chunk-type hierarchy it is acceptable to specify a parent type and use 
slots defined in its subtypes, but that is not valid for chunks which just happen to have the 
same slot names.  Thus, with the first set of chunk-type definitions this is acceptable:

(define-chunks (isa a slot3 t slot4 10))

Because chunk-types c and d are subtypes of chunk-type a and have slots named slot3 
and slot4, but with the second set that would result in warnings for invalid slots in the 
chunk definition.

Now, for the line and text chunk-types used in these productions, here are the relevant 
chunk-type definitions which the vision module has:

(chunk-type visual-object screen-pos value status color height width)
(chunk-type (text (:include visual-object)) (text t))
(chunk-type (line (:include visual-object)) (line t) end1-x end1-y   
            end2-x end2-y)

The text and line chunk-types are subtypes of the visual-object type and each includes a 
new slot with a default value of t that has the same name as the type.  Because of that 
default  slot  value,  declaring  the  buffer  tests  with  the  types  text  and  line  in  these 
productions adds that additional condition to the productions as we can see when we print 
out the internal representation of them:

> (pp encode-line-goal read-done)
(P ENCODE-LINE-GOAL
   =GOAL>
       STATE ATTENDING
   =IMAGINAL>
       C-LOC =C
       GOAL-LOC NIL
   =VISUAL>
       SCREEN-POS =POS
       WIDTH =LENGTH
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       LINE T
   ?VISUAL>
       STATE FREE
 ==>
   =IMAGINAL>
       GOAL-LOC =POS
       LENGTH =LENGTH
   =GOAL>
       STATE ENCODE-UNDER
   +VISUAL>
       SCREEN-POS =C
       CMD MOVE-ATTENTION
)
(P READ-DONE
   =GOAL>
       STATE READ-DONE
   =VISUAL>
       VALUE "done"
       TEXT T
 ==>
   +GOAL>
       STATE START
)

Thus, this specification from the encode-line-goal production:

   =visual>
      isa        line
      screen-pos =pos
      width      =length

results in these conditions for the chunk in the buffer:

   =visual>
      screen-pos =pos
      width      =length
      line       t

which could have been specified directly,  but declaring the specific type can be more 
readable and is consistent with the way chunk-types have been used in ACT-R prior to 
version 6.1.  One other possible way to specify that condition would be to declare the 
parent type visual-object and specify the line slot explicitly:

   =visual>
      isa        visual-object
      screen-pos =pos
      width      =length
      line       t
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In the default slot section above it showed chunk-type definitions for the move-attention 
and click-mouse actions to indicate they had default slots, but the actual definitions of 
those chunk-types also include parent types which could be used in the requests as well:

(chunk-type vision-command cmd)
(chunk-type (move-attention (:include vision-command)) (cmd move-attention) 
                            screen-pos scale)

(chunk-type motor-command (cmd "motor action"))
(chunk-type (click-mouse (:include motor-command)) (cmd click-mouse))

6.6 Learning in a Probability Choice Experiment

Your assignment is to develop a model for a "probability matching" experiment run by 
Friedman et al (1964).  The difference between this assignment and earlier ones is that 
you are responsible for almost all of the code for the model, including the code which 
presents the experiment.  The experiment to be implemented is very simple.  The basic 
procedure, which is repeated for 48 trials, is:

1. The participant is presented with a screen saying "Choose"
2. The participant either types H for heads or T for tails
3. When the key is pressed the screen is cleared and presents as feedback the correct 
answer, either "Heads" or "Tails".
4. That feedback stays there for exactly 1 second before the next trial is presented. 

Friedman et al arranged it so that heads was the correct choice on 10%, 20%, 30%, 40%, 
50%, 60%, 70%, 80%, and 90% of the trials (independent of what the participant had 
done).  For your experiment you will only be concerned with the 90% condition.  Thus, 
your experiment will be 48 trials long and “Heads” will be the correct answer 90% of the 
time.  We have averaged together the data from the 10% and 90% conditions (flipping 
responses) to get an average proportion of choice of the dominant answer in each block 
of 12 trials.  These proportions are 0.66, 0.78, 0.80, and 0.82.  This is the data that your 
model is to fit.  Note, this is not the percentage of correct responses – the correctness of  
the response does not matter.  

Your model must begin with a 50% chance of saying heads, then based on the feedback 
from the experiment  it  must  adjust  its  probabilities  through utility  learning so that  it 
averages responding heads close to 66% over the first block of 12 trials, and increases to 
about 82% by the final block.  You will run the model through the experiment many 
times  (resetting  before  each  experiment)  and  average  the  data  of  those  runs  for 
comparison.  As an aspiration level, this is the performance of the model that I wrote, 
averaged over 100 runs:

> (collect-data 100)
CORRELATION:  0.994
MEAN DEVIATION:  0.016
 Original     Current

18



ACT-R 7 Tutorial 11-Jul-17 Unit Six

   0.664       0.646
   0.778       0.771
   0.804       0.826
   0.818       0.830

In achieving this, the parameters I worked with were the noise in the utilities (set by 
the :egs parameter in the sgp command) and the rewards associated with successful and 
unsuccessful responses.

The starting model you are given for this task, choice, contains only the functions which 
are able to run a person through one trial and to collect a key press response using the 
“trial  at  a  time” experiment  writing style  as  discussed in  the unit  4  experiment  code 
document.  The rpm-window-key-event-handler method provided is very similar to those 
from other units and will record a key press from either a person or the model by setting 
the variable  *response* to the string representing that key.   The function  do-choice-
person will run one trial returning the key that was pressed.  You will have to write a 
similar function to run the model through one trial, which should be named do-choice-
model.  You also need to write a function called  choice-data that takes one parameter 
and runs the experiment that many times and prints out the average results of the runs and 
the correlation and deviation of the average data to the experimental data.  The choice-
data function does not have to be able to run a person through the task.  It only needs to  
be able to run the model.  You also must write the model for the task that fits the data.  

My suggestion would be to first write the  do-choice-model  function and a model that 
does the task (without trying to fit the data), and make sure that works correctly.  An 
important issue here is to make sure that it correctly represents the experiment described, 
including the timing.  Next write a function to run a block of 12 trials and test that to 
make sure the  model  works  correctly  when going from trial  to  trial.    Then write  a 
function to iterate over 4 blocks for running one pass of the experiment and test that.  
After that is working write the choice-data function to run the experiment multiple times. 
Only then should you be concerned with actually fitting the model to the data, once you 
are sure everything else works. 

To write the experiment for the model to interact with you will need to use a few ACT-R 
functions that were discussed in the previous units’ experiment description texts.  Those 
functions will be described again here, and the models you have seen up to this point 
should provide plenty of examples of their use.

The reset function initializes ACT-R. It returns the model to the initial state as specified 
in the model file.  It is the programmatic equivalent of pressing the “Reset” button in the 
environment.

The  function  install-device takes  one  parameter  which  should  be  a  window.   That 
parameter tells ACT-R with which window the model will be interacting.  Everything in 
that window can be seen by the model, and all of the model’s motor actions (key presses 
and mouse clicks) will affect that window. 

The proc-display function is called to make the model “look” at the window.  The model 
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only encodes the screen when requested with a call to proc-display.  Thus, for the model 
to  notice  a  change to  the  window  proc-display must  be  called  after  the  change has 
occurred.  This function performs the buffer stuffing of the visual-location buffer if it is 
empty and triggers the visual re-encoding if the model is attending an item.
 
The  run function can be used to run the model until either it has nothing to do or the 
specified amount of time has passed. It has one required parameter, the maximum amount 
of time to run the model.  

The run-full-time function can be used to run the model for a specific amount of time.  It 
takes one parameter which is the amount of time to run the model.

In  addition  to  those  functions  you  will  also  need to  use  the  correlation and  mean-
deviation functions.  Those calculate the correlation and mean-deviation between two 
lists of numbers.

Here is the function that runs the model through the paired associate task from unit 4 
which should serve as a useful example of presenting a task:

(defun do-experiment-model (size trials)
  (let ((result nil)
        (window (open-exp-window "Paired-Associate Experiment" :visible nil)))
    
    (reset) 
    
    (install-device window)
    
    (dotimes (i trials) 
      (let ((score 0.0)
            (time 0.0)
            (start-time))
        (dolist (x (permute-list (subseq *pairs* (- 20 size)))) 
          
          (clear-exp-window)
          (add-text-to-exp-window :text (car x) :x 150 :y 150)
        
          (setf *response* nil)                   
          (setf *response-time* nil)
          (setf start-time (get-time))
          
          (proc-display)
          (run-full-time 5)
          
          (when (equal (second x) *response*)      
            (incf score 1.0)    
            (incf time (- *response-time* start-time))) 
        
          (clear-exp-window)
          (add-text-to-exp-window :text (second x) :x 150 :y 150)
          
          (proc-display)
          (run-full-time 5))
        
        (push (list (/ score size) (and (> score 0) (/ time (* score 1000.0)))) 
result)))
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    (reverse result))) 

It is more complicated than the function you will need for this assignment because it is 
recording  response  times  and  averaging  the  data  over  multiple  runs  which  your  do-
choice-model function will not be doing.  It also calls reset which you should not do in 
your  do-choice-model  function because you want the model to continue to learn from 
trial  to trial.   You should only call  reset at  the start  of each pass through the whole 
experiment.  Ignoring those complications, it performs a similar sequence of operations to 
those necessary to do this experiment:  opening a window, presenting an item of text, 
running the model, clearing the screen, displaying another item of text and then running 
the model  again (the code highlighted in red).  Note however that  the timing for the 
choice task is not the same as the timing of the paired associate experiment thus you will 
have to do things somewhat differently to accurately replicate the choice task described.

In the choice file provided the do-choice-person function provides the structure for the 
displaying of the items in the choice task:

(defun do-choice-person ()
  (let ((window (open-exp-window "Choice Experiment" :visible t)))
    
    (add-text-to-exp-window :text "choose" :x 50 :y 100)
    
    (setf *response* nil)
    
    (while (null *response*)        
           (allow-event-manager window))
    
    (clear-exp-window)
    
    (add-text-to-exp-window :text (if (< (act-r-random 1.0) .9) "heads" "tails")
                            :x 50 :y 100)
    
    (sleep 1.0)
    *response*))

What you must do is write the do-choice-model function that presents the display similar 
to the way that do-choice-person does, but has the appropriate interaction with ACT-R 
(the code colored green handles the interaction for a person doing the task and should not 
appear in your  do-choice-model function).  The exact placement of the choose prompt 
and the feedback of heads and tails is not important for the task, and the model should not 
assume anything about their locations i.e. your model should still be able to do the task 
regardless of where on the screen choose and the feedback occur including situations 
where they are not both in the same location.

It is also possible to write the experiment using an event-based style as discussed in the 
unit 4 experiment code text.  That will require a little more work to program because it 
does not analogize as neatly to one of the previous units’ tasks. If you would like to write 
the experiment in that way you should look at the zbrodoff model as an example instead 
of  the  paired  model  as  described  above.   In  fact,  the  different  ways  to  write  the 
experiment can actually have an effect on the data fitting for this model because they will 
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likely have slightly different timing on the events which will affect the rewards received 
by the productions.  For the paired associate task the style of the experiment was not an 
issue because the lengths of the trials were fixed.  In this case, because the trials transition 
on the response of the model, an event-based experiment will provide a more veridical 
timing sequence because the events of the experiment will not be affected by components 
of  the model  other  than its  response.   However,  either  solution is  acceptable  for  the 
assignment.
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