
AGI Manual
Working Draft

Dan Bothell

ACT-R 7 11-Jul-17 AGI Manual

Table of Contents
Table of Contents...2
Introduction..2
Background..3

A Device..3
The UWI..4

The AGI...5
Typical Experiment Design...6
Window Control (Steps 1 and 2)...7
Displaying Items (step 3)...9

Colors...9
Item Specific Commands ..9

Waiting on user interaction (step 4)...13
Response collection (step 5)..15
Data analysis (step 8)...16
Miscellaneous..17
Visual Features of AGI Elements for Models..18

Text items...18
Buttons...19

Lines...20
Multiple AGI Windows...22

Mouse Cursors...22
AGI Summary..24
Issues with using the AGI for human data collection..25

Introduction

This document will provide a description of the GUI tools available in ACT-R for
producing experiments for models (referred to as the AGI which stands for ACT-R GUI
Interface) as well as some of the general ACT-R commands one may use for running
models. These commands are used to create many of the experiments which are used for
the models included with the ACT-R tutorial. Thus, if you would like to see examples of
their use you can look at those models and the corresponding experiment code
description documents which accompany the tutorial units. There are also examples of
some of the AGI capabilities not used in the tutorial models available in model files
located in the examples directory of the ACT-R source code distribution.

Before describing the AGI commands themselves however there will be some brief
background discussion of the low level interface to ACT-R’s perceptual and motor
systems and the tools upon which the AGI is built.

2

ACT-R 7 11-Jul-17 AGI Manual

Background

A Device

An ACT-R model interacts with the world through what is called a device. A device is
an abstract representation of the world for the model (which typically takes the form of a
simulated computer monitor, keyboard, and mouse) implemented as an object in Lisp.
There are a handful of methods that must be defined on that object so that ACT-R will be
able to “see” and “manipulate” that device. In general, defining such a device object is
all that is necessary to produce something with which an ACT-R model can interact, and
the slides titled “extending-actr” found in the docs directory of the ACT-R distribution
describe the details of how one can create a new device. When one needs to specify a
new or different “world” for an ACT-R model then creating a device is the way to do so,
but for simple experiments it’s often easier to just work with the devices which are
already available in ACT-R. If one of the following devices is used for the model then no
additional code will be necessary to provide the vision and motor capabilities of the
model.

Real GUI Windows

Built into ACT-R are devices for some limited interaction with the native Lisp GUIs and
interface widgets of Allegro Common Lisp, Clozure Common Lisp, and LispWorks.
Thus if one builds an interface with the native tools for those Lisps using the subset of
widgets supported (or adds the necessary support for other widgets) it is likely that the
model will be able to interact with that interface with very little extra effort. There are
some potential difficulties with that however. The first is that you have to learn how to
use the GUI tools of the Lisp system you are using if you do not know them already.
Another is that the GUI systems of the Lisps are not compatible i.e. if you build it in CCL
it is only going to work in CCL. The last is that we do not provide any documentation for
the specific low-level Lisp code needed to implement those devices other than what is
found in the code which implements them (they are located in the devices directory of the
ACT-R distribution). The AGI commands described below will create real GUI windows
in those Lisps with which the model can interact through the provided device.

Virtual Windows

Virtual windows are an abstract representation, based roughly on the windowing system
of MCL (Macintosh Common Lisp which is now obsolete but was the dominant Lisp
during much of ACT-R’s development), built into ACT-R that implements a windowing
interface which is portable across Lisps. It is called virtual because it does not display
anything – it is an abstract interface only visible to the model and which only accepts
actions from the model (except under the situation described below). Because the virtual
windows do not open real windows or handle real user interaction they are often much

3

ACT-R 7 11-Jul-17 AGI Manual

faster than the native windows on a given system, and can be used when speed and/or
portability is important. The virtual windows can be created and used directly if desired,
but there is no documentation available on doing so other than in the code which
implements them. The recommended way to use them is through the AGI commands.

Visible Virtual Windows

If the ACT-R Environment is connected to ACT-R it has an option (enabled by default)
to allow the virtual windows to be displayed and interacted with by a real user as well as
the model. The AGI command for creating a window will create visible virtual windows
if they are available instead of native windows in the Lisp being used. Thus, even for
command line only Lisps it is possible to create and see graphic experiments for the
model using the AGI commands when the ACT-R Environment is also used. The visible
virtual windows use the same device for the model as the virtual windows.

The UWI

The first attempt to create a set of commands for ACT-R GUI use was something called
the Uniform Windowing Interface (UWI). It was a set of low level windowing functions
which were implemented in various Lisps and for the virtual windows to allow them to
operate in a portable manner. It was not entirely user friendly and has now been replaced
by the AGI. It is still implemented in the code and is used underneath the AGI functions,
but it is not recommended for use directly and no documentation is provided on its
operation.

4

ACT-R 7 11-Jul-17 AGI Manual

The AGI

The high level interface that we provide for GUI construction for models is the AGI. It is
a small set of tools designed to make creating simple experiments for ACT-R models
easy. Those tools are able to create interfaces which use any of the devices included with
ACT-R (real windows in the supported Lisps, virtual windows, and the visible virtual
windows). and include three types of objects which can be placed into those windows:
text, buttons, and lines. It also provides methods which can be defined for collecting the
keypress and mouse button actions performed within those windows.

This document will describe the functions provided in the AGI as well as some of the
important ACT-R functions for running models. Examples of the AGI in action can be
found in the ACT-R tutorial and the examples directory of the ACT-R software
distribution.

There is one final thing to note however before describing the AGI commands. Creating
a visible interface with the AGI does make it possible for the experimenter to interact
with the same experiment as the model, but that is only recommended for use in testing
and debugging the task and/or model. The AGI is not recommended for use in creating
experiments for human participants because it does not provide any guarantees on the
precision or accuracy of the timing functions for real user interactions nor does it provide
any guarantees on the timing of the display changes. For a model those actions are
handled relative to ACT-R's internal clock and thus always occur at the appropriate time
for the model, but for real user interactions there are a lot of other factors involved which
vary significantly based on the Lisp, OS, and machine being used. Therefore we cannot
provide any guarantees on the usefulness of the AGI for human data collection. If one
would like to use the AGI for collecting human data the recommendation is to make sure
you understand the timing issues involved and then test it thoroughly using the target
machine. To help with that, there is some information about the AGI and timing issues
which may be helpful at the end of this document.

5

ACT-R 7 11-Jul-17 AGI Manual

Typical Experiment Design

To describe the commands available in the AGI we will first describe a very general
experiment design. Then for each step of the experiment we will describe the relevant
AGI commands.

Here is a typical procedure for creating a simple experiment:

1. Open a window

2. Clear the display

3. Present some stimuli

4. Wait for a response or fixed delay to pass

5. Record the response

6. Repeat steps 2-5 for different conditions/stimuli

7. Repeat steps 1-6 for multiple participants

8. Analyze the results

That general pattern can be found in most of the tutorial model experiments. Steps 6, 7,
and most of step 8 are best done with the iteration constructs and other functions already
present in ANSI Common Lisp, but the AGI provides the tools for carrying out the other
steps.

One assumption with that design is that there is one participant performing the task at a
time and there is a single window with which that participant is interacting. The AGI
(and ACT-R) are not restricted to operating in that fashion, but that is the typical
modeling scenario and thus the AGI commands attempt to make that process easy. It is
possible to open multiple windows simultaneously with the AGI as well as run more than
one ACT-R model concurrently, but the primary descriptions of the AGI commands will
present the simple (single window) usage details. Information on using multiple AGI
windows will be included in a later section. For details on running multiple models one
should consult the ACT-R reference manual, and there are examples of multiple models
interacting with AGI tasks found in the examples/model-task-interfacing directory of the
software distribution.

6

ACT-R 7 11-Jul-17 AGI Manual

Window Control (Steps 1 and 2)

For most tasks a single window is all that will be required for a model. When there is
only one window created for a model all other commands will operate upon that window
and it is referred to as the “current” window. If multiple windows are created however
one will need to specify the window to use for all of the other commands and there is no
current window. That can be done using either the title specified when creating the
window or the window object returned when the window is created.

Open-exp-window

This command takes one required parameter which is the title for an experiment window
to create. That title must be a string or symbol and will be displayed in the title bar of the
window along with the current model's name (with the provided devices the model
cannot see the title bar of the window). If there is already an experiment window open
with that title in the current model then it clears its contents and brings it to the
foreground. If there is not already an experiment window with that title then it opens a
new window with the requested title and brings it to the foreground.

The command also accepts several keyword parameters for configuring the window. The
possible keyword parameters are :height and :width which specify the size of the window
in pixels and default to 300 each, :x and :y which specify the screen coordinates of the
upper left corner of the window in pixels and also default to 300 each, and :visible which
can be either t or nil (the default is t). If :visible is t it specifies that a real or visible
virtual window be opened, and if it is nil it means that a virtual window will be opened.

There is also a keyword parameter called :class which can be used to create the window
using a custom window class instead of the default classes for those looking to extend the
operation of the system. The only documentation for using that capability is to note that
the specified class must be a subtype of rpm-window and additionally a subtype of
visible-virtual-window if that is how the windows are being shown. Beyond that,
extending the system in that manor will require one to be familiar with the underlying
interface mechanisms involved either from the Lisp being used or the ACT-R virtual
windows which are only documented in the code itself.

If the provided parameters are all valid values then the function returns the corresponding
window object. If there is a problem with the parameters, or in creating or clearing the
window then a warning will be printed and nil will be returned.

examples:

(open-exp-window "Letter recognition")
(open-exp-window 'task :visible nil)
(open-exp-window *title* :x 0 :y 0 :width 250 :height 400)

Select-exp-window

7

ACT-R 7 11-Jul-17 AGI Manual

This command takes no required parameters and has one optional parameter which can
indicate a specific window (either by title or object). If no window is provided then it
will operate on the current window. It will bring that window to the foreground.

Note: The select-exp-window and open-exp-window commands may not always bring a
visible virtual window to the foreground because of issues with which application has the
focus in some operating systems.

examples:

(select-exp-window)
(select-exp-window "Letter recognition")

Close-exp-window

This command takes no required parameters and has one optional parameter which can
indicate a specific window (either by title or object). If no window is provided then it
will operate on the current window. It closes that experiment window. Once the window
is closed it is no longer possible for a person or model to interact with it. One should
close experiment windows when they are no longer needed to avoid potential problems
with multiple open windows. However, all open windows will be closed automatically
when ACT-R is initialized with the clear-all command which should prevent problems
when loading different models. If desired, ACT-R can also close the windows when the
system is reset by setting the system parameter :close-exp-windows-on-reset to t.

examples:

(close-exp-window)
(close-exp-window 'task)

Clear-exp-window

This command takes no required parameters and has one optional parameter which can
indicate a specific window (either by title or object). If no window is provided then it
will operate on the current window. It removes all of the items from that experiment
window.

examples:

(clear-exp-window)
(clear-exp-window *exp-window*)

8

ACT-R 7 11-Jul-17 AGI Manual

Displaying Items (step 3)

Displaying items in experiment windows effectively involves two steps: creating an item
for the window and adding that item to the window. The most commonly used
commands in the AGI perform both steps together, but there are also commands for
creating items without displaying them, for removing specific items without clearing the
entire display, and a command which allows one to put created or removed items on the
display. When creating the items, the AGI commands will construct an appropriate
object for the type of window involved (one of the supported real windows, virtual, or
visible virtual) and that item will be returned from the function. The type of those
returned items will be different for each type of window, and the details of those item
objects is not part of the AGI's API. Thus, the recommendation is to treat those objects
as unmodifiable except through the use of the AGI modifying commands for the items.

Colors

For all of the item creation commands there is an option to specify a color for the item.
When providing a color it must be a symbol naming the color and not a Lisp specific
color object, even if it is a real window. The following color names are supported across
platforms and window types: black, blue, red, green, white, pink, yellow, gray, light-blue,
dark-green, purple, brown, light-gray, or dark-gray. If an unsupported color name is
provided then the results depend on whether the window is visible or virtual. For a
virtual window the provided color name will be used and made available to the model,
but for a visible window an unsupported color will be drawn in black and that is what the
model will see as well.

Item Specific Commands

For each of the provided display items (text, buttons, and lines) there are three
commands. Those commands can be used to create an item without displaying it, create
an item and display it in a window, or modify an item which has been created. The
commands for each purpose take the same set of parameters for a given item type and
return the corresponding item.

Text

add-text-to-exp-window
create-text-for-exp-window
modify-text-for-exp-window

These commands take several keyword parameters and are used to draw a text string in an
experiment window based on the values of those parameters. The :window keyword

9

ACT-R 7 11-Jul-17 AGI Manual

parameter can be used to specify the window to use for the add and create commands and
the current window will be used if no :window parameter is specified. The modify
command requires the item to be modified as its only required parameter. The return
value is a text object which is appropriate for the indicated experiment window.

The :text parameter specifies the text string to display and defaults to “”. The :x and :y
parameters specify the pixel coordinate of the upper-left corner of the box in which the
text is to be displayed, and the default value for each is 0. The :height and :width
parameters specify the size of the box in which to draw the text in pixels. The default
value for :height is 20 and for :width is 75. [One thing to note about the :height and
:width parameters is that although the text shown in a real window or a visible virtual
window may be clipped at the borders of the box specified a model will always see the
entire text string regardless of the box boundaries.] The :color parameter specifies in
which color the text will be drawn and defaults to black. The :font-size parameter
specifies the size of the font used to draw the text and is measured in points. It defaults to
12 if not specified.

examples:

(add-text-to-exp-window :text "Ok")
(create-text-for-exp-window :text "a" :x 150 :y 150)
(modify-text-for-exp-window *text-item* :text "b" :color 'blue)

Buttons

add-button-to-exp-window
create-button-for-exp-window
modify-button-for-exp-window

These commands take several keyword parameters and are used to place a button in an
experiment window. The :window keyword parameter can be used to specify the
window to use for the add and create commands and the current window will be used if
no :window parameter is specified. The modify command requires the item to be
modified as its only required parameter. The return value is a button object which is
appropriate for the current experiment window.

The :text parameter must be a string and specifies the text to display on the button and it
defaults to “Ok”. The :x and :y parameters specify the pixel coordinate of the upper-left
corner of the button and each defaults to 0. The :height and :width parameters specify the
size of the button in pixels, and :height defaults to 18 and :width defaults to 60. The
:action parameter specifies a function to be called when this button is pressed and defaults
to nil (no function to call). When provided, that function will be called with the button
object itself as the only parameter. The :color parameter specifies a background color for
the button, and defaults to gray. When specifying a color for buttons in visible windows
one may not actually see the color displayed because of issues with the Lisp or OS being

10

ACT-R 7 11-Jul-17 AGI Manual

used, but the model will see the appropriate color regardless of what is shown on the
display.

examples:

(add-button-to-exp-window :text "Ok" :x 100 :y 150)
(create-button-for-exp-window :text "Cancel" :color 'red)
(modify-button-for-exp-window *but-obj* :text "x" :action (lambda (button)
 (setf *result* 'x)))

Lines

add-line-to-exp-window
create-line-for-exp-window
modify-line-for-exp-window

These commands take two required parameters and two keyword parameters and are used
to place a line in an experiment window. The :window keyword parameter can be used
to specify the window to use for the add and create commands and the current window
will be used if no :window parameter is specified. The modify command requires the
item to be modified as an additional (first) required parameter. The return value is a line
object which is appropriate for the current experiment window.

This two required parameters specify the pixel coordinates of the end points of the line
and each should be a two element list of the x and y coordinate respectively for one end
of the line. The keyword parameter :color can be used to specify the color in which to
draw the line.

When modifying a line, if only the color needs to be changed the start and end points may
both be specified as nil, but if either coordinate pair is to be changed both must be
specified.

examples:

(add-line-to-exp-window (list 75 35) (list 125 35))
(create-line-for-exp-window '(0 0) '(10 35) :color 'green)
(modify-line-for-exp-window *line-obj* '(0 0) '(10 35) :color 'blue)

General Commands

These commands work for any of the items which have been created using the commands
above.

Remove-items-from-exp-window

11

ACT-R 7 11-Jul-17 AGI Manual

This command takes an arbitrary number of parameters and an optional keyword
parameter :window which specifies the window to use (if not provided then the current
window is used). Each of those items is removed from the current window.

examples:

(let ((a (add-text-to-exp-window :text "a"))
 (b (add-button-to-exp-window :text "b" :x 50)))
 (remove-items-from-exp-window a b))

Add-items-to-exp-window

This command takes an arbitrary number of parameters each of which must be an object
that has been created for the current experiment window. Each of those items is then
added to the current display if it is not already there.

examples:

(let ((a (create-text-for-exp-window :text "a"))
 (b (create-button-for-exp-window :text "b" :x 50)))
 (add-items-to-exp-window a b))

12

ACT-R 7 11-Jul-17 AGI Manual

Waiting on user interaction (step 4)

There are no commands in the AGI which are relevant for waiting for an ACT-R model,
but there are some AGI (and Lisp) commands which are useful when a person is
interacting with the experiment windows. There are however several ACT-R commands
which are relevant for interfacing a model to a task. Those ACT-R commands are
described fully in the ACT-R Reference Manual, but this section will include a brief
description of some of the most important ones.

Install-device

This command takes one parameter which must be an valid device (for example an
experiment window created with open-exp-window). This tells the model which device
it is interacting with. All of the models actions (key presses, mouse movement and mouse
clicks) will be sent to this device and the contents of this device will be what the model
can “see”.

examples:

(let ((w (open-experiment-window "test")))
 (install-device w))

Proc-display

This command can take one keyword parameter, :clear. Calling this command tells the
model to process the currently installed device for visual information i.e. this command
makes the model “look” at the current contents of the installed device. Whenever the
window is changed you must call proc-display again to make sure the model becomes
aware of those changes. The re-encoding and buffer stuffing mechanisms described in
the tutorial only happen after this command is called. If the :clear parameter is specified
as t it will cause the model to treat the window as all new items – everything there will be
considered unattended.

examples:

(proc-display)
(proc-display :clear t)

Run & run-full-time

These commands take one required parameter which is the time to run a model in seconds
and a keyword parameter called :real-time. The run command will run the model until

13

ACT-R 7 11-Jul-17 AGI Manual

either the requested amount of time passes, or there is nothing left for the model to do (no
productions will fire and there are no pending actions that can change the state). The run-
full-time command will run the model for exactly the specified amount of time regardless
of whether it has any actions to perform. If the keyword parameter :real-time is specified
as t, then these commands will run the model in step with real time instead of being
allowed to run as fast as possible in its own simulated time. If the :real-time parameter is
a number then that indicates a scaling of the real time performance to use e.g. a value of 2
will attempt to run the model twice as fast as real time. Note, that if real windows are
being used then the :real-time parameter should always be specified as t.

examples:

(run 10)
(run-full-time 5 :real-time t)

Allow-event-manager

This command is for use when a person is interacting with an experiment window. It
takes one parameter, which must be an experiment window. It calls the appropriate
function for the current Lisp and operating system to handle user interaction when a
person is doing the task. Its use is necessary to give the system a chance to handle the
real user interactions otherwise the data collection methods may never be called. It is not
necessary when a model is performing the task. It is recommended that it be called
frequently until the user has responded.

examples:

(let ((w (open-experiment-window "test")))
 (loop

(when (user-response-received) (return))
 (allow-event-manager w)))

Sleep

Sleep is a function defined in ANSI Common Lisp, but because it is used for experiment
generation in the tutorial tasks it is being included here. The Lisp specification for sleep
says it takes one parameter, seconds, which is a non-negative real, and it causes execution
to cease and become dormant for approximately the seconds of real time indicated by
seconds, whereupon execution is resumed. An important thing to note is that this is only
useful when a person is doing a task. The sleep function will have no effect upon the
timing of actions from the model’s perspective, but it will increase the time it takes to
run the model from the user’s perspective.

examples:

(sleep .5)

14

ACT-R 7 11-Jul-17 AGI Manual

Response collection (step 5)

When a key press or mouse click occurs in an experiment window (generated by either a
person or the model) the method rpm-window-key-event-handler or rpm-window-click-
event-handler respectively will be called. Thus, to record such responses you must define
those methods on the rpm-window class (a super class of all the windows which can be
generated by the open-exp-window command). Those definitions will look like this:

(defmethod rpm-window-key-event-handler ((win rpm-window) key)
 ...)

(defmethod rpm-window-click-event-handler ((win rpm-window) pos)
 ...)

with your code to record the responses inside of them.

The parameters passed to the rpm-window-key-event-handler will be the window in
which the key press occurs and the key that is pressed. For the ‘normal’ keys (letters,
numbers, and simple punctuation keys) the key parameter will be the character of that
item, but for other things (function keys, arrow keys, etc) it may be a system dependent
character or possibly a symbol representation of that key. Thus, you will have to be
careful when using such keys to make sure that your method can properly handle those
items.

The parameters passed to the rpm-window-click-event-handler will be the window in
which the mouse click occurs and the position of the mouse when the click occurred.
The position will be a two element vector of the x and y pixel coordinates within the
window of the mouse pointer at the time of the click.

Get-time

This command takes an optional parameter and it returns the current time in milliseconds.
If the optional parameter is specified as a non-nil value then the time returned is the
model’s simulated time. If the optional parameter is specified as nil then the time is
taken from the internal Lisp timer using the function get-internal-real-time. If the
optional parameter is not specified, then the model’s simulated time is returned. The time
from the internal timer is not zero referenced with respect to the task, so one needs to
make sure and record the time at the start of the trial for reference when necessary.
Although the time is measured in milliseconds for a person that does not mean that it is
necessarily accurate to that resolution (see the section on collecting human data for more
details).

examples:

(get-time)
(get-time nil)

15

ACT-R 7 11-Jul-17 AGI Manual

Data analysis (step 8)

To help with data analysis there are two AGI commands provided for performing
correlation and mean deviation calculations.

Correlation

This command takes 2 required parameters which must be equal length ‘collections’ of
numbers. The numbers can be in arrays or lists and the two parameters do not need to be
in the same format (one could be an array and the other a list). The only requirement is
that they have the same number of numbers in them. This function then extracts those
numbers and computes the correlation between the two sets of numbers. That correlation
value is returned. There is a keyword parameter :output which defaults to t. When
:output is t the correlation is printed to *standard-output*. If :output is nil then nothing is
printed, and if it is a string, stream, or pathname then that is used to open a stream (if
necessary) to which the results are written.

examples:

(let ((results (perform-task)))
 (correlation results '(.6 .65 .7 .86 1.12 1.5 1.79 2.13 2.15 2.58)))

(correlation (list 1 2 3 4) (list .3 .5 .9 1.2) :output nil)

(correlation (vector 1 2 3) (list 4 3 2))

Mean-deviation

This command operates just like correlation, except that the calculation performed is the
root mean square deviation between the data sets.

examples:

(let ((results (perform-task)))
 (mean-deviation results '(.6 .65 .7 .86 1.12 1.5 1.79 2.13 2.15 2.58)))

(mean-deviation (list 1 2 3 4) (list .3 .5 .9 1.2) :output nil)

(mean-deviation (vector 5 9 3) (list 1 2 9))

16

ACT-R 7 11-Jul-17 AGI Manual

Miscellaneous

This section contains some additional AGI functions which may be useful for creating
experiments.

Permute-list

This command takes one parameter which must be a list and it returns a randomly
ordered copy of that list. The randomization is performed using the act-r-random
command which means that the setting of the model’s :seed parameter will affect the
results and it is possible to recreate the same randomized list if needed.

examples:

(permute-list '("a" "b" "c" "d" "e"))

While

This is a looping construct which may be more familiar to those who are not Lisp
programmers. It takes an arbitrary number of parameters. The first parameter specifies
the test condition, and the rest specify the body of the loop. The test is evaluated and if it
returns anything other than nil all of the forms in the body are executed in order. This is
repeated until the test returns nil. Thus, while the test is true (non-nil) the body is
executed.

examples:

(while (null *response*)
 (allow-event-manager window))

17

ACT-R 7 11-Jul-17 AGI Manual

Visual Features of AGI Elements for Models

When ACT-R processes a display that was generated though the AGI the visual features
that are generated for buttons, lines, and text are processed similarly regardless of which
(if any) display is being used. However, there are some differences between the different
devices based on the specific details of the particular system and thus there may be some
minor difference in the features the model sees when the same code is run under different
circumstances. There may also be some discrepancies between what the model sees and
what is actually displayed on the screen when a real window is used in some
circumstances because of limitations or issues with the windowing system being used.
This section will describe how the visual features are constructed for the model, what
differences may result in the model representation based on the default visual processing
mechanisms, and what inconsistencies one may encounter with the real displays.

Text items

The default processing for text items is to create a visual feature for each “word” in the
text displayed. Words are determined by segmenting the text string based on the
classification of the characters as either whitespace, alphanumeric, or other. Whitespace
consists of any Lisp character which is not graphic-char-p as well as the character
#\space. Alphanumeric characters are any characters which are alphanumericp or which
have been specified with the add-word-characters command (add-word-characters can
change a whitespace character into an alphanumeric). Other characters are those which
are not whitespace or alphanumeric. A word is a continuous sequence of either
alphanumeric or other characters. Thus this string “ab123--word end” would be broken
into four separate words “ab123”, “--”, “word”, and “end”.

The slots of the visual-location representing a word are set in two ways. One set of slots
will receive values that are consistent among the various devices provided with ACT-R
and the other set of slots will receive values based on characteristics particular to the
specific device which is being used. The slots which will be set consistently are:

kind – the value text

value – also the value text (Note however that a visual-location request may specify a
specific string for the value slot in a request and that will be compared to the actual text
on the display. Thus, the model can request the location of an “A” on the screen, but the
chunk which encodes the features will not contain the “A” because to get that information
requires a shift of attention.)

color – the color specified when creating the text item (or black if no color was
provided)

distance – the current default distance in pixels based on the value of the :viewing-
distance and :pixels-per-inch parameters

The other set of slots represent the position and size information based on the specific
font which is being used for the display and the value of the device parameters which can

18

ACT-R 7 11-Jul-17 AGI Manual

be set to describe the display. The font values are likely to vary among devices for the
same text display. Here the details as to how the values are derived will be provided as
well as the default settings for the virtual device.

In determining the location of each word the first thing to consider is how the text is
being displayed. The assumption for the AGI text items is that it starts inside the top left
corner of the box specified by the x and y coordinates given for the text item. Any
newlines in the text result in moving the following text down one “line” and starting
again at the left side of the box. [Note, the height and width values provided for a text
item do not actually constrain the feature generation for the model, but may truncate the
results actually shown on the screen for some devices.] Based on the font being used for
the display the following values are determined: how tall the font is (the ascent value),
how tall a line of text is (the ascent plus the descent), how wide each word is, and how
wide the space character is. Using those values along with the pixels per inch of the
display, as specified by the :pixels-per-inch parameter (which defaults to 72) the
remaining slots of the visual-location chunk are set as follows:

height – how tall the font is

width – the width of the word in pixels

size – the area of the word in degrees of visual angle squared determined by multiplying
the height and width after converting them into degrees of visual angle based on the
viewing distance and pixels per inch settings

screen-x – the x coordinate of the center of the word based on its position (determined
using the x position of the text item and the width of the words and spaces that precede it
on the current line) and its width

screen-y – the y coordinate of the center of the word based on its position (determined
using the y position of the text item and how many lines of text are above it) and the font
height

For the virtual device the default values for the 12 point font information are: 10 pixels
high, each character (including the space) is 7 pixels wide, and a line is 12 pixels high.

Not all of the visible devices properly display text with newlines. In some cases one may
only see the first line of the text, and in other cases all of the text may be displayed on
one line. However, the model will always see the text as if it is formatted as described
above.

Buttons

A button in the display creates a feature for the button itself as well as features for all of
the text displayed on the button. The feature for the button depends on the properties
specified when creating the button as well as the :viewing-distance and :pixels-per-inch
parameters. The button’s feature will have the following properties:

kind – the value oval

19

ACT-R 7 11-Jul-17 AGI Manual

value – the value oval

color – the color specified when creating the button or gray if no color was specified

distance – the current default distance in pixels based on the value of the :viewing-
distance and :pixels-per-inch parameters

height – the height specified when creating the button or 18 if no height provided

width – the width specified when creating the button or 60 if no width provided

size – the area of the button in degrees of visual angle squared determined by multiplying
the height and width after converting them into degrees of visual angle based on the
viewing distance and pixels per inch settings

screen-x – the x coordinate of the center of the button based on its position and its width

screen-y – the y coordinate of the center of the button based on its position and its height

The text value provided for the button (which defaults to “Ok” if no text parameter is
given when creating the button) will result in text features being generated almost the
same as described above for text items. There are two differences between the text
features generated from a button and text features generated from text items. The first is
that the color of a text item from a button will always be black. The other has to do with
how the x and y positions are determined.

The text features for a button are assumed to be placed so that they are centered on the
button instead of being aligned with the upper-left corner of the item’s placement as they
are for text items. That means that if there is a single word in the text it will have the
same screen-x and screen-y values as the button itself. If there are multiple words and/or
multiple lines then their locations will be arranged such that there are an equal number of
lines above and below the screen-y of the button and each line will be centered on the
screen-x value of the button.

There are some discrepancies in how the real windows display buttons among the various
device and OS combinations relative to what the model sees. First, the same possible
issues for text items apply to the text on buttons as well. The model can see all the text
displayed on the button regardless of how large the button actually is, whereas in the real
display some text may be clipped at the button boundary. Also, when there are newlines
in the text for a button it may or may not display in multiple lines centered appropriately
on the button. Another issue with buttons is that they may or may not actually be drawn
as large as the height and width indicate they should, but the model will always see them
in the size specified. Finally, the button may or may not display in the color indicated.
In some situations the text on the button will be drawn in the color for the button instead
of the button itself being filled with the color specified. Even in those situations where
the text is drawn in the button’s color the model will still see the text as black and the
button as the appropriate color.

Lines

20

ACT-R 7 11-Jul-17 AGI Manual

Each line added to the display will generate one feature for the model. The feature for the
line depends on the properties specified when creating the line as well as the :viewing-
distance and :pixels-per-inch parameters. A line’s feature will have the following
properties:

kind – the value line

value – the value line

color – the color specified when creating the line or black if no color was specified

distance – the current default distance in pixels based on the value of the :viewing-
distance and :pixels-per-inch parameters

height – the difference between the y coordinates of the endpoints of the line

width – the difference between the x coordinates of the endpoints of the line

size – the area of the line in degrees of visual angle squared determined by multiplying
the height and width after converting them into degrees of visual angle based on the
viewing distance and pixels per inch settings

screen-x – the mid-point between the x coordinates of the endpoints of the line

screen-y – the mid-point between the y coordinates of the endpoints of the line

When displaying lines in real windows there are a couple of issues that may arise. One is
that the lines may not be displayed until the system event manager updates the display.
Thus it may be necessary to call allow-event-manager after adding lines to a real display.
The other is that for some devices lines drawn along the borders of the window may not
be visible i.e. those with both x coordinates equal to zero or the width of the window
minus one or both y coordinates equal to zero or the height of the window minus one.

21

ACT-R 7 11-Jul-17 AGI Manual

Multiple AGI Windows

The description of the commands above mention the possibility of using multiple
windows. This section will provide a little more detail on how to do so. The important
issue with respect to the commands is the “current” window, and the current window is
relative to the current model. First we will describe how that works when there is only
one model.

If there is only one experiment window open then it will be the current window by
default and the commands will act upon it. If more than one window is opened in the
context of a single model then there will not be a default current window. In that case the
commands must specify which window is the current one to use. That is done by
including the window object or window title of the desired window to the command as
indicated above (either as an optional parameter or a keyword parameter). Here is a very
simple example showing two windows being opened and adding a single item to each
followed by the first one then being brought to the front:

(let ((w1 (open-exp-window "A"))
 (w2 (open-exp-window 'b :x 0 :y 0)))
 (add-text-to-exp-window :text "X" :window w1)
 (add-button-to-exp-window :text "Ok" :window 'b)
 (select-exp-window "A"))

The same rules for current windows apply when there are multiple models currently
defined. The important distinction is that each model will have its own current
experiment window. When a window is created with open-exp-window it is considered
to belong to the current model at that time and each model will have a set of windows
which belong to it. When opening experiment windows the title of a window is only
meaningful within a particular model. Thus, more than one model can open a window
with the same title, but within a model there can only be one window with each title.
However, just because an experiment window belongs to a particular model does not
preclude other models from interacting with that window – any window can be installed
as the current device for any model. The only potential issue with that is making sure
that all the commands which manipulate that window properly indicate it as being the
current one which will require specifying the window object (not the title) when
accessing it from a model other than the owning one.

Examples of using multiple experiment windows with multiple models can be found in
the “examples/agi” and “examples/model-task-interfacing” directories of the software
distribution.

Mouse Cursors

When there are multiple experiment windows and/or multiple models there are some
issues to be aware of with respect to how models interact with the mouse cursor. If the

22

ACT-R 7 11-Jul-17 AGI Manual

windows which are opened are real windows within Lisp then all models which are using
those windows will be using the single real mouse cursor for interaction with all of those
windows. Virtual windows however, whether visible or not, will each have their own
virtual cursor which is shared by all models that have that window installed as their
current device. Whenever a mouse cursor is shared among models extra care should be
taken with those models when performing actions with the mouse because there is no
guarantee that it will stay where the model moves it, and even actions like clicking a
button could “fail” since the cursor could be moved off of the button between the model’s
request to press the button and the model’s finger actually depressing it.

23

ACT-R 7 11-Jul-17 AGI Manual

AGI Summary

The AGI was primarily designed to support the ACT-R tutorial. As such, it is fairly
minimal in what it provides, but that was one of the goals – to keep it simple. Hopefully,
people find the AGI useful, and if you have any questions, suggestions, or comments
about the AGI feel free to contact me at db30@andrew.cmu.edu.

24

mailto:db30@andrew.cmu.edu

ACT-R 7 11-Jul-17 AGI Manual

Issues with using the AGI for human data collection

Because the AGI is intended to work with many different ANSI Common Lisp
implementations the tools provided are not tuned for high-fidelity human data collection
in any particular one. Thus, as provided, the AGI includes no guarantees as to its
performance. So, essentially, whether the AGI (or some other tool) is acceptable for any
experimental purpose really comes down to researching and testing to determine if it
performs within the bounds of what one needs. Timing is typically the important issue
with respect to collecting human data. Three things to consider with respect to timing
related to the AGI will be described below: the resolution of the timer, the latency
between the user actions and when the code can record them, and the latency between
when a display change is requested and when it becomes visible to the user.

From a timer resolution aspect the AGI uses the Lisp function get-internal-real-time
which does not have any requirements for the resolution it provides. In most Lisps it
returns a result that is specified in milliseconds, but often that is not the true resolution of
the timer because it may only update once every 50ms or worse in some cases. If that
timer is not sufficient then one would need to find out if the particular Lisp being used
has any custom functions for accessing a better time source and whether or not that could
be used instead of the provided get-time command.

In terms of response detection latency, things are more complicated because how user
actions are handled for real interfaces vary from Lisp to Lisp. For information on that
when using one of the native GUI interfaces one would have to consult any
documentation available for the corresponding Lisp, and may need to also investigate the
device code in ACT-R (which is below the level at which support is provided). In some
past investigation it was found that the default event handler which is used by the AGI in
one Lisp had a latency which would be significant for some tasks (60-120ms) and getting
“good” timing data required writing a low-level event handler replacement. That may not
be true anymore, but can only be determined with appropriate investigation. If the visible
virtual windows are being used then things could be significantly worse because that
response has to be processed in the ACT-R Environment (through the Tcl/Tk event
handler) and then transmitted to the AGI in Lisp over a TCP/IP socket connection which
is monitored by a background thread running in the Lisp. In either case, there are a lot of
factors involved which affect the response detection latency which will need to be
investigated.

Latency on display changes is basically the same as for the response detection – there
could be significant delays depending on the mechanisms involved. Again, one will have
to consult the specific Lisp documentation for details on native GUIs, and for the visible
virtuals there is a TCP/IP socket connection in the chain of events that must happen
before something gets to the display.

Because of the uncertainty in the performance we do not recommend using the AGI for
human data collection without thorough testing by the user on the target machine to
assess its performance.

25

	Table of Contents
	Introduction
	Background
	A Device
	Real GUI Windows
	Virtual Windows
	Visible Virtual Windows

	The UWI

	The AGI
	Typical Experiment Design
	Window Control (Steps 1 and 2)
	examples:
	examples:
	examples:
	examples:

	Displaying Items (step 3)
	Colors
	Item Specific Commands
	examples:
	examples:
	examples:
	examples:
	examples:

	Waiting on user interaction (step 4)
	examples:
	examples:
	examples:
	examples:
	examples:

	Response collection (step 5)
	examples:

	Data analysis (step 8)
	examples:
	examples:

	Miscellaneous
	examples:
	examples:

	Visual Features of AGI Elements for Models
	Text items
	Buttons

	Lines
	Multiple AGI Windows
	Mouse Cursors

	AGI Summary
	Issues with using the AGI for human data collection

