
ACT-R 7 Tutorial 11-Jul-17 Unit Six

Unit 6: Selecting Productions on the Basis of Their Utilities and
Learning these Utilities

Occasionally, we have had cause to set parameters of productions so that one production
will be preferred over another in the conflict resolution process. Now we will examine
how production utilities are computed and used in conflict resolution. We will also look
at how these utilities are learned.

6.1 The Utility Theory

Each production has a utility associated with it which can be set directly as we have seen
in some of the previous units. In this unit we will describe how those utilities can be
learned from experience. Like activations, utilities have noise added to them. The noise is
controlled by the utility noise parameter s which is set with the parameter :egs. The noise
is distributed according to a logistic distribution with a mean of 0 and a variance of

σ 2 =
π 2

3
s2

If there are a number of productions competing with expected utility values Uj the
probability of choosing production i is described by the formula

∑
=

j

sU

sU

j

i

e

e
iobability

2/

2/

)(Pr

where the summation j is over all the productions which currently have their conditions
satisfied. Note however that that equation only serves to describe the production
selection process. It is not actually computed by the system. The production with the
highest utility (after noise is added) will be the one chosen to fire.

6.2 Building Sticks Example

We will illustrate these ideas with an example from problem solving. Lovett (1998)
looked at participants solving the building-sticks problem illustrated in the figure below.
This is an isomorph of Luchins waterjug problem that has a number of experimental
advantages. Participants are given an unlimited supply of building sticks of three lengths
and are told that their objective is to create a target stick of a particular length. There are
two basic strategies they can select – they can either start with a stick smaller than the
desired length and add sticks (like the addition strategy in Luchins waterjugs) or they can
start with a stick that is too long and “saw off” lengths equal to various sticks until they
reach the desired length (like the subtraction strategy). The first is called the undershoot

1

ACT-R 7 Tutorial 11-Jul-17 Unit Six

strategy and the second is called the overshoot strategy. Subjects show a strong tendency
to hillclimb and choose as their first stick a stick that will get them closest to the target
stick.

INITIAL STATE

desired:
current:

building:

UNDERSHOOT UNDERSHOOTOVERSHOOT

desired:
current:

building:

desired:
current:

building:

desired:
current:

building:

possible first moves

a b c

a b c a b c a b c

You can go through a version of this by loading the model bst. By calling the command
(bst-test 1 'human) you will run through a pair of problems in a version of the task built to
run with a model (this is not the original experiment) and it will return a list of two items
indicating which strategy, overshoot or undershoot, that you chose first.

The experiment will look something like this:

To do the task you will see four lines initially. The top three are black and correspond to
the building sticks you have available. The fourth line is green and that is the target
length you are attempting to build. The current stick you have built so far will be blue
and below the target stick. You will build the current stick by pressing the button to the
left of a stick you would like to use next. If your current line is shorter than the target the
new stick will be added to the current stick, and if your current line is longer than the
target the new stick will be subtracted from the current stick. When you have
successfully matched the target length the word “Done” will appear below the current

2

ACT-R 7 Tutorial 11-Jul-17 Unit Six

stick and you will progress to the next trial. At any time you can hit the button labeled
Reset to clear the current stick and start over.

As it turns out, both of these problems can only be solved by the overshoot strategy.
However, the first one looks like it can be solved more easily by the undershoot strategy.
The exact lengths of the sticks in pixels are:

A = 15 B = 200 C = 41 Goal = 103

The difference between B and the goal is 97 pixels while the difference between C and
the goal is only 62 pixels – a 35 pixel difference of differences. However, the only
solution to the problem is B – 2C – A. The same solution holds for the second problem:

A = 10 B = 200 C = 29 Goal = 132

But in this case the difference between B and the goal is 68 pixels while the difference
between C and the goal is 103 pixels – a 35 pixel difference of differences in the other
direction. You can run the model on these problems and it will tend to choose
undershoot for the first and overshoot for the second but not always. You can run the
model multiple times by calling the function bst-test with one argument which is the
number of runs through the two trials. If you only specify one pair of trials then the
model will perform the task using a visible window so that you can watch it, but if there
is more than one pair of trials specified then the model will use a virtual window. The
following is the outcome of 100 trials:

> (bst-test 100)
(25 73)

The two numbers in the list returned are the number of times overshoot was chosen on
the first problem and the second problem respectively.

The model for the task involves many productions for encoding the screen and selecting
sticks. However, the behavior of the model is really controlled by four productions that
make the decision as to whether to apply the overshoot or the undershoot strategy.

(p decide-over
 =goal>
 isa try-strategy
 state choose-strategy
 strategy nil
 =imaginal>
 isa encoding
 under =under
 over =over
 !eval! (< =over (- =under 25))
 ==>
 =imaginal>

3

ACT-R 7 Tutorial 11-Jul-17 Unit Six

 =goal>
 state prepare-mouse
 strategy over
 +visual-location>
 isa visual-location
 kind oval
 screen-y 60)

(p force-over
 =goal>
 isa try-strategy
 state choose-strategy
 - strategy over
 ==>
 =goal>
 state prepare-mouse
 strategy over
 +visual-location>
 isa visual-location
 kind oval
 screen-y 60)

(p decide-under
 =goal>
 isa try-strategy
 state choose-strategy
 strategy nil
 =imaginal>
 isa encoding
 over =over
 under =under
 !eval! (< =under (- =over 25))
 ==>
 =imaginal>
 =goal>
 state prepare-mouse
 strategy under
 +visual-location>
 isa visual-location
 kind oval
 screen-y 85)

(p force-under
 =goal>

4

ACT-R 7 Tutorial 11-Jul-17 Unit Six

 isa try-strategy
 state choose-strategy
 - strategy under
 ==>
 =goal>
 state prepare-mouse
 strategy under
 +visual-location>
 isa visual-location
 kind oval
 screen-y 85)

The key information is in the over and under slots of the chunk in the imaginal buffer.
The over slot encodes the pixel difference between stick b and the target stick, and the
under slot encodes the difference between the target stick and stick c. These values have
been computed by prior productions that encode the problem. If one of these differences
appears to get the model much closer to the target (more than 25 pixels closer than the
other) then the decide-under or decide-over productions can fire to choose the strategy.
In all situations, the other two productions, force-under and force-over, can apply. Thus,
if there is a clear difference in how close the two sticks are to the target stick there will be
three productions (one decide, two force) that can apply and if there is not then just the
two force productions can apply. The choice among the productions is determined by
their relative utilities which we can see using the Procedural tool in the environment, or
by using the spp command:

> (spp force-over force-under decide-over decide-under)
Parameters for production FORCE-OVER:
 :utility 13.182
 :u 10.000
 :at 0.050
Parameters for production FORCE-UNDER:
 :utility 10.511
 :u 10.000
 :at 0.050
Parameters for production DECIDE-OVER:
 :utility 16.094
 :u 13.000
 :at 0.050
Parameters for production DECIDE-UNDER:
 :utility 19.609
 :u 13.000
 :at 0.050

The utility values, u, were set by the following spp commands in the model:

(spp decide-over :u 13)
(spp decide-under :u 13)
(spp force-over :u 10)
(spp force-under :u 10)

The :u parameters for the force productions are set to 10 while they are set to a more
optimistic 13 for the decide productions. The :utility parameter shows the last computed
utility value for the production during a conflict-resolution event and includes the utility

5

ACT-R 7 Tutorial 11-Jul-17 Unit Six

noise. Thus, we see that even though the true utility for decide-over is 13 it had a utility
of 16.094 the last time it was matched in conflict-resolution. Unless a production is
explicitly assigned a value for u it is given a default of 0. Therefore, the above four
productions are the only ones in the model with non-zero utilities.

Let us consider how these productions apply in the case of the two problems in the
model. Since the difference between the under and over differences is 35 pixels, there
will be one decide and two force productions that match for both problems. Let us
consider the probability of choosing each production according to the equation.

∑
=

j

sU

sU

j

i

e

e
iobability

2/

2/

)(Pr

In the model, the parameter s is set at 3. First, consider the probability of the decide
production:

504.

)(Pr

0024.4/3

24.4/3

24.4/1024.4/1024.4/13

24.4/13

=
++

=

++
=

eee

e

eee

e
decideobability

Similarly, the probability of the two force productions can be shown to be .248. Thus,
there is a .248 probability that a force production will fire that has the model try to solve
the problem in the direction other than it appears.

6.3 Utility Learning

So far we have only considered the situation where the production parameters are static.
The utilities of productions can also be learned as the model runs based on rewards that
are received by the model. When utility learning is enabled, they are updated according
to a simple integrator model (e.g. see Bush & Mosteller, 1955) .. If Ui(n-1) is the utility of
a production i after its n-1st application and Ri(n) is the reward the production receives
for its nth application, then its utility Ui(n) after its nth application will be

() () () ()[]11 −−+−= nUnRnUnU iiii α Difference Learning Equation

where α is the learning rate and is typically set at .2 (this can be changed by adjusting the
:alpha parameter with the sgp command). This is also basically the Rescorla-Wagner

6

ACT-R 7 Tutorial 11-Jul-17 Unit Six

learning rule (Rescorla & Wagner, 1972). According to this equation the utility of a
production will be gradually adjusted until it matches the average reward that the
production receives.

There are a couple of things to mention about the rewards. The rewards can occur at any
time, and are not necessarily associated with any particular production. A number of
productions may have fired before a reward is delivered. The reward Ri(n) that
production i will receive will be the external reward received minus the time from
production i’s selection to the reward. This serves to give less reward to more distant
productions. This is like the temporal discounting in reinforcement learning but proves to
be more robust within the ACT-R architecture (not suggesting it is generally more
robust). This reinforcement goes back to all the productions which have been selected
between the current reward and the previous reward.

It is possible to provide rewards to a model at any time by calling the trigger-reward
command, and it is also possible to attach rewards to specific productions which are
applied when those productions fire. Attaching rewards to productions is often a
convenient way to provide rewards to a model. For instance, in the building sticks task
there is one production that fires when an action has been successful and another which
fires when it has not:

(p read-done
 =goal>
 isa try-strategy
 state read-done
 =visual>
 isa text
 value "done"
==>
 +goal>
 isa try-strategy
 state start)

(p pick-another-strategy
 =goal>
 isa try-strategy
 state wait-for-click
 ?manual>
 state free
 =visual-location>
 isa visual-location
 > screen-y 100
==>
 =goal>
 state choose-strategy)

7

ACT-R 7 Tutorial 11-Jul-17 Unit Six

One can associate rewards with these outcomes by setting the reward values of those
productions:

(spp read-done :reward 20)
(spp pick-another-strategy :reward 0)

When read-done fires it will propagate a reward of 20 back to the previous productions
which have been fired. Of course, productions earlier in the chain will receive smaller
values because the time to the reward is subtracted from the reward. If pick-another-
strategy fires, a reward of 0 will be propagated back – which means that previous
productions will actually receive a negative reward because of the time that passed.
Consider what happens when a sequence of productions leads to a dead end, pick-
another-strategy fires, another sequence of productions fire that leads to a solution, and
then read-done fires. The reward associated with read-done will propagate back only to
the production which fired after pick-another-strategy and no further because the reward
only goes back as far as the last reward. Note that the production read-done will receive
its own reward, but pick-another-strategy will not receive any of read-done’s reward
since it will have received the reward from its own firing.

6.4 Learning in the Building Sticks Task

The following are the percent choice of overshoot for each of the problems in the testing
set from an experiment with a building sticks task reported in Lovett & Anderson (1996):

 a b c Goal %OVERSHOOT
 15 250 55 125 20
 10 155 22 101 67
 14 200 37 112 20
 22 200 32 114 47
 10 243 37 159 87
 22 175 40 73 20
 15 250 49 137 80
 10 179 32 105 93
 20 213 42 104 83
 14 237 51 116 13
 12 149 30 72 29
 14 237 51 121 27
 22 200 32 114 80
 14 200 37 112 73
 15 250 55 125 53

The majority of these problems look like they can be solved by undershoot and in some
cases the pixel difference is greater than 25. However, the majority of the problems can
only be solved by overshoot. The first and last problems are interesting because they are

8

ACT-R 7 Tutorial 11-Jul-17 Unit Six

identical and look strongly like they are undershoot problems. It is the only problem that
can be solved either by overshoot or undershoot. Only 20% of the participants solve the
first problem by overshoot but after the sequence of problems this rises to 53% for the
last problem.

The same bst model used to run the tests above can also perform this experiment, and
will show performance similar to the data if the utility learning mechanism is enabled by
setting the :ul parameter to t with the sgp command. The bst-experiment function will
enable utility learning for the model and run it through the experiment multiple times
averaging the results. The following is the performance of the model on a 100 simulation
run:

> (bst-experiment 100)
CORRELATION: 0.803
MEAN DEVIATION: 17.129

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 23.0 60.0 59.0 70.0 91.0 42.0 80.0 86.0 59.0 34.0 33.0 22.0 54.0 72.0 56.0

DECIDE-OVER : 13.1506
DECIDE-UNDER: 11.1510
FORCE-OVER : 12.1525
FORCE-UNDER : 6.5943

Also printed out are the average values of the utility parameters for the critical
productions after each run through the experiment over these 100 runs. As can be seen,
the two over productions have increased their utility while the under productions have
had a drop off. On average, the force-over production has a slightly higher value than
the decide-under production. It is this change in values that creates the increased
tendency to choose the overshoot strategy.

This model also turns on the utility learning trace, the :ult parameter, which works similar
to the activation trace shown in the previous unit. If you enable the trace in the model by
setting the :v parameter to t then every time there is a reward given to the model the trace
will show the utility changes for all of the productions affected by that reward. Here is an
example from a run showing the positive reward for successfully completing a trial:

 5.163 PROCEDURAL PRODUCTION-FIRED READ-DONE
 5.163 UTILITY PROPAGATE-REWARD 20
 Utility updates with Reward = 20.0 alpha = 0.2
 Updating utility of production START-TRIAL
 U(n-1) = 0.0 R(n) = 14.837 [20.0 - 5.163 seconds since selection]
 U(n) = 2.9674
 Updating utility of production FIND-NEXT-LINE
 U(n-1) = 0.0 R(n) = 14.887 [20.0 - 5.113 seconds since selection]
 U(n) = 2.9774
 Updating utility of production ATTEND-LINE
 U(n-1) = 0.0 R(n) = 14.937 [20.0 - 5.063 seconds since selection]
 U(n) = 2.9874
 Updating utility of production ENCODE-LINE-A
 U(n-1) = 0.0 R(n) = 15.0720005 [20.0 - 4.928 seconds since selection]
 U(n) = 3.0144002
 Updating utility of production FIND-NEXT-LINE
 U(n-1) = 2.9774 R(n) = 15.122 [20.0 - 4.878 seconds since selection]
 U(n) = 5.40632

9

ACT-R 7 Tutorial 11-Jul-17 Unit Six

 Updating utility of production ATTEND-LINE
 U(n-1) = 2.9874 R(n) = 15.172 [20.0 - 4.828 seconds since selection]
 U(n) = 5.42432
 Updating utility of production ENCODE-LINE-B
 U(n-1) = 0.0 R(n) = 15.3220005 [20.0 - 4.678 seconds since selection]
 U(n) = 3.0644002
 Updating utility of production FIND-NEXT-LINE
 U(n-1) = 5.40632 R(n) = 15.372 [20.0 - 4.628 seconds since selection]
 U(n) = 7.399456
 Updating utility of production ATTEND-LINE
 U(n-1) = 5.42432 R(n) = 15.422 [20.0 - 4.578 seconds since selection]
 U(n) = 7.4238563
 Updating utility of production ENCODE-LINE-C
 U(n-1) = 0.0 R(n) = 15.557 [20.0 - 4.443 seconds since selection]
 U(n) = 3.1114001
 Updating utility of production FIND-NEXT-LINE
 U(n-1) = 7.399456 R(n) = 15.607 [20.0 - 4.393 seconds since selection]
 U(n) = 9.040965
 Updating utility of production ATTEND-LINE
 U(n-1) = 7.4238563 R(n) = 15.657 [20.0 - 4.343 seconds since selection]
 U(n) = 9.070485
 Updating utility of production ENCODE-LINE-GOAL
 U(n-1) = 0.0 R(n) = 15.792 [20.0 - 4.208 seconds since selection]
 U(n) = 3.1584
 Updating utility of production ENCODE-UNDER
 U(n-1) = 0.0 R(n) = 15.927 [20.0 - 4.073 seconds since selection]
 U(n) = 3.1854
 Updating utility of production ENCODE-OVER
 U(n-1) = 0.0 R(n) = 16.062 [20.0 - 3.938 seconds since selection]
 U(n) = 3.2124002
 Updating utility of production DECIDE-UNDER
 U(n-1) = 13.0 R(n) = 16.112 [20.0 - 3.888 seconds since selection]
 U(n) = 13.6224
 Updating utility of production MOVE-MOUSE
 U(n-1) = 0.0 R(n) = 16.162 [20.0 - 3.838 seconds since selection]
 U(n) = 3.2324002
 Updating utility of production CLICK-MOUSE
 U(n-1) = 0.0 R(n) = 16.713 [20.0 - 3.287 seconds since selection]
 U(n) = 3.3425999
 Updating utility of production LOOK-FOR-CURRENT
 U(n-1) = 0.0 R(n) = 17.063 [20.0 - 2.937 seconds since selection]
 U(n) = 3.4126
 Updating utility of production ATTEND-LINE
 U(n-1) = 9.070485 R(n) = 17.112999 [20.0 - 2.887 seconds since selection]
 U(n) = 10.6789875
 Updating utility of production ENCODE-LINE-CURRENT
 U(n-1) = 0.0 R(n) = 17.248 [20.0 - 2.752 seconds since selection]
 U(n) = 3.4496
 Updating utility of production CALCULATE-DIFFERENCE
 U(n-1) = 0.0 R(n) = 17.383 [20.0 - 2.617 seconds since selection]
 U(n) = 3.4766
 Updating utility of production CONSIDER-C
 U(n-1) = 0.0 R(n) = 17.433 [20.0 - 2.567 seconds since selection]
 U(n) = 3.4866002
 Updating utility of production CHOOSE-C
 U(n-1) = 0.0 R(n) = 17.568 [20.0 - 2.432 seconds since selection]
 U(n) = 3.5136
 Updating utility of production MOVE-MOUSE
 U(n-1) = 3.2324002 R(n) = 17.618 [20.0 - 2.382 seconds since selection]
 U(n) = 6.10952
 Updating utility of production CLICK-MOUSE
 U(n-1) = 3.3425999 R(n) = 17.668 [20.0 - 2.332 seconds since selection]
 U(n) = 6.2076797

10

ACT-R 7 Tutorial 11-Jul-17 Unit Six

 Updating utility of production LOOK-FOR-CURRENT
 U(n-1) = 3.4126 R(n) = 17.868 [20.0 - 2.132 seconds since selection]
 U(n) = 6.3036804
 Updating utility of production ATTEND-LINE
 U(n-1) = 10.6789875 R(n) = 17.918 [20.0 - 2.082 seconds since selection]
 U(n) = 12.12679
 Updating utility of production ENCODE-LINE-CURRENT
 U(n-1) = 3.4496 R(n) = 18.053 [20.0 - 1.947 seconds since selection]
 U(n) = 6.37028
 Updating utility of production CALCULATE-DIFFERENCE
 U(n-1) = 3.4766 R(n) = 18.188 [20.0 - 1.812 seconds since selection]
 U(n) = 6.41888
 Updating utility of production CONSIDER-C
 U(n-1) = 3.4866002 R(n) = 18.238 [20.0 - 1.762 seconds since selection]
 U(n) = 6.43688
 Updating utility of production CONSIDER-A
 U(n-1) = 0.0 R(n) = 18.373 [20.0 - 1.627 seconds since selection]
 U(n) = 3.6746
 Updating utility of production CHOOSE-A
 U(n-1) = 0.0 R(n) = 18.508 [20.0 - 1.492 seconds since selection]
 U(n) = 3.7015998
 Updating utility of production MOVE-MOUSE
 U(n-1) = 6.10952 R(n) = 18.558 [20.0 - 1.442 seconds since selection]
 U(n) = 8.599216
 Updating utility of production CLICK-MOUSE
 U(n-1) = 6.2076797 R(n) = 19.045 [20.0 - 0.955 seconds since selection]
 U(n) = 8.775144
 Updating utility of production LOOK-FOR-CURRENT
 U(n-1) = 6.3036804 R(n) = 19.395 [20.0 - 0.605 seconds since selection]
 U(n) = 8.921945
 Updating utility of production ATTEND-LINE
 U(n-1) = 12.12679 R(n) = 19.445 [20.0 - 0.555 seconds since selection]
 U(n) = 13.590432
 Updating utility of production ENCODE-LINE-CURRENT
 U(n-1) = 6.37028 R(n) = 19.58 [20.0 - 0.42 seconds since selection]
 U(n) = 9.012224
 Updating utility of production CALCULATE-DIFFERENCE
 U(n-1) = 6.41888 R(n) = 19.715 [20.0 - 0.285 seconds since selection]
 U(n) = 9.078104
 Updating utility of production CHECK-FOR-DONE
 U(n-1) = 0.0 R(n) = 19.765 [20.0 - 0.235 seconds since selection]
 U(n) = 3.9529998
 Updating utility of production FIND-DONE
 U(n-1) = 0.0 R(n) = 19.815 [20.0 - 0.185 seconds since selection]
 U(n) = 3.963
 Updating utility of production READ-DONE
 U(n-1) = 0.0 R(n) = 19.95 [20.0 - 0.05 seconds since selection]
 U(n) = 3.9900002

6.5 Additional Chunk-type Capabilities

Before discussing the assignment task for this unit we will look at a few of the
productions in this model which appear to be doing things differently than previous units.

6.5.1 Default chunk-type slot values

If we look at the actions of the productions encode-line-goal and click-mouse we see that
they seem to be missing the cmd slot in the requests to the visual and manual buffers
which we have seen previously, and instead are declaring a chunk-type with an isa:
(p encode-line-goal

11

ACT-R 7 Tutorial 11-Jul-17 Unit Six

 ...
 ==>
 =imaginal>
 goal-loc =pos
 length =length
 =goal>
 state encode-under
 +visual>
 isa move-attention
 screen-pos =c)

(p click-mouse
 ...
 ==>
 =goal>
 state wait-for-click
 +manual>
 isa click-mouse)

Up to this point it has been stated that the isa declarations are optional and not a part of a
request or condition, but if that is true how are those requests doing the right thing since
we’ve said that visual and manual requests require the cmd slot be specified to indicate
the action to perform?

The answer to that question is that there is an additional process which happens when
declaring a chunk-type with isa both in creating chunks and in specifying the conditions
and actions of a production. That additional process relies on the ability to indicate
default values for a slot when creating a chunk-type. Up until now when we have created
chunk-types we have only specified the set of slots which it can include, but in addition
to that one can specify default initial values for specific slots. If a chunk-type indicates
that a slot should have a value by default, then when that chunk-type is declared any slots
with default values that are not specified in the chunk definition or production statement
will automatically be included with their default values.

To specify a default value for a slot in a chunk-type one needs to specify a list of two
items for the slot where the first item is the slot name and the second is the default value,
instead of just a symbol for the slot name. Here are some example chunk-types some of
which have default values for slots:

(chunk-type a slot)
(chunk-type b (slot 1))
(chunk-type c slot (slot2 t))

The chunk-type b has a default value of 1 for the slot named slot and chunk-type c has a
default value of t for the slot named slot2. If we create some chunks specifying those
chunk-types, some of which include a value for the slots with default values and others
which don’t, we can see how the default values are filled in for the chunks that don’t
specify those slots:

12

ACT-R 7 Tutorial 11-Jul-17 Unit Six

> (define-chunks (c1 isa a)
 (c2 isa b)
 (c3 isa b slot 3)
 (c4 isa c)
 (c5 isa c slot2 nil))

> (pprint-chunks C1 C2 C3 C4 C5)
C1

C2
 SLOT 1

C3
 SLOT 3

C4
 SLOT2 T

C5

The same process applies to conditions and actions in a production. The chunk-types
move-attention and click-mouse are created by the visual and motor modules and include
default values for the cmd slot essentially like this (there’s also an additional component
to the real chunk-type specifications which will be discussed in the next section):

(chunk-type move-attention (cmd move-attention) screen-pos)
(chunk-type click-mouse (cmd click-mouse))

Therefore, this request:

 +visual>
 isa move-attention
 screen-pos =c

is equivalent to this:

 +visual>
 cmd move-attention
 screen-pos =c

and we can see that by printing out the representation of the production which the
procedural module has for the encode-line-goal production using the pp (print
production) command:

> (pp encode-line-goal)
(P ENCODE-LINE-GOAL
 =GOAL>
 STATE ATTENDING
 =IMAGINAL>
 C-LOC =C

13

ACT-R 7 Tutorial 11-Jul-17 Unit Six

 GOAL-LOC NIL
 =VISUAL>
 SCREEN-POS =POS
 WIDTH =LENGTH
 LINE T
 ?VISUAL>
 STATE FREE
==>
 =IMAGINAL>
 GOAL-LOC =POS
 LENGTH =LENGTH
 =GOAL>
 STATE ENCODE-UNDER
 +VISUAL>
 SCREEN-POS =C
 CMD MOVE-ATTENTION
)

Notice how the isa information is not part of the request to the visual module in the actual
representation of the production but the cmd slot has been included in the request. This
would also result in the same request, but is a little bit redundant:

 +visual>
 isa move-attention
 cmd move-attention
 screen-pos =c

The same thing holds for the manual request in the click-mouse production:

> (pp click-mouse)
(P CLICK-MOUSE
 =GOAL>
 STATE MOVE-MOUSE
 ?MANUAL>
 STATE FREE
 ==>
 =GOAL>
 STATE WAIT-FOR-CLICK
 +MANUAL>
 CMD CLICK-MOUSE
)

6.5.2 Chunk-type hierarchy

Now we will look at the conditions in the encode-line-goal and read-done productions.

(p encode-line-goal
 =goal>
 isa try-strategy

14

ACT-R 7 Tutorial 11-Jul-17 Unit Six

 state attending
 =imaginal>
 isa encoding
 c-loc =c
 goal-loc nil
 =visual>
 isa line
 screen-pos =pos
 width =length
 ?visual>
 state free
 ==>
 ...)

(p read-done
 =goal>
 isa try-strategy
 state read-done
 =visual>
 isa text
 value "done"
 ==>
 ...)

Previously in the tutorial it was stated that the chunks placed into the visual buffer are
created with slots from the chunk-type visual-object. However, if we look at the
conditions in those productions they are specifying chunk-types of line and text
respectively in the visual buffer conditions.

In addition to the chunk-type visual-object the vision module defines several other chunk-
types for the objects which it can create. Those other chunk-types, like line and text, are
actually subtypes of the type visual-object. A subtype contains all of the slots that its
parent chunk-type contains, but may also contain additional slots or different default slot
values for the slots which it has. When the vision module encodes a feature into a chunk
it actually uses the slots of one of the specific types, like line or text to create the chunk.

In general one can create an arbitrary hierarchy of chunk-types with each subtype
inheriting the slots and default values of its parent chunk-type (or even multiple parent
chunk-types). A hierarchy of chunk-types can be helpful to the modeler in specifying
chunks and productions, but other than through the inclusion of default slot values, such a
hierarchy has no effect on the actual chunks or productions in the model.

To create a chunk-type which is a subtype of another chunk-type that parent type must be
specified in the definition of the subtype. That is done by using a list to specify the name
of the subtype which includes a list which has the keyword :include and the name of a
parent chunk-type for each parent type to be included. This example creates chunk-types
a and b, and then a chunk-type named c which is a subtype of chunk-type a and a chunk-
type d which is a subtype of both a and b:

15

ACT-R 7 Tutorial 11-Jul-17 Unit Six

(chunk-type a slot1)
(chunk-type b slot2)
(chunk-type (c (:include a)) slot3)
(chunk-type (d (:include a) (:include b)) slot4)

One might think these definitions would be equivalent to the ones above:

(chunk-type a slot1)
(chunk-type b slot2)
(chunk-type c slot1 slot3)
(chunk-type d slot1 slot2 slot4)

However, those are different because while the resulting chunk-types in both cases do
have the same sets of slots, the chunk-types in the second case are not actually subtypes
of the other types, they just happen to have slots with the same names. The difference is
that with the true chunk-type hierarchy it is acceptable to specify a parent type and use
slots defined in its subtypes, but that is not valid for chunks which just happen to have the
same slot names. Thus, with the first set of chunk-type definitions this is acceptable:

(define-chunks (isa a slot3 t slot4 10))

Because chunk-types c and d are subtypes of chunk-type a and have slots named slot3
and slot4, but with the second set that would result in warnings for invalid slots in the
chunk definition.

Now, for the line and text chunk-types used in these productions, here are the relevant
chunk-type definitions which the vision module has:

(chunk-type visual-object screen-pos value status color height width)
(chunk-type (text (:include visual-object)) (text t))
(chunk-type (line (:include visual-object)) (line t) end1-x end1-y
 end2-x end2-y)

The text and line chunk-types are subtypes of the visual-object type and each includes a
new slot with a default value of t that has the same name as the type. Because of that
default slot value, declaring the buffer tests with the types text and line in these
productions adds that additional condition to the productions as we can see when we print
out the internal representation of them:

> (pp encode-line-goal read-done)
(P ENCODE-LINE-GOAL
 =GOAL>
 STATE ATTENDING
 =IMAGINAL>
 C-LOC =C
 GOAL-LOC NIL
 =VISUAL>
 SCREEN-POS =POS
 WIDTH =LENGTH

16

ACT-R 7 Tutorial 11-Jul-17 Unit Six

 LINE T
 ?VISUAL>
 STATE FREE
 ==>
 =IMAGINAL>
 GOAL-LOC =POS
 LENGTH =LENGTH
 =GOAL>
 STATE ENCODE-UNDER
 +VISUAL>
 SCREEN-POS =C
 CMD MOVE-ATTENTION
)
(P READ-DONE
 =GOAL>
 STATE READ-DONE
 =VISUAL>
 VALUE "done"
 TEXT T
 ==>
 +GOAL>
 STATE START
)

Thus, this specification from the encode-line-goal production:

 =visual>
 isa line
 screen-pos =pos
 width =length

results in these conditions for the chunk in the buffer:

 =visual>
 screen-pos =pos
 width =length
 line t

which could have been specified directly, but declaring the specific type can be more
readable and is consistent with the way chunk-types have been used in ACT-R prior to
version 6.1. One other possible way to specify that condition would be to declare the
parent type visual-object and specify the line slot explicitly:

 =visual>
 isa visual-object
 screen-pos =pos
 width =length
 line t

17

ACT-R 7 Tutorial 11-Jul-17 Unit Six

In the default slot section above it showed chunk-type definitions for the move-attention
and click-mouse actions to indicate they had default slots, but the actual definitions of
those chunk-types also include parent types which could be used in the requests as well:

(chunk-type vision-command cmd)
(chunk-type (move-attention (:include vision-command)) (cmd move-attention)
 screen-pos scale)

(chunk-type motor-command (cmd "motor action"))
(chunk-type (click-mouse (:include motor-command)) (cmd click-mouse))

6.6 Learning in a Probability Choice Experiment

Your assignment is to develop a model for a "probability matching" experiment run by
Friedman et al (1964). The difference between this assignment and earlier ones is that
you are responsible for almost all of the code for the model, including the code which
presents the experiment. The experiment to be implemented is very simple. The basic
procedure, which is repeated for 48 trials, is:

1. The participant is presented with a screen saying "Choose"
2. The participant either types H for heads or T for tails
3. When the key is pressed the screen is cleared and presents as feedback the correct
answer, either "Heads" or "Tails".
4. That feedback stays there for exactly 1 second before the next trial is presented.

Friedman et al arranged it so that heads was the correct choice on 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, and 90% of the trials (independent of what the participant had
done). For your experiment you will only be concerned with the 90% condition. Thus,
your experiment will be 48 trials long and “Heads” will be the correct answer 90% of the
time. We have averaged together the data from the 10% and 90% conditions (flipping
responses) to get an average proportion of choice of the dominant answer in each block
of 12 trials. These proportions are 0.66, 0.78, 0.80, and 0.82. This is the data that your
model is to fit. Note, this is not the percentage of correct responses – the correctness of
the response does not matter.

Your model must begin with a 50% chance of saying heads, then based on the feedback
from the experiment it must adjust its probabilities through utility learning so that it
averages responding heads close to 66% over the first block of 12 trials, and increases to
about 82% by the final block. You will run the model through the experiment many
times (resetting before each experiment) and average the data of those runs for
comparison. As an aspiration level, this is the performance of the model that I wrote,
averaged over 100 runs:

> (collect-data 100)
CORRELATION: 0.994
MEAN DEVIATION: 0.016
 Original Current

18

ACT-R 7 Tutorial 11-Jul-17 Unit Six

 0.664 0.646
 0.778 0.771
 0.804 0.826
 0.818 0.830

In achieving this, the parameters I worked with were the noise in the utilities (set by
the :egs parameter in the sgp command) and the rewards associated with successful and
unsuccessful responses.

The starting model you are given for this task, choice, contains only the functions which
are able to run a person through one trial and to collect a key press response using the
“trial at a time” experiment writing style as discussed in the unit 4 experiment code
document. The rpm-window-key-event-handler method provided is very similar to those
from other units and will record a key press from either a person or the model by setting
the variable *response* to the string representing that key. The function do-choice-
person will run one trial returning the key that was pressed. You will have to write a
similar function to run the model through one trial, which should be named do-choice-
model. You also need to write a function called choice-data that takes one parameter
and runs the experiment that many times and prints out the average results of the runs and
the correlation and deviation of the average data to the experimental data. The choice-
data function does not have to be able to run a person through the task. It only needs to
be able to run the model. You also must write the model for the task that fits the data.

My suggestion would be to first write the do-choice-model function and a model that
does the task (without trying to fit the data), and make sure that works correctly. An
important issue here is to make sure that it correctly represents the experiment described,
including the timing. Next write a function to run a block of 12 trials and test that to
make sure the model works correctly when going from trial to trial. Then write a
function to iterate over 4 blocks for running one pass of the experiment and test that.
After that is working write the choice-data function to run the experiment multiple times.
Only then should you be concerned with actually fitting the model to the data, once you
are sure everything else works.

To write the experiment for the model to interact with you will need to use a few ACT-R
functions that were discussed in the previous units’ experiment description texts. Those
functions will be described again here, and the models you have seen up to this point
should provide plenty of examples of their use.

The reset function initializes ACT-R. It returns the model to the initial state as specified
in the model file. It is the programmatic equivalent of pressing the “Reset” button in the
environment.

The function install-device takes one parameter which should be a window. That
parameter tells ACT-R with which window the model will be interacting. Everything in
that window can be seen by the model, and all of the model’s motor actions (key presses
and mouse clicks) will affect that window.

The proc-display function is called to make the model “look” at the window. The model

19

ACT-R 7 Tutorial 11-Jul-17 Unit Six

only encodes the screen when requested with a call to proc-display. Thus, for the model
to notice a change to the window proc-display must be called after the change has
occurred. This function performs the buffer stuffing of the visual-location buffer if it is
empty and triggers the visual re-encoding if the model is attending an item.

The run function can be used to run the model until either it has nothing to do or the
specified amount of time has passed. It has one required parameter, the maximum amount
of time to run the model.

The run-full-time function can be used to run the model for a specific amount of time. It
takes one parameter which is the amount of time to run the model.

In addition to those functions you will also need to use the correlation and mean-
deviation functions. Those calculate the correlation and mean-deviation between two
lists of numbers.

Here is the function that runs the model through the paired associate task from unit 4
which should serve as a useful example of presenting a task:

(defun do-experiment-model (size trials)
 (let ((result nil)
 (window (open-exp-window "Paired-Associate Experiment" :visible nil)))

 (reset)

 (install-device window)

 (dotimes (i trials)
 (let ((score 0.0)
 (time 0.0)
 (start-time))
 (dolist (x (permute-list (subseq *pairs* (- 20 size))))

 (clear-exp-window)
 (add-text-to-exp-window :text (car x) :x 150 :y 150)

 (setf *response* nil)
 (setf *response-time* nil)
 (setf start-time (get-time))

 (proc-display)
 (run-full-time 5)

 (when (equal (second x) *response*)
 (incf score 1.0)
 (incf time (- *response-time* start-time)))

 (clear-exp-window)
 (add-text-to-exp-window :text (second x) :x 150 :y 150)

 (proc-display)
 (run-full-time 5))

 (push (list (/ score size) (and (> score 0) (/ time (* score 1000.0))))
result)))

20

ACT-R 7 Tutorial 11-Jul-17 Unit Six

 (reverse result)))

It is more complicated than the function you will need for this assignment because it is
recording response times and averaging the data over multiple runs which your do-
choice-model function will not be doing. It also calls reset which you should not do in
your do-choice-model function because you want the model to continue to learn from
trial to trial. You should only call reset at the start of each pass through the whole
experiment. Ignoring those complications, it performs a similar sequence of operations to
those necessary to do this experiment: opening a window, presenting an item of text,
running the model, clearing the screen, displaying another item of text and then running
the model again (the code highlighted in red). Note however that the timing for the
choice task is not the same as the timing of the paired associate experiment thus you will
have to do things somewhat differently to accurately replicate the choice task described.

In the choice file provided the do-choice-person function provides the structure for the
displaying of the items in the choice task:

(defun do-choice-person ()
 (let ((window (open-exp-window "Choice Experiment" :visible t)))

 (add-text-to-exp-window :text "choose" :x 50 :y 100)

 (setf *response* nil)

 (while (null *response*)
 (allow-event-manager window))

 (clear-exp-window)

 (add-text-to-exp-window :text (if (< (act-r-random 1.0) .9) "heads" "tails")
 :x 50 :y 100)

 (sleep 1.0)
 response))

What you must do is write the do-choice-model function that presents the display similar
to the way that do-choice-person does, but has the appropriate interaction with ACT-R
(the code colored green handles the interaction for a person doing the task and should not
appear in your do-choice-model function). The exact placement of the choose prompt
and the feedback of heads and tails is not important for the task, and the model should not
assume anything about their locations i.e. your model should still be able to do the task
regardless of where on the screen choose and the feedback occur including situations
where they are not both in the same location.

It is also possible to write the experiment using an event-based style as discussed in the
unit 4 experiment code text. That will require a little more work to program because it
does not analogize as neatly to one of the previous units’ tasks. If you would like to write
the experiment in that way you should look at the zbrodoff model as an example instead
of the paired model as described above. In fact, the different ways to write the
experiment can actually have an effect on the data fitting for this model because they will

21

ACT-R 7 Tutorial 11-Jul-17 Unit Six

likely have slightly different timing on the events which will affect the rewards received
by the productions. For the paired associate task the style of the experiment was not an
issue because the lengths of the trials were fixed. In this case, because the trials transition
on the response of the model, an event-based experiment will provide a more veridical
timing sequence because the events of the experiment will not be affected by components
of the model other than its response. However, either solution is acceptable for the
assignment.

References
Friedman, M. P., Burke, C. J., Cole, M., Keller, L., Millward, R. B., & Estes, W. K.,
(1964). Two-choice behavior under extended training with shifting probabilities of
reinforcement. In R. C. Atkinson (Ed.), Studies in mathematical psychology (pp. 250-
316). Stanford, CA: Stanford University Press.

Lovett, M. C., & Anderson, J. R. (1996). History of success and current context in
problem solving: Combined influences on operator selection. Cognitive Psychology, 31,
168-217.

22

	Unit 6: Selecting Productions on the Basis of Their Utilities and Learning these Utilities
	6.1 The Utility Theory
	6.2 Building Sticks Example
	6.3 Utility Learning
	6.4 Learning in the Building Sticks Task
	6.5 Additional Chunk-type Capabilities
	6.5.1 Default chunk-type slot values
	6.5.2 Chunk-type hierarchy

	6.6 Learning in a Probability Choice Experiment
	References

