
ACT-R 7 Tutorial 11-Jul-17 Unit Eight Code Details

Unit8 Model Code Description

The example models for this unit either have no experiment code, or are driven by code that has
been described in previous units. The assignment task’s experiment code only uses one new
ACT-R command, but otherwise is similar to other unit’s tasks. Therefore only that one new
command will be described here without describing all of the experiment code. In addition to
that, this text is going to explain how the bst-learn-ppm model avoids using a !bind! to do a
calculation and instead uses a request to the imaginal module to do so.

Extending chunks from code

The new command used in the assignment task code is extend-possible-slots which is used in the
create-example-memories function:

(defun create-example-memories ()
 (dolist (x *slots*)
 (extend-possible-slots x nil)
 (define-chunks-fct `((,x isa chunk))))
 (dolist (x *cat1*)
 (add-dm-fct `((isa example category 1 ,@(mapcan 'list *slots* x)))))
 (dolist (x *cat2*)
 (add-dm-fct `((isa example category 2 ,@(mapcan 'list *slots* x))))))

The create-example-memories function is responsible for creating the initial chunks in the
model’s declarative memory using slot names which are specified in the list *slots*. Since those
slot names were not declared in the chunk-types for the model the extend-possible-slots
command is used to tell ACT-R that we are dynamically adding new slot names to the model.
This is the same thing that happens when we make a request in a production to modify a chunk
with a slot name that doesn’t yet exist. If we did not do this then we would get a warning about
using slot names that are undefined when we try to create the example chunks.

The extend-possible-slots command has one required parameter and one optional parameter.
The required parameter is a symbol which names a slot to add to those which can be used in
chunks. The optional parameter indicates whether or not to print a warning if the slot which is
provided has already been used to name a slot. If the optional parameter is specified as nil then
no warning is provided when a previously named slot is specified otherwise it will print such
warnings.

Imaginal-action buffer

The imaginal module has a second buffer called imaginal-action which can be used by the
modeler to make requests that perform custom actions. Those actions are typically used to
modify the chunk in the imaginal buffer, replace the chunk in the imaginal buffer with a new
one, or clear the imaginal buffer and report an error, but may perform any other arbitrary
calculation desired. Those requests can also take time during which the imaginal module will be
marked as busy. Note however, the imaginal-action buffer is not intended to be used for

ACT-R 7 Tutorial 11-Jul-17 Unit Eight Code Details

holding a chunk. The imaginal buffer is the cognitive interface for the imaginal module and the
imaginal-action buffer exists for the purpose of allowing modelers to create new operations
which can manipulate the imaginal buffer.

There are two types of requests which can be made to the imaginal-action buffer which are
referred to as a generic action and a simple action. This model uses a simple action with no extra
information to create a new chunk for the imaginal buffer. The generic action is more powerful
in terms of what it can do and for either the generic or simple action it is possible to provide
additional details in the request. Those capabilities however require more care and programming
from the modeler in handling the action and are beyond the scope of the tutorial. Users
interested in using those capabilities should consult the reference manual for details.

Here is the production from the model which uses a simple action request to the imaginal-action
buffer:

(p encode-line-current
 =goal>
 isa try-strategy
 state attending
 =imaginal>
 isa encoding
 goal-loc =goal-loc
 =visual>
 isa line
 width =current-len
 ?visual>
 state free
 ?imaginal-action>
 state free
 ==>
 =imaginal>
 length =current-len
 +imaginal-action>
 action compute-difference
 simple t
 =goal>
 state consider-next
 +visual>
 cmd move-attention
 screen-pos =goal-loc)

A simple action request to the imaginal-action buffer requires specifying a slot named action
which must name a Lisp function, and a slot named simple with any true value. When a simple
action request is made the imaginal module performs the following actions:

• the imaginal module is marked as busy
• if the imaginal module is currently signaling an error that is cleared
• the named function is called with no parameters
• the imaginal buffer is cleared

Then after the current imaginal action time has passed (default of 200ms and set with the
:imaginal-delay parameter) the following things will happen:

ACT-R 7 Tutorial 11-Jul-17 Unit Eight Code Details

• the imaginal module will be marked as free
• if the call to the action function returned the name of a chunk then that chunk will be

placed into the imaginal buffer
• If the call to the action function returned any other value the imaginal buffer will remain

empty, the imaginal module’s error state will become true, and the imaginal buffer’s
failure query will be true.

Here is the compute-difference function which is called as a result of the request in the encode-
line-current production:

(defun compute-difference ()
 (let* ((chunk (buffer-read 'imaginal))
 (new-chunk (copy-chunk-fct chunk)))
 (mod-chunk-fct new-chunk
 (list 'difference
 (abs (- (chunk-slot-value-fct chunk 'length)
 (chunk-slot-value-fct chunk 'goal-length)))))))

It creates a copy of the chunk which is currently in the imaginal buffer using the ACT-R copy-
chunk command and then sets the difference slot of that new chunk to be the difference between
the length of the current stick (as set in the length slot of the chunk from the imaginal buffer)
and the length of the goal stick (as set in the goal-length slot of the chunk from the imaginal
buffer) just as the !bind! did in the previous version of the model. That new chunk is returned
from the function and thus will be put into the imaginal buffer after 200ms have passed.

Here is the segment from the trace showing the actions related to the simple-action request when
the encode-line-current production fires:

 2.191 PROCEDURAL PRODUCTION-FIRED ENCODE-LINE-CURRENT
...
 2.191 PROCEDURAL MODULE-REQUEST IMAGINAL-ACTION
...
 2.191 PROCEDURAL CLEAR-BUFFER IMAGINAL-ACTION
...
 2.191 IMAGINAL CLEAR-BUFFER IMAGINAL
...
 2.391 IMAGINAL SET-BUFFER-CHUNK IMAGINAL CHUNK0-0-0

Except for the additional clearing of the imaginal-action buffer, which should not hold a chunk
anyway, it performs the same actions as an imaginal buffer request to create a new chunk would.

In the conditions of the encode-line-current production a query is made to test that the imaginal-
action buffer has state free. That query will return the same state as the imaginal buffer does.
Both buffers pass their requests to the same module which can only perform one action at a time
regardless of which of its buffers was used to make the request. Thus it does not matter which
buffer is used to test the state for the performance of the model, but to avoid a style warning
testing the buffer for which a request is being made is preferable.

ACT-R 7 Tutorial 11-Jul-17 Unit Eight Code Details

One important thing to note about a simple action request is that it will always clear the imaginal
buffer. That means that the chunk currently in the buffer will become an element of the model’s
declarative memory at that time. In this model that does not matter because it is not retrieving
those chunks later. However, in models where later retrieval is important, having intermediate
chunks added to memory like that could cause problems. In those cases, one would probably
want to use the generic action request to extend the imaginal capabilities because it does not
clear the buffer automatically.

	Unit8 Model Code Description
	Extending chunks from code
	Imaginal-action buffer

