ACT-R 7.26" Reference Manual

Dan Bothell

Includes material adapted from the ACT-R 4.0 manual by Christian Lebiere, documentation on the
perceptual motor components by Mike Byrne and the Introduction is a shortened version of the ACT-
R description written by Raluca Budiu for the ACT-R web site.

Notice

The purpose of this document is to describe the current software. It does not generally describe the
differences from prior versions, but in places where such changes are significant some additional

information may be provided.

Table of Contents

|\ L] 1 (ol T U U USSP UUUUUUR Ut 2
1) (S0 i o) 1 17=) 1 -SSRSO OR PR 3
PIOIACE. ...t e ettt e e ettt e e e e e ar e e e e e eaba e e e e e are e e e e taaaeeeeabaaeeeaaraeeeetraaeeeenrereees 18
IITOAUCTION. ...cetetiiiieieee ettt ceeeetre e e eeeeesababrereeeeeeesesssraareeeeessesssssaaserseeesessnsssranrsresessanssessseeens 19
DOCUINENT OVEIVIEW......evvvererirerereierererereretereeerererererere.e..n.oooon 21
General SOftware DeSCIIPIONcccvieiierieeieiieeeieerteete et e e te et esre e teessseesseessseeseesssaesseasssessssssesnssees 22
LICEINSIIIE .eeeetieeeeiiteee ettt ettt e e ettt e sttt e e et e e s e bt e e e s esb e e e s esasateeeesbaeeeeemsaaeesensaeeeeennnnnnnnrnne 23
CSE SEIMISIEIVILY . .ettereruurreeeeiiiterieittteeesitteeeesttteeessutteeessusteeesssssaeesssasteeessssaaeessssssaaaaeaeeeesssssnsnssnnnsssnns 23
FUNCLIONS VS. IMACTOS....ciiiiiiiieieieeeeeeeeeeeeeeeeee et ee e e ee e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeseseessssannseeeessssnnnnsaaens 23
COMPALIDIIILY ISSUES...eeuuteiiiiiiieiieeeiteeete ettt ettt s e st e e s be e e s beesssbae s sbeesssseesstaeesensssnaens 24
Notations in the DOCUMENtALION.cc.veiieeiiieeeecieeeeeeeree et eeeeereeeeeeetreeeeeeaeeeeeeeeenansnsasssereaeeaeeeesaeens 25
(@00 131 00F: 116 TR0 USROS 25
SIBIIALS. ..ttt sttt et b e st sae bt et b e et s bt e bt et e e enbeeeare s 25
COMMANA SYNEAX.0eutteieiieiriieeriteeerieeesteeesteeesteesssteessseeessseessseessseesssseessssesssssesssssesssssessssesessssssssees 25
Generalized BOOIEAIN.........ccouiiiieeiieee ettt ee ettt eeeetree e e e etreeeeeetseeeeeeaaaeeeeenaraaeeeeeeeannnnnnnnns 26
ComMMANA LABNEITIET.....cciiiirieeeeiieee et ceete e e eeare e e eeeabae e e eeateeeeesnaseeeeeeeeeesnsnnssssenes 26
= 0 (<INt 26
REMOtE COMIMAMNAS.ccciiieiiiirrireieeeeeieiirereeeeeeeeeretreeerereeeeeesssrrerereeeesessssrsssnesesessssssrsrasereeesssseserrnnes 27
EMDbedded SHENESeoeiieiiieieiiieeee ettt ettt ettt e s e et e st et e st e e et e e e enaraeeas 27
TranSmMISSION PIOtOCOL........cciiiiiiiriiiiee ettt e eeeearar e e e e e seesnsbaaeeeseeesesnsssranereeeeens 27
EXAIMIPLES. ...ttt ettt ettt st e bt et e e b e e et e e beesabe e abteeeeanes 28
ACT-R Software DiStIIDULION.ccooiveiiiiiiiiiieeiiiie ettt ceeiee e eertae e eeeareeeeesaaaeeeeeesaeeeeeeeessnnnsnnes 29
DiStriDULION COMEEIIS.ccuviieeeeiiieeeeeiireeeeeireeeeeeitreeeeeerreeeeessseeeeessseeeeesssseeeeessseseesssssseesessssssssssssseeeeeens 30
SUDAITOCEOTIES. ...eiiiiieeiieiieeeec et eetrrr e e e e eesesbareeereeeeeessassrarereseeseesassrsransseessesnnssnransreeessennns 30
COMMIMIATIIAS. .. veeeeeiireeeeeiteeeeeeiteeeeeetaeeeeetbeeeeeesreeeeeessseeeeassaeeeeasssseeeeassseeeeasseseeansnssnsssasssseeeeeesennnnns 30
COTE-TTIOMULES.evvierieiieeieeeeciitteee et e e e eeeebbrereeeeeeeeesssrssereaeeeessessssasaseeeesesssssssressssssssnnnnn 30
AEV-TOOIS. .. veeeeeieeee ettt ettt eeeett e e e et e e e e e e taeeeeeetsaeeeeesseseeeassaseeeeesssseesesseseeeassssaeeeassssanseees 30
QOVICES...cciiieeiteeeeeeec et ee e eeeee e e e e e e eesesssbaaaereeeeeesasssssarereeessessssrssaneeeeessessssrassresessennnnnnnns 30
OGS, .. ettt ettt e ettt e e eee e e e e e tbaeeeeetaaeeeeetbaeeeeeasaaeeaaaaaaeeearbaaeeeaaaaeee e nnanraraaaaaaaaaeeeeaaaann 31
EIIVITOTIIIEM . e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseseeesesasesesesssasasasesssssssssasasssssesssesesssesssessssssssnnnsessssssnnnneessns 32
EXAITIPLES. ...ttt ettt ettt et st e et e st e bt e et e e ht e et e e st e s abeenatesareas 32
EXETAS 1t uuunnnnnnnnnnnnnsesesennnnsssnsssssnsssnssssssnsssnsssssssnsssnnnsnnsssssssnnnneesens 32
FTAIMEWOTK. ...cceevrieeeeeee ettt e e et e e e eete e e e e et aaaeeeeasaeeeeessaeseeeasnsseeeennsssssssseseeeeeens 32
INIOAULES. ...ttt et e e eeeetber e e e e eeeessssrareseeeeeessassasaassaeeessensssrassressnsssesssssssrnnnen 32
OLNET-FILES......eveeeeeeeee ettt e et e e e e e te e e e e et taa e e e e saaeeeenasaeeeeesnsnsaaeraaaaaeaeeeaaans 33

SUPD PO ettt euetteeeesureeeeeauureeesaurteeeesasseeeesssraeesssasaeeessasseeeessassaeesssasaaeesssseaeessssaeesessteeeensssseeessssseeeeees 33
EEST-INIOLS. veeeeeeieee ettt ettt ee e e e e tr e e e eeetteeeeeetaaeeeeeaseeeeeeasaseeeessaeeeeeeeennnnnnnrnrrraeeeens 33
17010) F- TR 33
EUEOTIAL 1eee ettt ettt e e eete e e e e et e e e e e taaeeeeeeasaeeeeessseeeeensseeeeanssaeeesanssbaeeeeeeeeaannnnnnrnnes 33
USET=LOAAS. ..vvveiiiieieeiiiiteeei ettt e e eeetbe e e e e et eeseeasbsaeaeeeeeeeeessssaassaeeessesssssssanssssssasssssssssnnannnnn 33
Loading and Running the ACT-R SYStEM........cccertiriiriiiniiienieniteieeteee ettt 34
Single-threaded MOCE...........coiuiiiiiiiiiieeeeceee et e e st e e e s sabaaeeessssnseneeessnnnns 34
ACT-R VEISiON AetailS......cccuiiiieeiiieeieciiie ettt eeetee e e eete e e eeeteeeeeesseeeeeeassaaaeeaeeeeeeeeeeeeeannnnnnns 34
Component and ModUIe VEISIONS........ccccuiiiriieriiieeiiieeriieenieeesieessreessteesreeseraeeessssssraeeessssnseseeeens 35
USET LA FI1ES.......uveeeeeieiee ettt ettt eettt e e et e e e e e teeeeeeabaeeeeeasseeeeenssaeeeeensseaeaaaeeeeeennnes 36
Lisp Compiler OPtimiZations.........cecueerterrieerieeieeeie et et e st e e te st e e bt e satessbeesbe e st e saeeesseesaseeeemeee 36
LOGICAL HOSE. ettt ettt ettt et b e st sa e bt et s bt e b st e bt e b e et e e e b e e sane 36

load-act-r-model/10ad-act-T-COAE.........ccceriirrriirierieerieeteete ettt ettt steebe e e esae e e ssraeesnneas 38

| 0= T o) 1<) SRR SRRR 39
RECOMPILING.....cctiieiieiiieieeeeeeet ettt ettt et e et e st e e ba e st e e st e s st eesaeesseesseesnseeseaessseeesssees 40
PACKAGINE. ...ceneeeeititee ettt ettt e sae e st e bt e st e e bt e st e e bt e eabe e bt e e abe e bt e e s nbteeenneas 40
(O] 1T 1 FO TSR RUSRRRPRSPRRP 41
PaCKAGEM. ...ttt ettt et st e e e e b e st e bt e e ettt e e e bt e e e araeeas 41
REQUITING FIlES....eeitieiieeiieeieeteeee ettt sttt et e bt e st e e bt e ssbesaaessbaessaessseessaennsseesnnsns 41
TQUITE-COMIPILEA ...veeeeiieeiie ettt e et e et e e e e e e e aaeeesaeeessssaaeeeeennnsanens 41
OVerall SOftWare DESIGN......ccuiecuieriieiienieeieerteeiteste et e steesteestessteesseessseesssessaesssessseesssessssseesnssees 43
IMIOAEL fH18S.... ettt ettt ettt e e te e e e beestbeebeessaeeabe e sbeeasa e saeesse e saeeeensbeeeansaeeeannreean 44
ACT R OULPUL..eteteiitteeeeiiieee ettt ettt e e ettt e e seiteeesssteeesssnreeeessusseeessssaeessssssteesssnsneesssssseeesssssseeesssnnne 46
Commands & SIGNALS......ccueiruiiiieiiiete ettt ettt sttt ettt et st bt e s beenes 46
BEMETALTACE. ... veeeieeieeeieeieeete et te et e st et e st e e bt e e abe e seeesbe e st essseesseessseenstessseeseesnsaenseessseesnnseeean 46
10104 (<] B Lo TSP 46
COMIMANA-TTACE. ... veerereeureerieeeteesteesteesseesseesseesssesseesssessseesssesseesssesssessssesseesssesssessssessseesseessnssees 46
WATTHIIZ-ETACE. ..t eeevteeeeeiiteeeteitee e e ettt e e e ettt e e eesbteesesabbte e s e sbaeeesenssaeeeeesaaeeseesssaaaeeeeeeeessssssssnnnnnnrnnes 47
ECNO-ACTT=OULPUL....c.eteitieeieeiteete ettt ettt e et e e st e s beesaeesbeesseessseesseesssaenseesssesnseennseeesnnseeenn 47
tUITI=OF f-ACt-T=0ULPUL......eeeviieiieiiecteeee ettt et e e e e seesbe e reeebe e saesnseesseeeenssaeesnnens 48
SUPPTESS-ACT-T-OULPUL.....eeetieirieereeireeeeenireeeeerrteeeesiteeeeessreeesesseeeessasseeesssssseeessssseesessssseesssssseeeeees 48
SOFtWATE OPETAtION. .. .c.ueeetieeiieiiieeieecteeeteeiteeeteeteesteesteessteeseessseesssesssesseessseasssesssaasseessssseeassseeenssaeennes 50
IVLEEA-PIOCESS.vveeeiuireeeeeeitteeeeeiteeeeeetteeeeeatteeesauaeeeeseassaeesesnateeesasaeeeaasssaeesassssteeesssseaessannnssssraeaeaeaeeens 51
Commands & SIGNALS......ccueiruiiiieeieiee ettt sttt ettt sttt s e at e st bt e e b e enees 51

(ol 12T o 1 O USROS RURRRRSRRP 51

(ol (=T 1 =1 | B v | SRR RUPRR 52
TOSEE. uvtteeeeureeeeeeurteeeessteeeeaareeeeeeusteesessateeesaasbaeesasstaeeesansaeeesannbeaeseanstteeeaasaaeesansaaeeeeeeansnnnnnnnrnnne 52

TS OE-STATT. . eteeeeeereeeiiereeeeeeeereeittteteeeeesassautettaeeeesassassnstaaaeeseesssssnsssaaaeeessansnsssntaaeesesssssssnssesssnnsssnnnns 53
1] (0 T OO PO 53
IIID-EITTIE . ¢ eieteee e et eee ettt e e e e e ese bttt eeeeeseeaaaraaaaaeeesasssssssbaaaaeesesesssnssaaaaseessansssnssaaeesneeseessnnssnnnnnn 55
ITIPD-TIITIO TTIS ¢eeeeeuueeteeeeeteeeeertteeeeeurteeeessateee s asteeessasreeeesnsaeeesnnseeesesnsseeesssnsaeessasssaaesssessssnnnnnnsnrnnes 55

TP -PIINE-VETSIONS. ¢.ttttttiieeiiiiitteeteereeeiiitrteeeeesensasarrteeeeesessassssereeeeesssssssssssesseeessssssssssesssssssssssssnnnns 56
BIVRIIES .« ettt ettt e e ettt e e et e e s et e e e et e e e ettt e e e ettt e e e e a b e e e e e naaeeeenrrreaaaeees 58
(O70)10100F=1 1 16 T PRSP 58
INP-SNOW-QUEUEeoruiieiiiriiieiieeieeit et et eete et esbe e teesatee bt e ssbesseesssaesseesssesseessseessaesssesasseassassees 58
ITIPD-(UELIE-COUNL..vteeeeuureeeerurreeesnsreeesesureeeesssseesssssseessssssseesssssssessssssseesssssseesssssssssssnssssssnssseeeeees 60
INP-SNOW-WaAIINE. ... eeetieiieeiierie ettt e ste et e st e et esbeesbe e st e eseessseesseesssessssseeeansseeesnsseesnsseens 60
INP-TNOAUIES-EVEILS. ... veeeeerieeeiieeiteeeeieeeitteeeiteeeerteeeeseeseabeeessseeessseeessseessseesssseessssasssssssseeeesssnssnees 61

LO10] 1017070 1<J 1 | FES R OO OO PO U PSR U P PP RORPRPPPPPPPPPP 62
IMIOQUIE. ...ttt ettt e e et e e et e e e atee e s st e e e saeeessaeeassseeassaeesssaeessseeesseeessaaaessnsnssneesennnnnes 63
COMIMANGS.veeveeiteeieeete et eete et et e et este e bt e s besbeessteesseesssesasaesssessseeassesssaenssessssseesnsseesnnsseesnsseen 63
All-MOAUIE-NAIMES.......oeiiiiieeiiieceecce et e e et e e sbe e e seae e e baeessaeesssaeesssaeenssaeennnsnaeeens 63
USE-TNOAUILS.ecuviiiieeieeiieeteeete ettt e e et e s teestee st e esaeessbeesseessseesseesssesseenssesensseesssseeessseesnsseens 64
BUEEOIS. .ottt ettt e bt esae e be e s ab e e beeesae et e e e sb e e beaesbe e ba e sbeenbeesraeeteenraeenseeennees 66
COMIMANGS.eeeveerireeitesie ettt et et eeteeste e bt esstesbeessteesseesssesssaesssessseeassessseenssessssseesnssseesnnsseesnsseen 67
DUEEETS. ..ttt ettt e et e et e e b e e be e et e e beeesb e e baeesbe e baeenraaeeenrtaeeenraaeeanrees 67
MNOAEI-DUITETS. ...ttt st e s be e e st e e st e e ssbaeesnseas 68
DUFEET-CHUNK. ...ttt ettt e be e s ae e re e e sbeesseeeseeseesnseeenneaeenns 68
Printed-buffer-ChUunK..........c.cooiiiiiiiece et e e e e s snes 70
DUFEET-STAUS. ... veeeveeeieeieecte ettt ettt ettt e e te e et e e beessaeebeessbessbeessseensaeesnssaeeenssseeenssaeeansens 71

PIANtEA-DUFTET-STATUS. ... eeeviietieeieeceeee ettt e e tee st e e bt e esbe e saesnse e saeesseensaesnsaeesnnnns 73

DU T -TOQUITES-COPIES. ..cutieeeieeiieeieeteeteee ettt ettt s e et e s b e s be e st e esbaessaesssseeesnsseaesnssees 75
TEUSADIE-DUTTEI P ...ttt ebe e s b e sbe e s aae e e e ssae e araeeeennees 76
IMLOA ISttt ee e e et e e e eeata e e e e e aaaeeeesaaaaeeeeasaeeeeesasaeeeessaaeeeestaeeeeansreeeeesrareeeerrereeens 77
(@00) 13)50T: 1 16 KT TR 78
(a3 N a T 1070 16 (<] P OSSO PR RUTTT 78
(a1 1 T ' Lo 1d <) R 79
ChUnKS & CRUNK-TYPES.......uiiiiiiiiieieiiierieeie ettt eete et e s te st e st e s beessaessbeesstessseesssesssaesssasssessnssseesnnsns 80
INOLE O SIOL COMEBIIS. ..uuvvviiiiiiiieiirreereeeeeeeeeitereeeeeeeeeesabreeeeeeeeessssssasereseeeessssssraneeeseessssnsnnnnnnnnns 81
Default ChUNK-{YPES...c..tiiiiieieiiierieeiterte et eete et et este e st e ebeesbesbaesseeesseesssessseesssessssseessnsseesnnsseean 81
(ol 110111 ORI 81
CONSEANE=CHUNIKS.eeiiiiiiiic ettt ee e e e eeatee e e e eaaaeeeeetaaeeeeessaeseeesaseeeeensreeeeens 82
QUETY=SLOTS. ...ttt ettt et et e st e st e bt e s ab e e bt e sabe e b e e e st e e bt e eabeenbeeennbeeas 82
CLBAT ...ttt eete e eee e e e et e e ee et e e eeaae e e e e aaar e e e e aaaeaeeetaaeeeenaaraeeerrarrrrraeaeans 82

| SY =L LA O 1181 o< 82
COIMIMANAS.....ccvvvieeeeirieeeecitee e ettt e e eeeteeeeeeitteeeeestreeeeesssaeeeeessseeeessseseeeessssseeeesssssssseseseeeeseeennnnnssssnes 82
Chunk-type COMMANGS.......cccueeruieeieiitinieeiteeteee ettt et e ste e bt e sate s bt e satesbeesatesseesseesseenseesanees 82
UK ALY PR ettt et s e et e e st e et e e ssb e e saeesseesseessseensaessseessaasssesnsseens 82
PPIINE-CHUNK-EYDE. ...ttt ettt s e e bt e st e bt e st e e bt e sabeesbeesanaeeeane 85
UK ALY PPttt ettt ettt s e st e et e e s st e e beesabeesseessbeessbeeenssaeeennsaeeennsaeens 86
All-ChUNK-TYPE-NAIMES.......eiiiiiiieitete ettt ettt ettt e e e bt e st e st e e be e bt e e snneees 87
chunk-type-possible-S10t-NameS-fCL..........ccceriirriiriieiieeieceee et e e e e e saeaee s 88
ChUnK COMIMANAS.....uvvieiiiiiiiiiieiiiteeeee e eeeeetre e eeeeeeesisraeeeeeeeeessssssaseereeseessssssssssssssesssssssssssenssssssssnes 89
AEEINE-CIUNKS.uvviiiieiiiie ettt ee ettt e e e e et e e e e eeabaeeeeeeataeeeeensaseeeensssssaraeeeeeeeens 89
pprint-chunks & pprint-ChUNKS-PIUS...........coeiiiiiiiiieiie e e e e e e 91
CHUNK D .ttt et e et e e bt e s b e e be e st e e baessseessaesnsaessaenssesnseennseensees 94
(1010001 Ta (oTal N} u a1 17 [(o) o FORNN R 95
CHUNK-SIOt-VAIUE.cvviiiieieieeeeeee ettt et eete e e e tae e e eeaaaeeeeesseeeeeesssseeeeessssseneeens 95
SEt-CHUNK-SIOt-VAIUE.......eeeviiiiiiii ittt e e e e e ebb e e e e e e e sessssssseeeesaeasssaaannnns 96
INOA-CHUDNK.....eiiiiiiiececieee et eeete e e e etae e e e eeataeeeeeesaaeeeeesaaeeeeeeeeeeeeessssssssssnereeens 98
COPY-CHUIK ...ttt ettt ettt et e bt esat e et e e s st e et e e s bt e sabe e st e sabeeaeeesnneeas 99
ChUNK-COPIEA-fTOM.....eiiiiieieeieeeeeee ettt e e e e st e e saaessbeesssnaesnns 100
(1110011 EURRRURRURRRRRRN 102
ChUNK-SIOt-BQUAL.....eooiiiiiieieceeee ettt et e st e e e e st e e saaessbeesssnaesnns 103
EQUAL-CHUNKS......eeiiiiieiie ettt et e et e et e e et e e e taeesbaeesaaaesssaeeeennssseeeeessnsssneeanns 104
BO-CHUIIKS.eeeitieiieeiteeeeee ettt et ettt e st e s te e st e e beessaeenbeesateesseesssesssneessssaeessnseesansses 105

[q <] (< ol 110111 RO 106
PUIEE-CHUNK.....eoutiiiiiiiieeiecte ettt e et e s be et e st e e s seessbeesaessseesssseessssassnsseessnsseeennns 107
INETEE-CHUNKS. ...ttt ettt ettt ettt e st e e bt e sabeesbeeesanbeeenane 109
Create-ChUNK-aliaS..........ueiiiiiiiii ettt et e e et e e e e e e e e eeeassaaaereeeeens 110
MAaKe-ChUNK-IMIMULADIE.coiiiiiiiiiieec ettt e e e ee e e e e e e e e eeeeeeeesesssaasaasaaanaaas 112
tTUE-CHUNK-NAINIO.eoiiiiiiec ettt ceetre e ee ettt e e eetteeeeeesaaeeeeessaseeeessssseeeeeeeeeeseeseennnnsnnns 113
NOTMAlIZE-CHUNK-TIAINIOS.eviiiiii ittt e e eeebar e e e e e e essasbsereeeeeeesssssssssessssnsrrsssnnnnns 114
ChUNK-fIIIEA-SIOTS-LiSt. ... vvveeieeiieiee ettt ceett e eerre e e e tre e e eeeareeeeeeaaaeeeeeeeesssssssssaraeeeens 116
(13100512 110 o (o) =1 o] T T URRRURRRURRRRRRRRN 117
GENETAL PATAIMETOTS.........vveieeeciieieeeeiieeeeeeiteeeeeeteeeeeertteeeeesseeeeeeesseeeeeesseeeeeessseeeeasssseeeeeeesnssssssssssrseees 119
(@00 131 83T: 1 16 LTS 120
S uurreeeeaurteeeeaurtee e ettt e e et te e e e bt ee e e ettt e e e hatee e e bt te e e s bt eee e aaaee e e e ab e e e e e bt aeeeenraeeeeeeeaanannnnnnnnnne 120
get-parameter-default-Valte...........coievieriiriirieneeeeseeee ettt ettt st 121

WILNmPATAIMIELETS. .. eecvteeetieeeieeeeteeeeteeeete e e te e e taeeetteeebaeeasseeesssaeassseeansseaessseessseesssseessaeensseeesanns 122

GEt-PATAIMELET-VAIUE.....cuuiieiieiieeieesteeieeete et e st e e te et e s teesstesbeesstessseesssesnseesssessseesssessassssessseenns 124
SEL-PATAIMEIET-VAIUE.c.utiieieiieeciieeeiieeeiteeeeiteeesteeesteeesateeesaeeeesseesbaeessseeessseeensseesnsseesnsseeessssssses 125
SYSEIM PATAIMIETOIS. ..cceeuuviteeeeiiieeeeeiiteeeeritee e ettt e e eeateee s ettt e e esabteeessaseeeessanraeesesnsseeessssnenaaeeaeeeesssnnnnns 127
COMIMANAS. ...ttt ettt ettt et e et eeat e st e e bt e sab e e bt e e ab e e st e sab e e bt esabeebaeeensbteeenbeeeannseeeennes 127
S Pt teeeeuureee e ettt e e e ettt e e et e e e e bt te e e e a bt e e e e bt t e e e bt ae e e e bt e e e e e bt aee e et aee e e anb e e e e e st eeee s nraaeeeennraeeeennnnee 127
get-SYSteM-ParamMeter-ValUe.......ccc.eeriiriiiiriieeieente et ee sttt e et et e st e e bt e et esatesbeesabeeesneeeeeanees 128
SEt-SYStEM-PAraMEteI-VALUE.cccvieteereieeiienieeieeste et estesteesteesseesseesssesseessseesseesssesssassssessseenns 129
PATAIMIETETS.eeietieeieee ettt ettt et e et e s bt e e e bt e e e bt e e eabte s abeesenbeesnbeesannbeeeseennne 130
Thigh-pPerformanCe............oouiiriiiiee et bae s 130
GeneratiNg OULPUL........ciiiiiiiieiiieee ettt ettt ettt e e ettt e e s e bbeeesessbateesenraeeseenraaeesesnnaeesesnnnnnnnns 131
IMOAE] OULPUL. c..veeieieeiieeiieeteecieeete et e et e st e ste e bt esste e teessbeesseesssessseesssassseesssesseessseesseessssseesesseesnnes 131
COMMANA OULPULvveieireeeieeeeiteeeieeesteeesteeeetteeseseeessseeesseeessseesssseesssseesssseesssssessssessssessssssseeesennnes 131
WAITHIIES. ...ttt ettt s ettt e e e sttt e e e aar e e e s eaat e e e e s ube e e e s assaeeseaasbaeeesnsaeeesassssnsnssaneaaaeeeens 131
(@ 1172 0 @ 1111)1 L SO PR SPPR 132
COMIMANAS. ...ttt ettt ettt et st e sb et e s st e st et e e st e be et e sst e bt e st e sstenbesaseesaaeesaseesaseesaseesnseenas 132
TNOAEI-OULPUL ...eiiniiiieiiieccieeeete ettt et e e et e e et e e e s teeesabee e seeeesseeesseeesseeassaeassseesessnsssnaessnnnnes 132
INIOEA-P-OULDUL. ¢eeeeuuerteeeeeiteeeeeriteeeesireeeeestteeeeesarteeeesasneeeesssseaeesssssteesessseeessssssaessssnseeessssssnnnnsnsnnnee 133
COMIMANA=OULPUL. ... eeeeuvreertieeeereeeeteeeesteeeeseeessseeeeseeesseesssseeassseesssssesssssessssesssssessssssssseesssssssseeesens 134
TLO-OULPUL..teeeeuirteeeeeiteeeeestteeeeesrteesessreeeeasuneeeesasnsteeeasnseeeesansseeesesssaeeessnsseessssssaeessssesssssnnnnnssnnns 135
PIINE-WAITIHIIS. .. ceeeiirteeeiiiteeteeitteesertt e e ettt eeeeibae e e s e earteeeeesbaeessemsbeeesenraeesesnbteeeeassaaessessraeesesnnnnnes 135
MNOAEI-WAITHIIZ. ...c.vtieiieeiieeiieeteere e et et e et et e et e st e ssbe e st e ssbeesseesssaesssesssaesssassseensssassasssessnssenennns 136
one-time-MOdel-WaITHIE.ccoiutiriiiiiiieeee ettt e st e st e e bt e st e e bt e sabeesbeesaseeeeane 137
RUNNING the SYSTEIM.....ccuiiiiieiiiiieiieeeteeit ettt e ettt eete et e ssteesseesbeessaesssaesseesssesssesssessseessssseesanes 139
Commands & SIGNALS.cccueiruiiiiiiieeeet ettt ettt ettt et ettt e bt e e a e e e b e e e eaee 139
TUN-STATT e veeeiteeeit ettt ettt ettt e et et e st e s bt e st e e s bt e s s bt e s bt e e e bbeeeabaeeeabaeeeesnnraeeessannnne 139
TUTI=STOP 11ttt eeutrreeeenutteeesarreeessausreesessseeeesssaseessssssaeeessssseessssssseessssssseesssssseesnsssseeeeessssssnssnssnnnsnnns 140
TUDL c.etteiitteeeitee ettt e ettt e ettt e s bt e e s bte e e beeseabte s mb e e s emb e e e mb e e e bb e e e baeeeabaeeembeeeembaeesmbeeemabeeeeennbbaeeeeeannnaees 140
TUN-FULI-EINIE. ...ttt et st e b e et e s e e beesaseesaseennnes 142
FUN-UNE IO .ttt et ettt b et s e sae e e bt e e sae e e eaeeenaee 143
TUN-UNE-CONMAIION. ¢ttt ettt e bt st e e bt e s e e sbe e e s st e e esaseeeeane 145
FUN-UNE -ACHOM. 1.ttt sttt sb et s e s bt et et e s st e s s seeeaee 147
TUNETIEVEIIES. ¢ teeeatteeeitee et e et e ettt e ettt eebteesabeeeeubeeseubeesnbee s sbee s bt eesasaeeeasteeenssbteeeeeannsbeeeesennnnnees 150
TUTI=STOP vttt eeitteeeeeiuteeeeeetreeeseesteeeesaureeeeesassaeesesssateeesaasaeessssssaeessssaeeessansaaeesssssaeesssnsseeesssssneessnnnn 152
SChedULING EVENLS......coiuiiiieieeteeeete ettt ettt st et st e e bt e st e e bt e st e e st e sabe s st e sasaeeenane 154
DEtails Of EVENLS. ...c..iiteeieeiteieeteet ettt ettt ettt ettt sa ettt sa e b et sae bt abeebeeearees 154
1100 < PO O P PP OPPPTPPPPPN 154
PIIOTILY ctteteitteeeeetteee e ettt e e e ettt e e ettt e e e s bt e e e esusreeesensteeeesansaeeesnssaeesansaeeesssseeeessssaeesasnsaeesennnnnes 155
Lol 410) 1 O OSSP PP PP PRTOPPPPPRRRRRPPRE 155
PATAITIETETS. ...eeeeeuurreeeeeurteeeeeetteeeeaureeeeasuseeesasssteeesuseeessasaseeesasssseeessasseeeesssseeesasssnesesssssssssnnnsssnnns 155
TTIOAEL ettt ettt e bt e et e s a e st e e bt e e a b e e bt e s abe e be e st e e bt e sabe e beenaneeena 155
INIOAULL. ...ttt ettt et e a e sb e b s a e bt et e e bt e s bt et e s st e bt et e e st e s bt eabesatesae e beenneeaee 155
ESTIMALION. ...ttt ettt ettt et e st e et e e at e e bt e s bt e s bt e sabe e bt e sabeeabeesubeebeeessbeeeeanbeeanans 155
ELAILS. .. ettt ettt et st et et b e et ea e ae et e et st e e eabeeebeeeneeeas 156
OUED UL e iiiiieee et e ee ettt et e et e e ee ettt e e e e s sessaaabaaaeeeesssassnsasaaaaeesssssssssstaaeaessssassssasssessseseeeeeeeesneeennes 156
Event IMPIeMENTAtiONcccviriiriiiiiieeiieerieeiteeseeesteesteeteeseesteesseessbeesssesseesssesssessssesssseessssseesnnns 156
EVEINE ACCESSOIS. c.ciuuiiiiiiiiiieeeeiteee ettt e ettt e e st ee s e era e e e s e et e s s baaeeseemsbteeeesnseaaeeeeeeeessesnnnnns 156
General Event COMMANAS.......co.cerertererriertenieertenteseeste et entestesseesteetesaeessesseesaneesaseesaseesaseesseenas 158
EVENL-AISPLAYEA-D. .ttt ettt ettt ettt st e e et e e eaas 158

FOTITIAL-VOIIL. ..o e 159

Scheduling COMMANGS........cccueirtiirieriienieertent et eete et e stessteesteeseesseesseesstessssseesssseessssseessssseees 160
schedule-event, schedule-event-relative, sSchedule-eVent-NOW.........cccoceeeevevevereeereeeeeeeeevieeeeeens 161
schedule-event-after-module.............coooiiriiiriiniieeeeee e e 163
schedule-event-after-Change............ooeerieriereriiereeeee ettt st esteesree e 166
SChedUle-PeriOiC-BVENL......ccccviiciieriieieerie ettt ettt et e e be e st e s beessaesbaeessssaeessnseeesnnens 167
schedule-break, schedule-bDreak-IelatiVe............cuvveiiiiiiiiiiiiiiiiiiiiiiieiiieieieeeeeeeeeeeeeeeeeeeeeeeeare e seeees 169
schedule-break-after-mMOdUule...........c.cooiiiiiiriiiiiiiecece e 170
schedule-break-after-all..........c..ooiiiiiieiieiecceceece et ettt s e ree e 173
ELELE-EVEML.....ccuteeeieeieeiteeieete ettt ettt e et e st e st e e s tte e beessaessseessbeesseassseessaesssaesseessnsseesnnssaeennns 173

EVENE HOOKS. ..cctieieiieeeieeeee ettt e e e e vee e et e e et e st e e s ab e e esbeeeasaeesnsseesnsaaesnssneeasannnes 174
add-pre-event-hook, add-post-eVent-hooK.............ccccueeeiirrieriiiinieniececieceeeeesee e 175
Aelete-EVENT-NOO0K. ...ccutieieiieeeiieeciee ettt e e rte et e et e e e te e e sateeesaaeeessaeessaeeessaeesnsaeessseesssseessennssnes 177

About the Included Modules and COMPONENLS..........cccueerreerierrieeriierireenrersieeseeesseessessseeseesssesesssseeas 179
Printing MOAUIE.......couiiiiiieee ettt ettt st e bt e st e st e s bt e s b e e bt e eabeesnneeaeas 180
PATAIMELETS.eeeeeeiiiiee ettt e ettt e e sttt e e s ettt e s e abte e e e saseteessasseeesennbaeeesansaeeeeeessnnnnnnn 180

Lol o ol PO PRPR 180

(ol 1016 | SOOIt 180
TMOAELI-WATTHIIES. ... eeeiieeiieeteet ettt ettt et et e st e bt e st e e bt e st e e st e e abeesseesabeeseesaseas 181
ATACE-AELALL c..eeeteeieee ettt e e et e et e e ate et e e teeenteeatees 181
TACETIIEOT .. ettt ettt e et e et e e et eebeesabe s beessaeebeeesbeebaeesbeenbeeasaeeseeenneas 181

TV ettt ettt e ettt e e e e bt e e e ettt e e e e bt e e e e e bt ee e e a bt e e e e bt e e e e ettt ee e e ab e e e e e ba e e e e e abaeeeee bt e eee e araeeeeenraaeees 182
Naming Module and COMPONENL.........cccutirierriiirieeiterteeieeste et e site et et esbeesseesbeesseesbeesseeessnseeenans 183
PATAIMELETS.eeeeeeiiiiee ettt ettt e e sttt e e s ettt e s s bt e e e e saseeeessasseeesesnsbeeeesnsaaeeeeeesannnnnn 183
TICTIAT . vttt eeuuereeeesureeesensuseeeeanseseeesnssseessssssseesssnseeesssssseessssssseessnsssseesssssseesssssseeesssssseessnsssseessnsnnnnne 184

COMIMANGS. ... eeevieiieeieeeie et este et e ste s bt e sttesbeesstessseesaessseeseessseessaeassaesseesssesssseesnsssessssssesansseesnnsses 185
TIEW-TIATTIE. ... eeeeeeuurreeeeeurreeeenureeesasseeeesessssseeesssssseessnssseesssssseessssssseessnsssseeesnssssessssssseeesssnsssssssnnnnne 185
TEIEASETIAIMIC. ... eeeuveeeieeieeiteeiieesteeeteeteeeteesteesaseeseesssessseessseesseenssessseenssesnseenssessseenssesnseenssessesnns 187
NEW-SYITIDOL. ... ittt ettt sa e et e et e st e e bt e et e e s st e e be e st e e e earaeenaas 188

RaNdOM MOAUIE.......cceiiiiiieeieeee ettt et s et e st e s teesste e saeeenbeeeessaeennes 190

PATAIMBLETS.eveeeeeiieee ettt ettt e ettt e e e sttt e e e s sabae e e s sabaee e s abaeeeesssaaeesssssaeessnsssaeeenansaaeaeeesssnnnnns 190

TANAOIMIZETIITIC. ... veeiieeiieeieet ettt e et e et e et eesteesbeesttessseessseesseesssessseesssesnseensseesssseeesnsseeensseenn 190
]« PO PSPPI 190

COMIMANGS. ... veeivieiieeieesie et eete et et e s rte e st e sbeesseessseeseeesseeseassseessaesssaesseesssessseesssssessssssesansseesnsses 191
ot o 0 1 [0) . DO USRS 191
ACE-T-TIOISE. ¢ eeetteeeeuieeeeeetteeeeetteeeesuteeeessustteeeesasteeeessseeessssssaeeessasaaeesasnsaeeesassaeeessnssneesssnsnnessnnnns 192
randomize-time, randOMiZEe-tIIME-INIS...........ccetttetiteieiieeieeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeteeeeeeeessseesammns 193

HiStOTY RECOTAOT ... ciiiiiiiiieiieiieeie ettt ettt et e st e e ste e st e et e e s st e sbeessbessbaesstessseesssesnssaessnsseesnnes 196

(010)10100F-1 1 16 TSP SPP 196
0123 08 T 1 R 10 oy 2O OO 196
define-hiStOry-CONSTUENIL.cctirtieierierieeie ettt ettt sae e st e sbe e te e esbeessseesnsaesseeens 198
efine-hiStOTY-PIOCESSOT. .. .cccviieeiieiieeieeiteeet ettt ettt e st e e bt esbe e st e ssbeeseessseessaesnsaensaesssenns 200
hiStory-data-available..........c.coiiiiiiie ettt ettt 201
TECOTA-NISTOTY ..eeeutieiieeieeiteeie ettt ettt s e et e et eesaeessteebee s st e esseesssessbaesssaesseenssesssseesnnsseeennes 202
StOP-TECOTAING-RISTOTYeeiiiiiieeieeee ettt ettt ettt e st e et e e s st e e e 203
e o VIS 0)) 2 L OO SPPRRRRI 205
PrOCESS-NISTOTY=AALA. ...ccueeiiieeieeiteet ettt ettt et et s e st e st e e st e st e e sat e e bt e s beeeseabeeesnnseeennns 206
SAVE-NISTOTY-0ALA. ... eeetieiieeiieiie ettt et e st e et e st e e teessaesbeessteesbeesssessseesssaesseessnsseesnnssaeennes 207
start-incremental-history-data, get-incremental-history-data............cceceevieeviernienieeneenieeneeenne 208

BUTTET TTACE TNOAUIE. ... e e e e e e e e e e eeeeeeeaeeaaasasasasasasasasasasasasasasasasesesnennnasseeesennaaesaane 211

COMIMANGS.eeevieiieeieeeie et et e et e ste st e e st e s beesseessseesaessseeseassseessaesssaesseesssessssessssssessnsssesansseeennsses 212
AAd-DU EI-ITACE-TIOLES. ...eeuveeieiieieeteee ettt ettt ettt et st e b et e et e s e ensesaeeenseeenneenn 212
Central Parameters MOAUIE.........c.cueecuiiriiiriienieetieeie et et eeesteesstesste e st e sseesssesssaesssassnseenns 214
PaTaIMELETS.eeeiiiiiiee ettt ettt e et e e e et e s s abe e e s e nrb e e e e e nraee e e e e e e eeaans 214
(<] O OO RUP SRR PPPPPPPPPPPPON 214
L] oSO O PP PP PPPPPPPPPPPO 215

O ettt sttt et h et e a e e bt e st e e h e e bt et e e e ab e e e abeeeabeesabeeeneeea 215
SYStEIM PATAIMETIS. ...cceeuuiiiiiiiiiiiiieitieeeettee ettt e s st e e s e ab e e e s e bae e e sesraee s e e e e e snnnnnnnnnes 215
SEATTINZ-PATAITIETETS. ...eeeieurteeeeeireeeeerireeeeertteeeesiurteeessarreeesassteeeesssaeeessssraeessssaeeesssnseeesssssreeeeseens 215
COMIMANAS. ..ottt ettt ettt et eeat e st e e bt e e ab e e bt e eabe e st e s st e e bt esabeebaee e ssaeeenbeeeenreeeennes 216
1egiSter-SUDSYMDOliC-PATAIMELETS.cccuveeieereieeieerieeieeseesteesaeesteesstesseesseesseessssessasssessssseeennns 216
The Procedural SYSTOIM.......ccc.iiiiiiiiiieeiteetee ettt et e et e et e s bt e s te e s sasaeessabeeessnbeeenans 217
Procedural MOQUIE..........ocuieiiiieeietecece ettt ettt e et e e b e e saesbe e beessbeeseesnsessseaesnsseesanns 218
PrOQUCTION. ...ttt ettt e sat e e sb e st e e bt e s ab e e bt e s e e e beesab e e bt e e sanbeeessneeenane 218
CONTLICt RESOIULION. ...ceuviieiiiiiieieeieeieet ettt ettt ettt e st e e be e st e ebeessseessseeesnsaeesnsseessnnens 218
PATaIMELETSoeiiiiiiieiiteeeete ettt ettt e st e e e et e s s bbe e e s e srbe e e e e nraeeeeeeeeeeeanns 219
CT b ettt ettt et e et et et e e bt et e e a e e bt et e e a e e s bt et e ea e e bt e Rt e e a e e bt e et e eh e e bt e a b e e h e e bt et e ea e e bt et e eat e e st e e eaneesaneeeaneena 220

(o] T PRSP POPPPPPPPPPPPN 221

(o 7al [T 1 T o - QUSROS 221
AL 1t e eteeeette ettt et e e et e et e e e te e e tteeeeta e e e baee e bt e e e bt e e e bae e e baeeaabaeeanbae e abeeeantee e nteeenteeenaeeeneeeenranes 221

(4 [0 110 1 P 1] T ORI 221

QO MO QUETY ...ttt ettt ettt e et et e st e bt e e abeesatesabe e bt e eat e e st e eab e e bt esabe e bt esabeenseenaseeseesnnnae 222
TRSE. ettt sttt et b et eea e e bt et e e a b e bt et e et e bt ebeennreeeaee 222
21011 SO U U PPPPPPUPPPUPPPPPPPRPR 222

9] 2180 1100)OO PSR PRRRRRPPPRN 223
TRIST ettt ettt et h e h et bt e et e e bt e e a b e e bt e st e e bt e sabe e bt esabe e bt e saaeean 223
SSEYLE-WAITIIIES. ..ceuvteeiieeiieeieeetee ettt ettt e et e et e e st e e beessbeesbe e s st eesseesssessseesssessseesssseessssseeens 224
TUSEIBR. .ttt eiettee ettt ettt e ettt e e sttt e s e bt e e e et e e e s e b e e e s e b bt e e e e ba e e e e bba e e s e ba e e e e e nraeeeeeeeeeeeans 224
1720 1 PRSPPI 224
Production DUFTET.......ccuoiuiiieeeeeeee ettt sttt e st esateesaneeeas 225
COMIMANGS. ... eeevieiieeieeeie e et e et et e s rte et esaeesstessseesseeesseeseessseessaeassaesseesssesssseesnsssessssssesansseesensses 225
P/AETINEP .ttt ettt st e e e e et e e st e e ba e raeebe e naaaeeannaeeeanraaennns 225

F Y1 B o) 0T 18 e () - F OO 245
PPD:eeerrerrreeeeeeeenniaiurteaeeeseesennrrttteeeeesana i aa——ataeeeeeaaa i a———ttaaeeeeaaa i a—tataeeeeeeaaaraaaaaaeeeeeeaeaarrraaaaeeeeeees 246
PDIEAK/PUNDIEAK.eoitiieiiiiiiieieeiteeece ettt et ettt e saa e e te e st e s ae e sbeesbaesseessseeansseesnns 248
PAiSADIE/PENADIE.......cccueiiieiieeciieeeee ettt et e et e e e e e e s e e st e e e s aeeeenbae e abaeenaaaaeaeennns 249

A4 1172110 | PO OO OURRTSRRRRURRRRPRO 251
ProduCtioN-fiTiNG-0N1Y....cccterieiiriereeteete ettt ettt ettt e s e b eneeeaee 253
UN-delay-Conflict-TeSOIULION.ccciiriiiiieeieeiteeteet ettt e eebeesaaesbeesssaee e e 254

o (=T 1 o) oL L1 Tad o) 3 OSSNt 255
deClare-DUTTEIr-USAGE.eeeieeiieiieiieeeeeee ettt ettt et s st e e ae e s eaeestaesntaesaaesnneens 256
UHHEY TNOAULE. ...ttt ettt ettt e st e sat e st e e bt e e abe e s abeesennbeeeenneeeaas 258
L1011 OO PPPPORRRPRPRRNt 258
PATAIMIETETS.ceintieeieee ettt ettt et e bt e et e sttt e et e e e e bt e s eabeeseabeesenbeesnbeesanbaeeeseennnne 258
11 0) 1 TSRO RTPRTRR 259
<7< £ S PO PPPPPPPPPPPPP 259

UL ettt ettt ettt e e ettt e e et e e e s sttt e e e e bt e e e e e et e e e e ettt e e e e a b e e e e e et e e e e e nt e e e e e abaaeeeeeeeea e annnnnrraaaaaeees 259

UL e eiiiteeeeeeeeseeuuuteeeeeeeesesaasaebaaaeeesasssssanbaaaaeeeesanssnsbaaaaaeeesanssssataaaaeesesaa antaaaaeeeesaas nrataaaeeesenannnnn 259

UL ettt et h et s a e bt et h e a e et e a b e e bt e bt e e b e e e bt e e eateeenbeeeaneas 260
181 SO TP PRPPRR 260

TU .ttt ettt ettt ettt ettt h et e a e bt et ea e e bt et e e h e e b e et e e a e e bt et e e a e e bt et e e st e bt et e e st e et e e e abeeeabee e bt e eneeeanee 260
TUELEY"RO0K. ..ttt ettt be e st 260

R 7o) i T TSSO RPPRRPRP 261
COMIMANAS. ..ottt ettt et e st e et e st e e bt e st e e bt e sab e e bt eeab e e bt esabeeabbeeensbaeeensaeeennraeeennes 261
ITI@EOT-TEWATIG. .. eeeuveiiieeieeite et et e ete et e et e eteesateeteessbeebeessseesseesssessseesssesnseenssessseenssessseenseesssesnns 261

] 0] 0 1SR R PP PPPPPRUPRRRRRRR 263
Production Compilation MOQUIE..........cccceeiuiiriiriieieeieeeeeeete ettt sae e e ssbesseessneeenes 269
Production COmPIlation.......ccuiiiciieeriieeeieeecieeecteeete et e ee e e s ereesstee s eeeesaaeesssaeeesaeesesnssneeesensnnes 269
PaTAIMITETS. ..ottt ettt ettt e e st e st e s bt e s bt e s na e e s enna e e e e e ennee 271
Lol T O OO TPUOPP PP RROPPPPPPPPPP 271

2 0 USSR 271
POl ttttteeeeeeeeettt ettt e e e eee ettt e e e e e se s e b bttt e eeeesaa aataaaeeeeae e nbataaaeeeeen abaaaaeeeeeeananrtaaaaeeeeeasanannnnn 272

1 TP P TP T P RPPPTRRRP 272

| PO TP PPTPPPPN 272
COMIMANAS. ...ttt ettt ettt s e st e e s st e s ae et e e ae et e et e s st e bt esbesstebesaseesaneesaseesaseesaseeeaseenas 272
Show-COmMPilation-DUffer-tyPes.c.coiiiiriinieieeieceeee ettt e s 272
COMPIlatioN-DUITEI-TYPE......iiiiiiiieiecee et s s te e e esnes 273
specify-compilation-bDuffer-tyPe........ccoeevieriiririeeee e 274
GOAL IMOAUI. ...ttt sttt ettt s e s bt et e e s bt et e et e e sbeesabeesabeesabeenaseenas 276
GOAL DUFTET ...ttt ettt et e e s et e st e st e s st e beenbeesnsaeesaesnneean 276
(N T<) o (<R 276
REQUESTS. c.ceeeiieeeettee ettt e et e s et e e e e e e s s e s abtaeeeeeesssssnrbbaaaeeeeaeaeseeeeeeaeeeseerannes 276
MOdifiCation REQUESES.......cccuiiiiiiiieeiieiieeie ettt et e st esteesie e s st ssaeesbeesseeesssseessssseesnnseeesnnsns 277
COMIMANAS. ...ttt ettt ettt e et et e st e e bt e e ab e e bt e eabe e bt esab e e bt esabeebaeeenabaeeenbaeeenseeeennnas 277
BOAI-TOCUS .eeveiiieeiietee ettt et e st e et e s b e e ae e s be e seeesbe e seeensaensteesseenseesnseeeenees 277
INOA-TOCUS. ... ettt ettt e sttt e s et e beete s st et e eatesaeensesstesseenseenseseennes 280
IMAGINAl MOUIE.......cceiiiieeiieteeeee ettt ettt e st e e ae e st e st e e s st e esbeesssesnssaesnnsseesnnns 283
PATAIMIETETS ...eeiitieiiiieeite ettt ettt e bt e et e st e e e bt e e e bt e e eabteseabeesenseesnbeesannbeeeseennne 283
AMAGINALI-AEIAY....cciiieiieieceeeee ettt et erb e e aa e e beenanees 283
174 T | SR PUUURUUUSPRNt 283
ChUunK-types & CRUNKS.......cocciiiiiiiriiiiteeiecteeteece ettt ste e ste st e et essaessbeesaeasbeesssessaesssassnssseesnns 283
IMAGINAl DUTET......eetiiieeieeeee ettt sttt st b et e e bt esaaesaseas 283
REOQUESTS. ..ottt ettt ettt e s ettt e e e st e e e st b e e e s e ba e e e s s abaee e e e e nnrrbeaeaeeees 284
MOAifiCAtION TEQUESES.c.veieiieeteeeiieeteeeteeiteestteeteeeeeeteesseeeseesseessseesseessseesseessseenssessseesseessseesnnes 285
ImMaginal-aCtion DUFTET.........cocuiiiiieiieeee ettt et s b e s ae e s aeesseessnee e 285
REQUESTS. ..ttt ettt e st e e e sttt e e s s bt e e e e s aba e e e s sabaeeesaeeeeeesasbaaeese e nssannreaeaaaaeaes 286
COMIMANAS. ...ttt ettt ettt et e st e e s st e st e et e s bt e be e b e s st e bt e st esstebesaseesmaeesaseesaseesaseesaseenas 288
SEt-TMAGINAI-TT. ...ccueieieteeieecee ettt st e e s beessseesseeeseeens 288
SEt-IMAGINAI-EITOT........eeictieeieeitieteee ettt et et e bt este e st esbeesseessseessaessseesaesssaessaesssessssseesns 288
Declarative MOAULE.cocuiiiieeieee ettt ettt e et esbe e st e e be e abt e e s sabeeessnneeenans 290
DeClarative IMBIMOTYceecueerierieerieeieestesteesteesteesstesseesssessseesssessseesssassseesssesseesssessseesssessseenssens 290
ALCHIVALION. ...eteeiiiiteeeeite ettt ettt e s eib e e e ettt e e s e bbae e s e abt e e s e nbbeeesesbaeessennbaeesesnnbaeesenrsraaaaeees 291
BaSE-18VEL......eiiiieieeeee ettt a et b et st e bttt eebees 291
SPreading ACHVALION. ...c.c.ceiittirieeieeite ettt ettt et et e et e s bt e sat e st e s st e sabe e s st e sabeesseesabeesseesaseas 293
Partial MatChing.........cooiieiiiiieeieceeeee ettt e sttt ebe e s e e s beessseesseessnssaaennns 295

IN OIS ..ttt ettt ettt e et e s e b e e e et e e s a e s et e e e e b b e e e e e e bbraaaaeeeeeeas 296

ROITIOVAL tIIT1. .ot e oottt ettt e e ettt e e e e e e e e e et ta e eaeeseeeeetaennaaeeseeeessannnnnnaasessaesessnnnnassesanseenen 296

DECIATAtIVE fIMISTS. . eeureeiiiiieriierieeie et ettt e et e et e e st e s teesaaesste e stessbeesaesssaesssassseenssessseeseenssenns 297
PaTAITIOLETS. ..ttt ettt e e ettt e e e e e se s ab bt e e e e e e se s sasbaaaeeeeeseesnrbbaaaeeeeeeeeaeeaaaes 297
BCT et euetteeeeeuttee e e ettt et s ettt e e e et e e e ettt e e s e ettt e e e s bt e e e e bt ee s e e a b e e e e e b e e e e e e aaeee e ettt e e e e araeeeeenraaeaaeaaeeens 298
ACTTVAtION=0FFSOLS. ...cutiiitieeiecteete ettt ettt e e et e et e e rteesae e beessbeesse e saeesseessaeessaensnesssseesnsns 298
AT1S. e e uueteeeeeuuueeeeaeurteeea e ntteeaaataaeeea bt e e e e bt e e e e bt ae e e e nat e e e e b et ee e e nat e e e e e nra e e e e e nteae e e s nnrtbbaaeaeeeeeeens 299

0] B 11070) LTSRS UPRRRRUUSPPRN 299
DG ettt st a et e h bt et e a e b et e a e bt et e sae e be et e eaee 299
DLttt sttt et e et e s a et e e teea e e be et e e at e b e e e ateeenbeeenneeeseeennes 299
:CAChe-SIM-NOOK-TESUILS.....ccuiiiieeiieiieeieetee ettt e et e s e e st e e snbeeesssaeeesasneeas 299
1ChUNK-AAd-N00K. ... iiiiiiieceeece ettt e s te e e s ae e e s e e e bae e e e e e nnaaaeeeennnes 300
:ChUNK-METZE-N00K.ttt ettt e st et e s e e e snbaeeesnsaeeas 300
2deClarative-fiNSt-SPAN.......ccctiieiieiiecieecie ettt e e e e e tee st e e saeebeesaeenbe e seeenbeesaeenraeeennraaans 300
:declarative-NUM-FINSTS.ccciiiiieeiieieeeeete ettt re et e bt e st e s be e st e ssbeessaesnseenanees 301
2declarative-StUFTING.......ccerierierieeeee et 301
Bttt et e et e et e et e et e e e b e e bt e et e e bt e e s b e e taeenteenbeeenteenraeas 301
ettt a e e te e e e e et e e hae e be e tae e bt eaaa e et e ebeeerbeebteenrteeenraeeenaraeenn 301
IT1AS .eveeeeeureeeenaureeesasnteeeesusseesaansaeesasassteesssssseeesasnsteesesannteeesassaeeeessateeeeasteeesaannaaeeeeeeaaasannnnnrnnnne 301
1216 IO PRSPPI 301
1110 JO O U OO O PO ST PP PP RRUORRPPPPPPN 302
ITIS ©veeeieuurreeeenaueeeeessuneeessssseaeeesassseessnssseaesessseseeesssssaeeensseeeeesansaeeeensataeeeenrtteeenaataeeeeasrteeeennanannnnnnnn 302
NOISE-NI00K. ... eiiiieiieeieete ettt ettt e et e e st e st e e ae e s b e e saeesb e e beeesbe e seeensaeseeenseeennraeenns 302

8 1 1Y OO PR R SUPPPPPPP 302
partial-matChing-NOO0K..........cooiiiiiiieeieeeeceeec ettt s e e aaessbe e sssaee e e 302

|07 KT PRSPPSOt 302
TetrieVal-TeQUEST-NOO0K.cooiiiiieiece ettt e re et e e e e e s nbaaeeaes 303
00 (=] BTl o1 T 1o) PSP 303
retrieved-ChUNK-NOO0K..........occiiiiiiiicieec ettt e s te e seeebe e s ssneeennes 304

) SO SRS PPUPUURRRRRRRt 304
SACT.uvteeeeuureeerarurteeeeesutteeeasuteeeeeaurteeeesnrtee e e ba e e e e e bt eee e e a bt e e e e bt e e e e e aa b e e e e nbe e e e e anrnttnnaeaeeeeeeeeeeaaann 304
31105 11010) PSPPI 305

] 1 110 1o SO RPN 305
SPIEAAING-N0O0K.ciiiiiieei ettt sttt et e e 305

A 1100 - ST OO TRRRRRPPRRIN 305
REtTIOVAl DUFTET......eeiiieiiecieeeee ettt et re e s aaeeba e e eaaaeeennraeaennns 306
(N T<) o (<R 306
REQUESTS. ..ceieiteee ettt e sttt e e st e e e s sttt e e e e s aba e e e s ssbaeeeaabaeeeensbaaeese e nssantrtraaaaaeees 306
HISTOTY STIRAIMLeiiiieiiieeeeiteee ettt ettt e e ettt e e ettt e e s abb e e e ssaraeesssanteeeeeeeeeeessssssnnnsnnnes 308
TEITIEVAL-NISTOTY ...ttt ettt et e a e st et e st e e bt e sabe e bt e e e nbeeenans 308
COMIMANGS. ... veeivieiieeieesie et eete et et e s rte e st e sbeesseessseeseeesseeseassseessaesssaesseesssessseesssssessssssesansseesnsses 309
2 T[4 a0 o TSP 309
QML ettt ettt ettt h bt et a e bt et e h e e bt et e e h e e b e et e e a e e bt et e ea e e bt et e eatenseennee 310

16 11 0 TS PSPTRRR 311
PIANE-AIMFINSES. oeeutieieeeiie ettt ettt st e e st e s beesaeessteeseessseesseesssassseanssesnseenssaesnns 314

6 2 PSSP 315

] =16 Ua) OO PRUPPTRRRPRRRRO 322
SIMIlArity/Set-SIMIIATITIS. ..ccueeriiiieeiee ettt ettt ettt et e e 324
get-base-level/set-base-levels/set-all-base-levels...........ccccereiirriiriiiiniiniiieceeeeeee e 326

(ol (=T 1 T | . DTSRRI 329

LSO OC ATATIVETITISES. .. sesesesesesmsesesesesenenennnenseeaeannnnanseene 330

INETEE-AIML..c.ieiiiieeiieeiteete et et e st e st e e e e e teesteeesae e st essbeesseesssaesssesssaeseesnsaessessseensssassnsssessnssenennns 331
PIINE-ACTIVATION-TTACE. ...ceiiiitieeriiirieeeeetereerittteeeeesessesarrteeeeeessessasssstaaaeesssssssnssetaeaessssssassssssseseess 333
Print-ChunK-actiVation-traCe.c.ceevterrieerieeieerite et etee e et e s e e steeseeeaeesae e beesssessseesssesnssaaennns 335
Saved-activation-RISTOTYccc.iiiiiiiiie ettt ettt et e e 337
41172810 a1 4 OO RPU U PRRRRUSPRRRPSPRRIN 338
SIMUIAtE-TELIIEVAI-TEQUESL......ccctieieiieeeieeeeieecetee et et e eete e et e e e sae e e sbeeeebeeeesaeessseeesnseeennseaennns 342
Add-AM-CRUNKS........oiiiiiiieieceeeeee ettt sae e ste e st e e bt e s sbe s saesssaessaesssessssseesnns 344
METge-AM-CHUNKS.eiiiiiiieeee ettt ettt e b e sttt e st e bt e saeeesaeeeas 345
Perceptual & Motor MOAUIES..........cceiriiiiiiiiieeiieteeeerteete ettt e e s e s bessteesbeesseeesssseeesssaaennns 348
DBVICES. ...ttt ettt ettt e e ettt e e e e e s s abat e e e e e e s e e s ba bt e e e e e s e e s nbaaaaeeeeees bttt aaeeeeeeeeeeees 349
DEVICE MOUIE......coeiiiiiiieceee ettt ettt s et e st e e bt e st e e seessseesseessseeseesnsessseeesnsseasnnns 350
PaTAIMELETS.veeeeeiteee ettt e et e e sttt e e e s stae e e s sabte e e e sbaeeeesssaaeesssssaeessssssaaeensnsaaeaeeeessnnanns 350
CUTSOT-FITES-COBTT....c..eiieeeeeee ettt et b e e s b e e e s saeeesasaeeas 350
sdefault-target-Width........coceereeieeieeee ettt 350
KOY-CLOSUTE-TIIMIO. ... eieiieeiieeieeite ettt st e et e st e e aaesbeessteesssaeeesssbaeesnssaaennsseenn 350
IEEAS-TIIOUSE. ... veeeeurreeeteeeeteeesteeesteeessaeeesaaeeassseeassaeessaeessseeessseesssseesssseesssseesssseesssseesssseensseseesnn 350
PIXEIS-PEI-INICH. ...ttt e bbb e e e ta e e e ntaeeennraaean 351
PTOCESS-CUTSOT .cceeeiteeruuuurrreeeeeeesasunrareeaeesssssasssssesteeessssssssssseseeeessssssssssssseeeeessnssnsssssnsnssnnnssesssssaes 351
1STADIE-10C-TIAIMES. ... ueieiieeiiecieeite ettt ettt e st e et e st e e sae st e e st e e e sbeeesnsbaeeensbaeennrnaean 351
IVIEWINZ-AISTAIICE.eeetiitieeieeiteete ettt ettt et et e st e bt e et e e s at e st e e s st e e abeesateeeasbeeesaseeeenasaeeas 351
(011011071216 F3 O SPRURRR 351
1Y 1 B (2 ol R SSTRR 351
TEIMOVE-UEVICE. ...ecuvieeuieetieeieeiteeteeiteestessteestteeseesstessseesssesssaesssessseesssesssaesseessseesssenssessseesnssseeennns 353
CUITEINE-AEVICES. ..ccuveeeeereeeeieeeeteeeetteeestteeestteeesteeetteeassaeeassaaessseaasseeasseasssseesssseeassseesssssseesensnsssees 353
efiNeA-EVICES.....ccveieiieeieeieete ettt sttt e s te et e st e e saeesbeesbeeesnsaeeessaeesnnseeesnnses 354
defined-INEEITACES.eeeeieeieeeeeceee ettt e e e e be e s ae e e e e be e saeebeensaeessaeennes 355
1010108 6 (237 Tl TR SRR 355
V153 o) 4 18 1 0 T 111 {=T TR PUPRR 357
The model’s VISUAl WOTIA........cooiiriiiieeieeeeeeeeeee ettt saeeeaee s 357
THe WHRETE® SYSTOIM....ccccuiiiiiiieieiieieiieeeiteeetteeeteeesteeesteeeseaeesssaeeessaeeesaeesssaeesssaeesssaeesssaeessssssssseeeenn 357
FADISTS. ottt e ettt e e ettt e s ettt e e s st e e e s ab e e e s e abb e e e e e bt e e e ee e enbrnnaeeees 358
THe WHRat SYSEEIML.....ciiiuiiieiieieiieecciee et et e et eeste e e teeeseae e s saeessaaeeesaeesssaeesssaeesssaeesssaessssnsssneesanns 358
RE-ENCOAINE. ... veiiieiiieiieeieeet ettt ettt e st e s te e st e esbeessaessbeesateesseesssesnsnesssssaesssnseessnssns 359
SCENE CRAMEE.eiieieieee ettt sttt ettt e st e st e s st e e be e s st e s be e ateesaneeas 359
TTACKINE ..veeiieiieeeieeee ettt ettt e et e e st e st e e st essbeesseessb e e stesssaenstassseensssassasseessnsseaennns 360
INEETTACE & DIBVICES.ccviieiieeiieeiieete et eete et e teeeteesteeeveesseeebeessbeessesssaesseasssessssessseesseensseeseenssens 360
HISTOTY STIRAIMLeiiiieiiieeeeiteee ettt ettt e e ettt e e ettt e e s abb e e e ssaraeesssanteeeeeeeeeeessssssnnnsnnnes 361
VISICOM-NISTOTY ...ttt ettt ettt e sttt esat e st e e s at e et e e s abe e bt e sateenbeesabesnaeeas 361
PATAIMELETSeeeiieiiiiee ettt ettt e e ettt e e s sttt e s s abte e e e s aseeeessasseee s e nsbeeeesnsnaeeeeesannnnnnn 361
=1L T 11 =) 1 ¢ IO SRR 361
:delete-ViSiCON-CHUNKS.........ccciiiiiiiieieceeseeee ettt ettt e e eae e e s b e e e ssaeeesanneeas 362
force-visual-ComMMANMS.........c.ccoiiiiieiiecieceecte ettt re e e aeesaaeebe e seaeenaeeas 362
JOPUIMIZE-VISUAL .eeiiiiieiiiieeeeeeeee ettt ettt et e e te e s sbesbaessteesbeeensesssnaees 362
:0VerStUff-ViSUAl-10CAtION......ccuiieiiiiiecieceeeeceee et rae e e e ra e e e earaee s 362
:scene-change-threShold..........oocuiiiieiiiieee ettt e s 363
SOW=TOCUS. ... ettt et e st e b e e te e e be e ta e et e e beeesbe e baeenrae e e nraeeenraeean 363
ATACKIMZCLAT....ceetieiieeieeee ettt ettt e et e st e e be e st e ebeeesaesssbaaessssaaesnssaeennsseens 363
UNSTUFF-VISAUI-IOCAtION.eieiieciiecieecteceeee ettt ettt e e e e re e e beesbseeabaeeenraeeearaeaas 363

:ViSUAl-atteNtiON-1AtEIICYeoouiiiiieiieeee ettt ettt ettt e e s 364

IVISUAL-FINST-SPAN. .. ettt ettt et e e e st e st e et e sabe e st e st e eseessb e e saeenbeeseeentaeeenaraeeas 364
ViSUAl-MOVEMENT-TOlETANCE.ccceureeeciieeeiieeeitteeeiteeeieeesteeesteeesteeessaeeesseeesssseessssaessseesssseeeenns 364
IVISUAL-NUIMAFINSTS. ...ttt et e st e e bt e st e s seessbeebaessseenseesnsaensees 364
VAT U b=) Y] 0 o OSSR 364
:ViSUAl-eNCOAING-N00K......cciiiiiiiiiiiieieceet ettt ettt e e be et e s b e s sbeesnseesbeesssesnsneeas 364
Visual-10Cation DUFET........c.ceoiiiiiieiecieece ettt et e e e re e s b e e e rae e e araeeenes 365
(N T<) o (<O RRTRR 365
REQUESTS. c.ceiiiietett ettt e et e s ettt e e e e s se s abaaeeeeessssssnrbaaaaeeeeaeeeseeeeeeaseeseenennes 366
VSUAL DUTTOT ..ottt e bt e s e s te et e e beesssbeesssseaessseassnsseassnns 370
QQUEBTIES. ...eveveeeeeeeeeeeeeeeeerereeeeerarerarerererarararerarassrarsssassssassnannseesssssnnneeeesses 370
REOQUESTS. ..ottt ettt e ettt e ettt e e e st e e s s et e e e s s are e e e e s aba e e e e e s nnrrbtaeaeeeees 371
Chunks & CRUNK-LYPES.eoiiieiiiieeiteee ettt ettt ettt e st e e bt e st e s sbe e st e e s saneeesaas 375
Commands & SIGNALS.......ccceerieriiienieeiierieeree ettt et e et e s teesaeesabe s seessbeesseessseessaesteesaessseens 377
VISICON-UPAALE......cecvieietieieiieeeiteeetee et eeeteeeeve e e tee e tteeesateeesseeeesseaansaeaasssaeassseessssseessensnssseesenns 377
VISUAI-CLOAT. ...ttt ettt et s e e te e st e e bt e s b e esbaessteesbeessaesnsseeesnsaeennns 377
INStalliNg-VISION-AEVICE.eiitiiiiiiiieeiee ettt ettt et s bt e st e e bt e e sneee e e 377
PIINE-VISICOM . uttteieiiiteeeeitee e ettt e ettt e e e ettt e e e sttt e e esaateeessnsteeessnsnaeeasssaeesssssaeeeesesssnsnnnnsnssnnnnee 378
02N D016 T] 1o o RS PRRRR 379
TEMOVE-VISUAI-TINSTS. c..tiiiiiiiieeieciieete ettt et e st e e se e ssbeesaaessseesssnaesns 379
SEt-VISIOC-AETAUIL.......oeiiiieiieiiece ettt ettt e e e s beebe e e saeebeessseesseeesnssaeennns 381
AAdA-WOTA-CHATACLETS.cuveeiieeiieeiieeieerte et et e et e st e s bt esteesbe e seesbeesseessseessaessseesseessseenssessssaeennns 383
SEt-ViSUAI-CONIET-POINL....ccutieeeiieieiiieeiieeeiteeeste e et eeeteeesteeesaeeessaeeessseeesseeessseesssaeesssaeesseesssnnnes 385
attend-ViSUal-COOTAINALES.eecveerieeiieeie et erte ettt e eie et e e e e saeebee st e esbeesssessaeessssaesssnseessnnens 385
schedule-encoding-COMPIELe...........oouiiiiiiiiiieeee ettt ettt et e e 386
ChUNK-t0-VISUAI-POSTHION. ...ccviiiiiiiieeiieieete ettt e s s satee e s snaeeeennes 387
AUAIO MOAUIE.....ceiiiieiiieecteec ettt rte e et e e e rte e e e be e e s beeesaeeessbeeessseeesseesnsseessseessseessseesnssenes 390
AUAILOTY WOTLA.....c.eiieiieeieeeeeeeee ettt ettt e e st e s b e e s e e ssbe e s st e esseesssesnssaessnsseeas 390
The WHRETE® SYSTOIM....ccccuiiieiiiiieiieieiieeeiee e tteee it e et e s steeeseaeeseaeeeaaeessaeesssaeesssaeesssaeesssaeesssnnsssseeeenn 391
The WRat SYSTOIM......eiiiiiiiiieiiieieeiee et eseeete et e e e et e st e e tee st e e saaesaseeseessseesssesssaesseesssesasnseessssseenns 391
HISTOIY STIRAIML.eeiiiiiiiieeieiteee ettt ettt et e et e s sebba e e s e enbbt e e e e e e e e e e eeessannnnnnnne 391
AUAICONNISTOTY ... vieiieiiieeieeieeete ettt ettt et s e e ste e st e e be e s b e eseessseesseessseensaesnsaesaenssennns 391
PaTAIMIELETS ...ttt e e sttt e e e e s s e abbteeeeeesessssssbaaaeeeeesensnssstaaaeeeeeeanaeanee 392
:aUral-enCoding-hoOK........ccocuiiiiiiiiieieeeeeee et e e e taee s 392
=1 | B CoTal 1 1o o) - SRR SPPR PR 392
AiGIt-AEtOC-AEIAY ..eeveeeiieiieeieeeeeee ettt s e e b e s e st e e e s b e e e e nbaeeenaaees 393
AEGIE-AUTALION. ..ttt e bt st sb e st e s bt e st e e bt e sabeebeesabeennees 393
AIgIt-TECOAE-AEIAY ...c.evieniieeiieiiecieee ettt et s b e a e s te et e e e ssbeeesnsaeeesasnaeas 393
:OVEIStUTf-aUIal-l0CAtiON.eiiviiiiieiiecie ettt e ebe et e et e e raeenneas 393
:SOUNA-AECAY-TIIME. ...c.eeireieeiieeie ettt ettt e e e e st e et e et e sbe e st e sbeesseesssaesaessseessesssaeesnsseeens 393
LONE-AOTECT-ARLAY eeetieeiieiiieetee ettt ettt s bt ettt e st e e bt e st e e be e e s anaee s 393
tONE-TECOAR-AELAYevieieieiiiiiieeteeee ettt te e st e e b e st e st e e ssbeesseessnesnsaesnsneas 393
UNStUFF-AUIal-10CAtION......cciiiiieiececeece et ettt et e be e aa e e beeenneas 394
AUTAl-10CAtION DUTTT......eiiiiiiiieieceeee ettt e s b e e aaeesteeaee s 394
QQUETIES ..oevvvuuieeeeeeeeeeettiieeeeeeeeeeetrateeeeeeeeeeeeastaaaeeeessssesssnnnnsseesesssssssnnnaeeeesssssssnnnnnseesssnnnesssnnsessnnnnens 394
REOQUESTS. ..ottt ettt ettt e ettt e e e st e e e s bt e e e s s rbe e e e s aaba e e e e e e nrrbbeaeaeeeees 395
AUTAL DUFTET ...ttt et e e e te e s ae e ae e e abeesbaeesseesaesnsaeseeeennseeas 398
(N T<) o (<O 398
REQUESTS. c.ceeeiieeeettee ettt e et e s et e e e e e e s s e s abtaeeeeeesssssnrbbaaaeeeeaeaeseeeeeeaeeeseerannes 399

Chunks & CRUNK-LYPES.eoiiiiiiiieeiteete ettt ettt ettt s bt e st e et e st e s sbe e st e e e sanaeeeaas 401

Commands & SIGNAIS.......ccuirieriiiirieeiierieeree et erte et et e et e st e e st e st e sseessseesseessseessaesasaeaaessseeas 401
TIEW=SOUIM.eeiteentieeiteette et et e et estt e et eeateeubeesute e bt e st e eabe e sbesaseessteesbeesabeeabeesubeeseeessneeenasbaeannns 401
new-digit-sound/new-tone-sound/new-other-sound/new-word-sound.............ccccceerrreeerrrenennne. 402
J02u b e Lt LU e N (ol) 1 DU PRRRUSUPPRRNt 404
PINTEA-AUAICOM. ¢ . eeeitieiieeieeeteeeeet et eete ettt e et e st e e teessbeebeessbeessaesssessseesssesssssaessnsseessnssaeennes 405
Set-aUAIOC-AETAUL......c.eieieeieieeeeee ettt ettt e ne s 406
schedule-audio-encoOding-COMPIELE..........cceeriiriierrieeiiierie ettt et e e eieesteesaeessaessseessaeesaeanes 407

IMOLOT IOAUIE. ..ottt ettt et ae e st e bt e et e e bt e st e e bt e sab e e bt e sabeeabeesaneesnns 409

PRYSICAL WOTIA....ciiiiiiieeieeteeeee ettt ettt e st e e sta e e te e bt e ssbeessaesnsaeseessseesssseesnns 409

(00723 1110) 1 U PPN PPPPPO 409
FREES™S LLAW . nietieeetteeeette ettt ettt e ettt e s ettt e e e s bt e e e s asb e e e s easbeeeesnseeeessnsseeesasnnneessnnnnnns 411

INLETTACE & DBVICES. ...ueiuieriieiieieeiterte ettt ettt sttt e e st e e st e st e et e s st e b e ensesstenseensesseensesnsensean 412
K@YDOAIM. ... eeeeiieiiieieeteeeete ettt e e st e et e e st e e beessbe st e e s sbeesbeeesbeebeeenseenseeeensraeennns 413
L1 1] 110) O SO PP PP PPPRRPPPPTRRN 413

PATAIMELETS.eeeeeeiiiiee ettt e ettt e e sttt e e s ettt e s e abte e e e saseteessasseeesennbaeeesansaeeeeeessnnnnnnn 414
ICUTSOT-TIOISE. ..ceeiiuiieeeieiitteeeertee e ettt e e eeiraee e e ettt e s e abbeee s e sbaeeseeanstee s e srbaeesenraeessennrteesenrnaeeesasesns 414
AINCreMEeNtal-INOUSE-TIIOVES.cc.verriierieeieerieeiteesteesteesreesseesseesseesssessseessseesseesssessssesssssseesssssees 415
NN FTEES TN .ottt ettt e e s bt et e st e s be et e sntenbeesnbeesabeeenseeenneeennes 415
TNIOTOT-DUTST-TIINIC. ¢ eeeiieeite ettt ettt et e bt e st e e tee s st e ebeessseessaessseesseesnssaessssseesassseenns 415
TMOLOT-fEAtUTE-PIEP-TIINIE ..iiiviiiiiieiiecieccteeete et e teere e et e ebeesaaeebeeseaeesbeessseenssessseenseessseenseeensseas 415
TMOLOT-INITIATION-TIITI.etteeeeieeeeeeiieeeeeiteeeeetteeeeetbeeeeeeatteeeesarteesesnreeesssraaesssnsaeessssneeaeesesenns 415
IPECK-TILES=COBTT ...ttt e et e ta e et e e re e sabeebeeensaeeensaaans 415

MaNUAl BUFTET......cooiiiiiiieceeeceee ettt sttt e bt e e et eesat e s be e seesssbeesnnssaeannns 415
REQUESTS. c.ceeeiieeeettee ettt e et e s et e e e e e e s s e s abtaeeeeeesssssnrbbaaaeeeeaeaeseeeeeeaeeeseerannes 417

ChUnKs & CRUNK-TYPES......uiiiiieiiiniieiieeieerteeete et ete et e steesteessteesseessaesseesssasssaesssessaesssassssseeesnns 430

COMIMANAS. ...ttt ettt ettt e et et e st e e bt e e ab e e bt e eabe e bt esab e e bt esabeebaeeenabaeeenbaeeenseeeennnas 431
StArt-hand-at-TNOUSEcccviiriiiiieiieeitert ettt e ete et e et e et e sbeesbeessseesseesssesssaesnsassseesssesennes 431
Start-hand-at-JOYStICKLcoiueiriiiiiiie ettt ettt e et e e e b e e s aee e e e e 431
Start-hand-at-JOYStICK2......cccuiiiiieiierieeieerteeeete ettt re e be e e e te e e esteeessstaeessntaeessnees 432
start-hand-at-KeyPad.........c.cooueeiiniieeeeeee ettt sttt 433
StAIt-NANA-At-KEY ... eiiiiieiieieeeeeee ettt e e et e st st e e st e e be e e nba e e e nba e e e ntaeeennnes 434
SEt-NANA-L0CALION.c..eiiiieeiiiie ettt ettt e st e bt e st e bt e e s nbeeenane 434
SEL-CUISOT-POSITION. ¢eeeuuerreeieiiteeeeeiireeeeeiteeeeettteeeesareeeseareeeeesasreeeessasraeessssaeeeassssaaesssssseeesssnnnnes 436
EXLENA-IMNANUAL-TEUESES.cccuvieierieeeieeeeieeerteeesteeesteeestteeesseeeesseeeaseeesssseessseesssseesssseesssseesssseennns 437
TEMOVE-TNANUAI-TEQUES. ... eeeuieerierieeitieeieeteesteesteesteeteestessseessseesseesssesseesssessseesssesssessssessssaeens 439

SPEECH MOMUIE.........eiiieiiieceeceeee e et e et e et e e e ae e et e e e baeessaeesssaeeeessssssaaasennnnes 441

The VOCAL WOTLA........eieiiiiieeieeeeeeeee ettt et s e et e e be e s bt e e sssstaesssaassnssaeennns 441

(0] 0153 =1 110 1 FEUUU OO OPPPPURRRRRRRPPPRRRt 441

INEEITACE & DIBVICES. .. .eieiieiieiieeieeiieeteeste et et e e e st e steesateebeesstessbeesstessseesssessseesssessseesssesseenssens 442
1\ LT (0] 0] 110) 1 [T PSSP 443

PATAIMELETSeeeiieiiiiee ittt ettt e e sttt e e s ettt e s e bt e e e e s aseeeeseasseeesesnnbeeeesansnaeeeeeesnnnnnnn 443
1CNAT-PET-SYILADIE.ceeiieeieeeeeee e et e e e e et e e e e s taa e e e e e e naaaaeeeennnn 443
:SUDVOCAliZe-AeteCt-AelAY.......coreiieiieeiieieeeete ettt e st e e aa e ebe e e sanaee s 443
ISYLIADIE-TALE. ...ttt ettt ettt et a b e et e et e e e aneeas 443

VOCAl DUITT ...ttt ettt s e et e st e s bt e sateeesseeesssseassssaesnnns 443
QQUEBTIES. ..evvvuieeeeeeeeeeetteeeee et eeeeetaateeeeeeeeseaessraaaeeeessssssssnnnnnseesessssssnnnnseeesssssssnnnnnaeesssnnnesssnnsessnnnnens 444
REOQUESTS. ..ottt ettt ettt e s ettt e e e st e e s st e e e s e bbe e e e s abe e e e e e e ntrrbraaaeeeees 445

Chunks & CRUNK-LYPES.eoiiieiiiieeiteeeetet ettt ettt ettt s bt s e et e st e s be e st e e s saneeesans 447

COIMITIANIAS. e eeeeeeeeeeeeeeeeette e eeeseeeeetaaenaaeeseseeesanenanaesesesesseennnaesesessssnnnnnaesesssssnnnnsensnsssnnnesssennesennnn 448

get-articulation-time/register-articulation-time.............cccceeevvierirniiernienieeee e 448

= 0010100 1 LY (oY L L= SRS 450
TEMPOTAL TICKS...eutieiiieiieiiieiieetest ettt e et e e bt e s e e s be e s st e ebeesssessseesssesssessssseesnsseaesnsseeennns 450
PATAIMIETETSeeiutieiiiieetee ettt ettt et e et e st e e e bt e e e bt e s eabteseabeesenseesnbeesannaeeeseenanns 450
TTECOTA-TICKS. ¢ttt ettt et et b et et e s bt et e e st e st e e sabeesabeeebeeenneesanee 450
time-master-Start-INCICIMENL.uttiiirrieereeirteeeeitee et e s eerrteeeesreeeesearaeeseenrateeeesnraeeeessessssnnns 451
SHME-TIIULE .ottt ettt et s e bt et st e s bt et e et e s bt et e saeesaeeenseeens 451

R EE 00T 110] 3PP PP PP PPPPRPPPPPPPO 451
TeMPOTAL DULTET.....cuiiiiiieieceeeee ettt s ee et e st e te e eate e ssbaeeesbaassssaaennns 451
REQUESES. e eiiieeettt ettt e et e s e ettt e e e e s s e s abtaeeeeesesessnsbaaaaeeeeeaaeseeeeeeeeeeseenennes 451
MOAIfICAtION TEQUESES. ...ccuvtieereeieerieeteesteerteeste et esttesbeesetesseesseessseesssesssaesseesssessseesssesssaessseesnnes 453
Chunks & CRUNK-LYPES.eoiiieiiiieeiteee ettt ettt ettt e st e e bt e st e s sbe e st e e s saneeesaas 453
COMIMANAS. ...ttt ettt et s e s bt et e s st e s ae et e sat et e e b e sst e bt esbesstebesaseesaneesaseesaseesaseesnseenas 453

A QVANCEA TOPICS.1eeitrieiiuieeeiieeeieieitteeereeestee e sttt e estteesssaeesseeesssaeessseeessseeessseessseesssseesssaeessseesnsseessssees 454
Extending Possible ChUnK SIOtS........cccueicuiiiiiriiiiiieeieeieeeeie ettt ettt se e ere e s s ar e e s s sneeenes 455
COMIMANAS. ...ttt ettt ettt e et e bt e st e e bt e sat e e bt e e st e e bt e s st e e bt esabeebaee e sbaeeensaeeenreeeennns 455
EXEENA-POSSIDIE-SIOLS.uiiiiiiiiiiiieeiee ettt ettt et e b e st este e s aaeebe e e enbaeennns 455

(0] 1100015 Tl ol F PSPPSRt 457
COMIMANAS. ...ttt ettt ettt st e sb et s st e s ae et e s bt et e e abe s st e bt esbesstebeeaseesaaeesaseesaseesaseesaneenas 458
define-ChUNK-SPEC........eiiiieiieiectteee ettt ettt e ae e ve e s raeebeessbeebeesabeeseesensseeesnsseeennes 458
ChUNK-SPEC-0-I0....eeteeieeieeeeee ettt et e st e e bt e ssaeessaessseessaesnseenns 461
1elease-ChUNK-SPEC-I0........cccvuiiiriiiiiee ettt et e e ee e e ae e e ae e e ateessnseeenneeaenns 461
Chunk-Name-t0-ChUNK-SPEC........ccoriiriiieriieiceeceee ettt ae e st e e be e s ssbaeesnes 462
PPIINE-CHUNK=SPEC. ... tieeiiieecieeeetee et e et e ettt e ettt e st eeeteeeebeeesbeeeesseeeassaeessseesssseeansseesnssaesnsseeens 463
PriNtEd-CHUNK-SPOC. ... tiiiiiiiieieeiieeieet ettt ettt e e st e e ae e st e ebe e s st e ssaeessaessseesssesssessssseesns 464
MAtCH-ChUNK-SPEC .. iiiieiiiece ettt e e e e e ta e e s tee e s sbeeessbeeeesneaaeeesennnns 465
find-matChing-ChUNKScciiiiiiieeiceeeee ettt e s s e s e e e ennes 468
CHUNK-SPEC-SIOLS. .. ceeeutieiiie ettt ettt ee et e e et e e e te e e saae e s aae e e saeessaeeessaeesnsaeensseesssseessnnnssnes 469
SLOt-TN-ChUNK-SPECP...ccetiiiieeiieeeeeee ettt sttt s b et e s aeestaessseessaessneens 470
ChUNK-SPEC-SI0t-SPEC. ... eeieceieeeiieeeiieeete et e et e e eteeeete e ertae e e sateessbeeesbeeessseeessseesnsaesnsseeessnnnssnens 471
slot-spec-modifier/slot-spec-slot/slot-SPeC-ValUe.............cecuerruerrieriieenieeieeeieeieesee e 472
ChUNK-SPEC-VaTiable-P......ccccuiiiiiiieiieeeeec et e e e e s ae e e saae e e e e naaaeas 473
Chunk-spec-to-ChUunK-def...........ccciiriiiiiiiee e e et e e 474
VeTify-Single-eXpliCit-ValUe.cccoiiviiriiirieieeierteeeeee ettt st 476
1ESt-TOT-ClOAT-TEGUESE.eeuveeeieeiieeieeite ettt ettt et e et e st e e teesseeebeessseeseesssaesassseesassseesnns 477
chunk-difference-to-ChUuNK-SPEC........c.ccoiieiieiieciiceie ettt e e e e 478
USING BUTTETS.eiitieieeteeeet ettt sttt ettt st e e s ae e st e e seeesseesaesssaesaesenssaeesnsseesnnes 480
COMIMANAS. ...ttt ettt ettt e et et e st e e bt e e ab e e bt e eabe e bt esab e e bt esabeebaeeenabaeeenbaeeenseeeennnas 481
DUFFEI-TOAG. ... ettt ettt ettt ettt e sae e e 481
QUETY-DUTTOT ... ettt ettt st et e e st e st e e s e e saseesnbeesaseesnsaesnseenns 484
ClEAT-DUTITET ...ttt sttt e e 486
SEt-DUFFET-ChUNK.oouiiiieieieeee ettt sttt e s e e n 489
OVETWTIte-DUFfr-ChUNK....cc.eoiiiiiiieie et 492
MOA-DUFFEr-ChUNK.ottt ettt ettt e e s 495
SEt-DUFFET-fAIlUTE. ...cueeeieiee ettt s st 499
TNOAUIE-TEQUEST. ... vveeeiieeeiteeeiteeeitteeertteeeteeee et e esteeesaaeessaeesssseeassaeesssaeesssseessseeessseeensseeenssseesesnnns 501
MNOAUIE-TNOA-TEQUES......eeeetieiieeiieeieeteeete ettt ere e st e e steesbeeteesbeesbeesssessseesssessssaassssseessnssaeennes 505
DUFEET-SPIEA. ... iiiieeciecteece ettt et et e et e e be e s b e e beeesbeebeesnsaeeensaeeennraeans 508

DULTOIS-TNIOAULE-TIAIIIO. ... e e eeeeeeeeeannnns 509

DUFFEI=SIOt-VALUE.neiieiieeeee ettt sttt et 510
EXtending CRUNKS.c..oiiuiiiiieee ettt ettt s e st e st e et e e st e s st e e e s baeeenane 512
COMIMANAS. ...ttt ettt ettt et s e st e e b s bt e st et e s at et e et e s st e bt esbesate b eeaseesaseesaseesaseesaseesseenas 515
EXEENA-CHUNKS.eiiieiiieet ettt ettt sbe e st e bt e st e e e e b e e e e nteeeeanees 515
Defining NeW MOGUIES.......ccc.iiiiiiiieieeiteeeeet ettt sttt te et e e sae et este e aeessbeesseesnsesseassnsseesanns 519
DOCUIMENLATION.evetiiiiiieeieiieee ettt ettt e et e e e e ebte e e s e bt e e e e s rrteesesbaeeesenraeesesnrraeeeeesssssnsnnns 519
BUTTETS. ...ttt ettt et e b et s bttt sa et e bbbt s e e abe s 520
spreading activation WeIGHL.......cc.ueiuiiiuiiiiiiieeieet ettt ettt et s e s sbeesaeeesae e 520
TEQUESE PATAITIETETS.eeeeerurrreererurreeeeasurteeeaasreeeessusteessssssteessssseessssssseesssssseeesssssseessssssseesssssseeesssnnns 520
QUTIES .. eeeeeeteeeeeeeeeeeitteteeeeeesaeaabataeeeeesessasuastaeaeeesesanssssssaaaaeessassssssssaaaaeesssesssssseeeeseesssnsssnnssnnnnnn 521
QUETY PTG, ..eeeieiereeereiiieeeeeieteeeeeirteesesittteeeesurreeesssusreesasasseeeessnsseeesesnseeeessssseesssssseeesssssssnnnnnnes 521
INUI-DUTTOT ...ttt sttt et e st e e s esnes 521
PaTAIMITETS.ceiiiieiitie ettt ettt ettt e s e st e s ab e s ab e s bt e s b e e s enra e e e e e ennee 521
TIATTIC. ...eeeeeuuiteeeeeurteeeeeabteeeeeunateesesraaeeseasbaeeeeasaaeeseessbtee s e msateesenbaees s e nbaeeseenbaaeeeeenbbaee e nnnnrrnnnnet 522
(010 1 1<) PP P ST PRPUPPROPP 522
JOCUIMENEATION. ... ettt ettt ettt et e et e et e st e s bt e sat e e bt e sabesabeessbeesbeesstesbeesaseeseeenanbaeenans 522
e AUIT-VALUL. ...ttt sttt ettt s e be et nae s 522
VALIAEEST. ettt ettt ettt b e st e bt e st e e bt e st e bt e st e e bt e et e e st e st e e neeeenneeas 522
WATTHIIIE ...veeeeeeieteeeeeiteeeeeetteeeseeusteeeesauseeeessassaeessassaeeeasaasaeessssssaaessssseeessssaaeesssssaeessssseeesssnsnnessnnnn 523
INtEraction COMIMANAS.ceiruteruteeterriteeteeette et et e et e st e e bt e s st e ebeesbteeabeesseesabeesaeesabeesseesnseeesanseeenans 523
CTRALIOM . ¢ eteiiiieiitee ettt ettt ettt e et e st e st e st e e s st e e e sb e e e bb e e e baeeeabaeeembaeeembaesnneesnbeeesennnnnes 523
TOSBE. .evteeeeitteeeeitte et ettt e e ettt e e e abbe e e s e bb et e s e eabb e e e e e bt e e e e b bt e et e b bt e e e e b b e e e e bb e e e senrateeeeeeee e nnnnnnnat 524
ELETE......eeeeee ettt sttt ettt et b et e et b et h e bt et e st e bt et e e bt eenteenne s 524
PATAITIETETS. ... eetteeeeeeeereeirteteeeeeesesseuarreeeeeessssssssastaaaeesssssssssssattasessssssssssseasessssssssssssnssnsnssnnnnsesees 524
QUEBTIES .. eeteeeeeuereeeeeeeteeeeeautteeeessusteesesstteeeausaeeesansteeeasanseeeesanssaeesasssaeeesssaeessnnsaeessesessssnnnnnnnsnnns 525
TERQUESTS. ...eveteeeeeeeeeiaietteeeeesenaauuerteeeeesessauasrtataeeessessssnsestasesessssssssssaseeeesssssssssseseeeeessssssssssseeseeesensss 525
buffer MOdifiCation TEQUESES........coeciiriiiiriieciieeieeteet ettt ettt be et e st e e s e abeesssnreessssneesnns 526
NOLIY UPON CLEATING. ...c..eeeeeieiieteeie ettt ettt ettt st e st et e st esaeestesseesabeesssaesnseesnseeens 527
notify at the start of a new call to run the SYStem..........cccuereueiriiriieerienieeeeeeeee e 527
notify upon a completion of a call to run the SYStem...........cccevviererrieriienierieriereee e 528
warning of an UPCOMING TEQUEST........ccuerrreerrerrieerieerieeeteesteesteessseessaessseesseessessssesssessseessssseesnnes 528
SEATCH AN OFfSEL.....eirtiiiieieeiee et sttt b et et st e st esaeeneeenes 529
Common Class of Modules — GOal StYIe.........cccueriiriiiiieiiieieeieeseeeie ettt eee e e sreesaeee e 529
WIItING MOAUIE COE......cueiiiiiiieieeeee ettt ettt et ettt e st e sbt e st e e e s abeeeeeabaeeas 530
MOAUIE EXAMPIES.....cuvieiiieiiiiteeieeteete ettt ettt et e st e e steesabe s seessbeebeesssesssaesssaesseeesssseassssseesnnes 531
COMIMANAS. ...ttt ettt ettt e st e bt e st e e bt e s ab e e bt e sab e e bt esab e e bt esabeeabaee e ssaeeeabeeeenseesannns 531
GOE-INOAULE.....cetiiiieiiieeeetee ettt ettt e et e st e e sbe e s st e e beessbeessaessseessssaeessnsaeennsseesnnssaenn 531
efiNE-DUITET.....ceeieeeeeeeee ettt ettt e eaes 532
efiNe-PaATAIMIETET. eiiieeiieiieeieee ettt e et et e st e et este e bt e ssseesaessseessaeenssseesnsseesnseeesnnsns 533
define-MOAUIE........cociiieeee ettt sttt s e st e e st e e s beeeas 535
UNAEfiNe-INOAUIE.oouiiiieieiee ettt ettt e e e saee e as 541
B0Al-STYLE-QUETY ... ettt ettt e st e b e st e et e e et e e e nte e e e naeeas 543
B0Al-STYLE-TEGUESE.....eevieeieeiieeieecteerte ettt ettt e e e e st e e te e et e ssbeessaeebee st eesseesssesnseenssaesssnseesnssees 543
B0al-StY1E-TNOA-TEQUEST.......eeeiiiiieiieeteeeeete ettt ettt s e s be e st e e bt e st e saeesneeaee 544
MU -DUTETS. ...ttt sttt ettt e e st et s e e ane e saneesaneenas 546
COMIMANAS. ..ottt ettt e bttt e e e bt e st e e bt e s ab e e bt e eabe e bt eeab e e bt esabeebaeeenssteeeabaeeenreeeennes 547
StOre-M-DUffer-ChUNK........c.cooiiiiiiiie ettt e e e 548
get-TN-DUFTET-ChUNKS......cociieiiiiieeeee ettt st n 549

FEMOVE-TTI-DUITOI-CHUDNKeeeeeieieeeeeeeeeee ettt ee et eeee et e e e e e eeeeee e e e e e e e e e eeaaeeeeaeaaeennaaesesnannnn 550

remove-all-m-buffer-ChUunks...........coceoiiiiiiii e 552
BTASE-DUTTOT. ...ttt ettt ettt et st e b et e e b e e s beeenbeeebaeeneeens 552
SearChable DUTTETS.coueiiiie ettt ettt st 555
IMUILIPIE IMOAEIS.......viieiiieeiieeeteeete ettt ettt e et e et e e et e e s saae e e baeesssaeessseeesasaeesseessseeennsssneaeanns 558
COMIMANAS. ...ttt ettt e ettt e e st e e b e s st e st et e e bt e beeabeeat e bt e st esstebesaseesaaeesaseesaseesaseesaseenas 560
CUITENE-INIOACL ..ttt ettt e a e st e bt e et e e bt e st e e s bt e e abeesseesasbeeesasaeeaane 560
INP-TNOUEIS. ...eitiiiiieiiete ettt e et e s te et e e st e e s st e ssbeesseessseesseeassessseesssassseesssesnseensseennns 561
delete-TNOAEL.......eoiieieee ettt ettt ettt e sttt e st e e sat e et e naeeea 562
WIH-TNOAEL ..ottt et ettt st e sb e et e s e saeee 563
Other multiple MoOdel @XaMPIES.........ccceuiiiriieeiiieeieeeee et see e ee e s aae e e s sbaaeeeeeeneaes 565
Configuring Real Time OPeration........ccceeveeriveesiienierrieenieeseestesseesseesseessessssesssesssssseesssssesssssseesns 566
DYNAIMIC BVEILS.eeiiuiiiiiiieeiiieeette ettt e et teeeite e et esebteseubeeesabeeessbeeesbeeesteesasaeesaseeessseesssseesanseeeessnnns 568
COMIMANAS. ...ttt ettt et s e s bt et e s st e s ae et e sat et e e b e sst e bt esbesstebesaseesaneesaseesaseesaseesnseenas 569
MP-Teal-time-MAaNAZEIMENL.cccttrieeriieeieertteeteertee et e steesteesteesteesseesatesbeesateesseesssessaseeessnseeennns 569
Module Activity and Brain PrediCtions..........c.cecveerieriieenienieenteeieeseeeieesteeaeesaeeesseseeesssseeesssseeesnns 571
What counts as buffer aCtiVIty?.......c.eecieriereriiirieeeieree ettt 571
Recording MOAUIE ACHIVILYccciirriiirieeiiierie ettt ettt e sttt eebe e e e steesaeessbeessaesssseasssseasnnns 571
Getting MOAUIE ACHIVILYeiiiiiiiieieeteetee ettt ettt et e st b e et e e bt e st e s beesateeseeeeas 572
MOAUIE-deMANA-TIIMES.coeiiierierieeieeeie ettt et ste e st e e beesaessbeesstessseesssesseesssessnsaeens 572
module-demand-funCHONS.c.eecierieririereeeeest ettt et e e saaeesaeeesaeeesaeeas 574
module-demand-PrOPOTTION.........ccuirrieerierieerie et eree et e ste et e stessteesseeesseessseeesesssessssssessssseaennns 577
BOLD IMOAUIE....ccntiiieieeteee ettt ettt ettt e st e e e s st e et e e sateeabeesstesbeenstesnbeeennneeanns 579
BOLD TOSPONSE....ccuuitieeieiitteeeeittee ettt e ettt e e e ettt eeesrbeeesssssaeeeessseeeessasneeesssssaaessssssteesssssseeeseeesanns 579
PATAIMIETETS.eeietieeeee ettt ettt et e e bt e et e st e e s bt e e e bt e s e abteseabeesenbeesenbeesanbbeeeeeeanne 581
:DOld-Param-MOAe.........cccuieiiiieiiiieeeee et sttt et e e e naraee s 581
:bold-eXP & NeG-DOLA-EXP.....eeiiiiiiiiiieteeteee ettt st s 582
:bold-scale & :Ne@-DOld-SCale........cccueriiriiiiriiiiieeeeeeeee e e e e e aae s 582
:bold-positive & :Dold-NEGALIVE........c.cooiiiiiieiieieeeeteee ettt et 582
TDOLA-SBILIE ...ttt sttt a et sttt et et e ae e reeeas 583
TDOIAIIIC. ¢ttt ettt et ettt e e et e e e abaeeas 583
IPOIME-PTEAICT. e vveeiieeieeeieet ettt ettt et e et e e st e st e e aeessseeseessbeessaesnsaensaesssessseennsaeesnnsenens 583
HISTOTY PIrOCESSOTS.ceiiiiiiiiieiiiteeieeeitt ettt ettt ettt et s et e s et e st e e st e e s st e e s enbeeesteesseeesaraeeeas 584
DOLA-PIrOAICHION. ... veiiieeieeiteeteete ettt ettt e e te e st e e beessbeesbaesaseesseesssesnsseesnnssaeannes 584
bold-prediction-With-timMe..........ccooiiiiiiiiiee e re et e e e e aaaeeeaeeas 585
bold-prediction-with-time-scaled.............coceeiiiiiiriiiieeeeeeee e 586
COMIMANAS. ...ttt ettt ettt e st e bt e st e e bt e s ab e e bt e sab e e bt esab e e bt esabeeabaee e ssaeeeabeeeenseesannns 586
PrediCt-DOId-TESPONSE.eeiieiieiieiieeieet ettt te et e s be e e e ssbeesaaessseessssaesns 587
Checking and testing version information.............ccecereereriierienieeiieneese ettt e s ae e s e e saeeens 590
FRALUTE TOSES...cenetiiitiiiieeeiteee ettt ettt st st s eab e e s mae e s b e e s ba e e ebaeeeneeesnneeeanns 590
SYSTEIM PATAITIETETS.eeeiuveeeeurteeeiteretterettesetteeeitee sttt eessbeeesteeeabeeesaseeessseeessseeesaseeessannnsateeessnnnsaaeesas 590
TACTT-VETSIOM ¢ etieiiieeiiteeeitee ettt ettt et s et e st e st e s ab e e s bb e e s mb e e s maeeeabaeeeabaeeensaeeeesesnnnnneeeenns 590
2ACE-T-ATCHITECTUNE-VETSION. ¢ . .eeutteeieeeiteeieeeite et et e et e stte et e et e st e e st e st e e bt e st e e st e sabeebeesseeeesanaeeas 591
2ACE-T-TNIAJOT-VEISIOMcccuuutteeeeuireeeeeirteeeestreeeeasureeeseeurteessssaeeeessnseeessssnseeesssnsnsnneeeeeessesssssnssnnnmsnns 591
2ACE-T-TIITIOT-VETSION. ...etteieuirteeeeiiteeeieitteeeeeirteeeesnreeessensreeesesnbateeeebrteeseensaaeesesnraeeeeessssssssnnnnnsmnnes 591
Version teSt COMIMANIAS.cccuverierrierrieriteerierteesteesteesteesseessseesseesssessseesssessseesssessseessseessssssessssseeens 591
WD fOT-ACE-T-VEISION. ... eetieiietieteeiteteerte et et ete et et e e st esaeete s st esseentesssesseensesseenseensessnensennns 591
CheCK-TNOAUIE-VEISION.cceiiriiiiiiiieeieert ettt ettt st e e be e s b e s beessseesseeessssaesnnns 593
Loading EXtra COMPOMENLS.......ccc.terttiruterierriteeieeriteeteesetesteesatesteesseesbeesatesseessseeessasaeessnseeessnseeesnns 595

COIMITIANIAS. e eeeeeeeeeeeeeeeeette e eeeseeeeetaaenaaeeseseeesanenanaesesesesseennnaesesessssnnnnnaesesssssnnnnsensnsssnnnesssennesennnn 595

TOQUITEEXITA. e eeeeeuureeeresireeeeearteeeesureeeseaseeeeaasasteeeesssaeeesassssaeesssssteessssseeessssssaessssssaeesesssssssnnnnsnne 595
Creating ViSual FRATUIES.coetiiiiiieeiteteetee ettt ettt ettt ettt e st e e bt e st e s st e st e e st e e s ssbeeenans 597
ODJECt-CIEALOT EVICE.vereeeeiieeiieeiieeiteeeteesteestesteesteeseesstesaeessseeseesseessseesssesssessseessssseesnnseeesnnses 597
EXAIMIPIES. ... tieiieeeiee ettt ettt et e e st e e s te e e s ae e e ab e e e sae e e b ae e e baeeesbeeeenbaeenabaeeenaaeeentaeeantaaeeeeannne 598
COMIMANGS. ... teeivieiieeieeeie et este et et e s te e st e sbeesseessseessaeesseeseassseessaeassaasseesssessseessssseesssssesansseesnnssns 598
Add-ViSICON-TEALUTES.cccuiieiieeieeiteete ettt ettt e et e te e e be e teeebe e seessbe e seeesseessaeesseeesnssaeennns 598
MOAifY-ViSICON-TEATUTES.eeeiieiiieieeiteeieeee ettt st e st e et e sbeesaeeese e sssaesssseaesnssaaesnns 600
delete-ViSiCOM-fRATUTES.........ccvvierieeieeteeete ettt ecre e et e ete e st eebeessaeebeessaeeseessseesseeenssseeennseeeensens 602
delete-all-ViSiCON-TEAUTES.cccuiirieriierte ettt ettt e e e s e e be e s e e e seessseesseaesnssnaesnns 602
SEt-Aefault-ViS-10C-SIOtS.eicriieiiiiieciieee ettt e te e e e be e s e e e beessaeebeeeensbeeeenes 603
Adding new production COMPIlation tYPES.......cccverrveeriiriierrierieeitenreeseessreesreesreeseeesbeeeesnseeessnsaeeas 605
RETETEICES. ...ttt ettt e e st e et e e et e e be e saessbe e saeesse e sseessaessaeasseenssessseaseaessseeeanes 606

17

Preface

This document is a work in progress. It started as the reference manual for ACT-R 7 and has been
updated to reflect the software for versions 7.x (where x > 5). All of the information has been
updated and should accurately reflect the operation of the new software, but there are some features
of the new system (as well as the older ones) which are not yet documented. The hope is that

although it is not yet complete, this working version will be of some use to ACT-R modelers.

18

Introduction

ACT-R is a cognitive architecture: a theory about how human cognition works. Its constructs reflect
assumptions about human cognition which are based on numerous facts derived from psychology
experiments. It is a hybrid cognitive architecture — it has both symbolic and subsymbolic
components. Its symbolic structure is a production system and its subsymbolic structure is
represented by a set of massively parallel processes that can be summarized by a number of
mathematical equations. The subsymbolic equations control many of the symbolic processes, and are

also responsible for most learning processes in ACT-R.

Using ACT-R, researchers can create models that incorporate ACT-R's view of cognition and their
own assumptions about a particular task. These assumptions can be tested by comparing the results of
the model performing the task with the results of people doing the same task. By "results" we mean
the traditional measures of cognitive psychology: time to perform the task, accuracy in the task, and,

(more recently) neurological data such as those obtained from fMRI.

One important feature of ACT-R that distinguishes it from other theories in the field is that it allows
researchers to collect quantitative measures that can be directly compared with the quantitative

measures obtained from human participants.

ACT-R has been used successfully to create models in domains such as learning and memory,
problem solving and decision making, language and communication, perception and attention,

cognitive development, and individual differences.
Beside its applications in cognitive psychology, ACT-R has also been used in other fields including:

- human-computer interaction to produce user models that can assess different computer
interfaces

- education (cognitive tutoring systems) to "guess" the difficulties that students may have and
provide focused help

- computer-generated forces to provide cognitive agents that inhabit training environments

- neuropsychology, to interpret fMRI data.

For more detailed information, please refer to the description of the ACT-R theory in the paper "An

Integrated Theory of the Mind" (2004) which is available from the ACT-R web site at: http://act-

19

http://act-r.psy.cmu.edu/papers/403/IntegratedTheory.pdf

r.psy.cmu.edu/papers/403/IntegratedTheory.pdf, or to the book “How Can the Human Mind Occur in

the Physical Universe?”.

20

http://act-r.psy.cmu.edu/papers/403/IntegratedTheory.pdf

Document Overview

This manual is a guide and reference for the ACT-R 7.26 (and newer) software implementation. It is
not meant to be a tutorial or a textbook on the ACT-R theory or a “how to” on writing models using
ACT-R. The ACT-R Tutorial, which accompanies the software, is designed to introduce the theory
and techniques for modeling with ACT-R. This document is intended to be a compliment to the
tutorial, and it describes the components of the implementation, how they are connected, the

commands available to the user, and some recommended practices for use.

This manual is a reference for the ACT-R 7.26 (and newer) implementations only. It does not
describe mechanisms from older implementations nor does it thoroughly discuss how commands may

differ from similar commands in previous versions.

21

General Software Description

The ACT-R software is written in ANSI Common Lisp. To use the remote capabilities of the
software will also require Quicklisp to load the following additional libraries: :bordeaux-threads,
:usocket, and :cl-json, but it can be loaded in a Lisp only mode which does not require Quicklisp. It

was implemented and tested using Allegro Common Lisp by Franz Inc. http://www.franz.com/ and

Clozure CL http://www.clozure.com/clozurecl.html. The remote capable version has also been tested

with LispWorks by LispWorks Ltd http://www.lispworks.com and SBCL http://sbcl.sourceforge.net/.

Although the necessary Quicklisp libraries are also available for ABCL http://common-

lisp.net/project/armedbear/, there appears to be some problem with the socket implementation which

prevents it from working. However, ABCL will work in the Lisp only mode as will Embeddable
Common-Lisp https://common-lisp.net/project/ecl/. If you have problems loading or running ACT-R
in any Lisp please contact Dan Bothell (db30@andrew.cmu.edu) with the details. We also make the

ACT-R system available as a standalone application for those that do not have or do not want to
install Lisp software. The standalone versions include a command line only version of Clozure CL
and thus are as complete a system as one has when using the ACT-R source code, but it may not be
as easy to use as a Lisp which has a nice IDE or which is used through an interface like SLIME,
SLIMV, or with the Inferior Lisp mode of Emacs. The software is also available bundled into a
Docker container that includes SBCL as the Lisp running ACT-R and a Jupyter Notebook server

along with pages that provide the Python commands for running all of the tasks in the tutorial.

It is not necessary for one to be a Lisp programmer to be able to use ACT-R. However, because
ACT-R is running in Lisp and the ACT-R model files are written using Lisp syntax, some familiarity
with basic Lisp constructs can be helpful. An introduction to Lisp is beyond the scope of this
document, but there are many introductory Lisp books available as well as many online resources.

Two online resources where you can find additional information about Lisp are The Association of

Lisp Users and CLiki, the Common Lisp wiki.

In versions of ACT-R prior to 7.6, the only means of interacting with ACT-R was through the Lisp
read-eval-print loop (a command line interface) and a set of GUI tools called the ACT-R
Environment (which is described in its own manual). While those are still available, this version of
the software also contains an RPC (remote procedure call) system which allows one to interact with
the software from external systems as well. The controller for that RPC system will be referred to as
the dispatcher. Not all of the commands are currently available through that remote interface (which

is described in detail in a separate document), but those that are will be noted in this manual.

22

http://www.cliki.net/
http://www.ai.sri.com/~delacaze/alu-site/alu/table/contents.htm
http://www.ai.sri.com/~delacaze/alu-site/alu/table/contents.htm
mailto:db30@andrew.cmu.edu
https://common-lisp.net/project/ecl/
http://common-lisp.net/project/armedbear/
http://common-lisp.net/project/armedbear/
http://sbcl.sourceforge.net/
http://www.lispworks.com/
http://www.clozure.com/clozurecl.html
http://www.franz.com/
https://www.quicklisp.org/beta/

Also, included with the ACT-R tutorial materials is a Python module (in the Python usage of the term
module — not the ACT-R usage) which provides access to all of the ACT-R commands necessary for
running the tutorial’s experiments and interacting with ACT-R from an interactive Python session.

Information on using that interface are included in the tutorial.

Licensing

The ACT-R software is provided under the LGPL license version 2.1, which can be found in the docs

directory of the distribution.

Case sensitivity

Generally the names of items in ACT-R are not case-sensitive. However, the one exception to that is
that the names of commands accessed through the RPC interface are case sensitive, but the names of
ACT-R elements passed to those commands through the RPC interface are still case insensitive. In
addition to that, names provided through the RPC may not necessarily be returned in the same case as
provided. The ACT-R software typically upcases names, but that is not guaranteed and no

assumptions should be made about the case of names for ACT-R elements.

When using the ACT-R source code one should only use an ANSI compliant case insensitive Lisp
system. A Lisp like the “modern mode” version available with ACL may result in problems when
trying to use ACT-R and a warning will be displayed if the software is loaded into such a system to

indicate that problems could occur.

Functions vs. Macros

When working from Lisp many of the ACT-R user commands are implemented as macros which do
not evaluate their arguments. This makes it generally easier to work with the ACT-R software
without having to worry as much about Lisp syntax, but does mean that if one wants to use ACT-R
commands programmatically, more effort is required to either explicitly evaluate the macro command
with its arguments or to use a corresponding ACT-R function. Most of the macro based ACT-R
commands also have a corresponding function which will have the same name, but with a —fct
appended to it e.g. add-dm and add-dm-fct. The functions occasionally require a slightly different
specification of the parameters relative to the macro, for example requiring that a list of items be
provided instead of just specifying an arbitrary number of items. A command’s description and

examples will indicate any such differences.

23

Compatibility issues

There are a few minor issues with particular Lisp versions that require some patches in the ACT-R
code. Those changes are described here because it may affect other Lisp code which one writes in

those Lisps while using ACT-R.

Two such issues occur with SBCL. The first is that the internal SBCL code already defines a
function called reset. To fix that the ACT-R code just shadows the reset function. The other patch
for SBCL occurs for the Windows version of the directory function because it does not handle
wildcard characters in the same way as other Lisps (or even other OS versions of SBCL). Again, to
address this the default function is shadowed with one in the ACT-R code which handles things as

needed.

There is one such issue with CLisp because it has a function named execute defined internally. The

fix for that is to shadow the internal function with the one defined in ACT-R.

24

Notations in the Documentation

Commands

This document will use the term command to refer to the operators that are provided for using ACT-
R as well as those that are created by users either in Lisp or made available remotely through the
dispatcher. The commands described in this document will typically be functions, macros, or
methods written in Lisp, but many are also available from outside of Lisp through the dispatcher. If a
command has a remote version available that will be noted in the description along with any

differences that may occur when used remotely.

Signals

A subset of the commands available through the dispatcher do not perform any actions and only exist
for monitoring purposes. Those commands are referred to as signals. There are many signals
generated by the software, and they are used to indicate a variety of things both for the underlying
software and for the operation of the running cognitive models. The signals will be described along

with the other commands in the appropriate sections.

Command Syntax

When describing a command’s syntax the following conventions will be used:

items appearing in bold are to be entered verbatim

- items appearing in italics take user-supplied values

- items enclosed in {curly braces} are optional

- items enclosed in [square brackets] represent possible options each separated by a |

- (parentheses) denote that the enclosed items are to be in a list

- * indicates that any number of items may be supplied including zero

-+ indicates that one or more items may be supplied

- -> indicates that calling the command on the left of the "arrow" will return the item to the
right of the "arrow"

- ::= indicates that the item on the left of that symbol is of the form given by the expression on

the right

25

These additional indicators will be used when describing the syntax of commands available through
the remote interface and in the documentation strings provided with commands available through the

dispatcher.

- <angle brackets> denote an options list for providing optional named parameters to a
command and the available parameter names and values are indicated between the angle
brackets separated by ,

- 'single quotes' around one or more parameters indicate that those parameters use the
additional string encoding noted below

- /slashes/ bracketing an item in a documentation string mean the value between the brackets

must be provided explicitly (like a bold entry in this document)

Generalized Boolean

In the description of some commands it will describe a parameter or return value as a “generalized
boolean”. What that means is that the value is used to represent a truth value — either true/successful

or false/failure. If the value is the symbol nil (or the remote equivalent as described below) then it

represents false. All other values represent true. When a generalized boolean is returned by one of
the commands, one should not make any assumptions about the returned value for the true case.
Sometimes the true value may look like it provides additional information, but if that is not specified
in the command’s description then it is not guaranteed to hold for all cases or across updates to the

command.

Command Identifier

In the description of some commands it will describe a parameter or return value as a “command
identifier” or “command id”. That means the value represents a command which can be called. That
can be provided either as a string which names a command made available through the dispatcher or

a symbol naming a function in Lisp. Additionally, if one is using the software in the Lisp only mode

then it can also be a Lisp function object (typically indicated with the # syntax or returned from the
lambda function). Lisp function objects are not allowed as command identifiers in the normal system

because they cannot be transmitted through the remote interface.

Name

When working with ACT-R the items in the system are typically accessed by a name instead of

directly accessing the underlying representation. The names of ACT-R items are represented as

26

symbols in Lisp because that typically does not require using any additional syntax to specify one
when working with the Lisp interface. However, because symbols are not a native type in other
languages, names must be specified using strings when accessing ACT-R items remotely. The names
of ACT-R items are not case-sensitive. When a command description indicates that a name is
required that must be either a Lisp symbol or a string, and in most cases when calling a command

directly in Lisp a symbol must be used instead of a string.

Remote commands

When a command is available for use through the RPC interface the name of the command to access
it and any differences in the parameters for using it through the RPC interface will be described. One
general issue to note is that many of the items provided through the RPC interface will be in strings
since Lisp symbols are not a valid data format for the communication protocol (nor in most other
languages from which the RPC will likely be accessed). That is true for values that are being passed
into ACT-R commands as well as any values that they return. When the strings refer to the names of
ACT-R constructs (chunks, productions, modules, etc) they are not case sensitive and no assumptions
should be made about the case of any result e.g. just because the Lisp being used is upcasing symbol
names does not guarantee that all strings of names returned through the RPC interface will be upper

case.

Embedded Strings

For some commands in Lisp either a symbol or a string could be provided and that distinction would
be important (for example in a slot value of a chunk). In those cases a special syntax is required for
the strings sent through the RPC interface to distinguish a string containing a name from a value
which should be treated as just a string. The special syntax for that is to mark the item which should
be a string instead of a name with an additional bracketing of single quotes inside the string e.g.
"chunk1" would represent the symbol chunk1 but "'chunk1™ would represent the string "chunk1". If
a command requires this addition syntax for differentiating names (symbols) from strings it will be
noted, otherwise the assumption is that all strings will be converted to symbols coming into ACT-R
commands and symbols will be converted to strings when returned from ACT-R commands that are

sent through the remote interface.

Transmission Protocol

The underlying format for the data sent through the remote interface is JSON. When dealing with the
Lisp symbols t or nil as return values from ACT-R commands, they will be converted to the JSON

27

values of true and null respectively. When truth values are passed into an ACT-R command through
the RPC it will convert the JSON value of true to the Lisp symbol t and both the JSON values false
and null will be converted to the Lisp symbol nil.

Examples

When examples are provided for the commands they are shown as if they have been evaluated at a
Lisp prompt. The prompt that is shown prior to the command indicates additional information about

the example. There are three types of prompts that are used in the examples:

- A prompt with just the character >’ indicates that it is an individual example — independent
of those preceding or following it.

- A prompt with a number followed by >, for example “2>” means that the example is part of
a sequence of calls which were evaluated and the result depends on the preceding examples.
For any given sequence of calls in an example the numbering will start at 1 and increase by 1
with each new example in the sequence.

- A prompt with the letter E preceding the ‘>’, like this “E>”, indicates that this is an example
which is either incorrect or was evaluated in a context where the call results in an error or

warning. This is done to show examples of the warnings and errors that can occur.

28

ACT-R Software Distribution

There are two primary means of acquiring the ACT-R software. The first is from the ACT-R web

site http:/act-r.psy.cmu.edu. The software page of the web site has the most recently released
version of ACT-R available as either a .zip of the source files or built into a standalone application
for Linux, Mac OS, or Windows. The released versions have been tested against the reference
models and the output of the models should be consistent with respect to what is printed in the
tutorial. New releases are made when there are significant updates or patches and typically happen
two or three times a year. The other method for acquiring the software is via version control software

called Subversion. More information on Subversion can be found at http://subversion.apache.org/.

The ACT-R archive is located at <svn://act-r.psy.cmu.edu/actr7.x>. The Subversion archive contains
the most up to date version of ACT-R, and often contains minor changes or bug fixes not yet
available in a released version. Note however that the minor changes made to the sources available
through Subversion are not all tested thoroughly against the tutorial models and there may be

discrepancies with respect to the tutorial or other documentation until the next released version.

It is also possible to get a Docker container with ACT-R and supporting applications in it from

Docker Hub by pulling the db30/act-r-container or going to https://hub.docker.com/r/db30/act-r-
container. No software other than Docker is needed to run that version. This version of the software
is still a work in progress but should be fully functional. It may also lag slightly behind the most

recent release from the website.

29

http://www.docker.com/
http://subversion.apache.org/
http://act-r.psy.cmu.edu/

Distribution Contents

The ACT-R distribution consists of: the Lisp source code files which implement ACT-R, the ACT-R
Environment application along with its corresponding Tcl/Tk source code files, the ACT-R Tutorial
unit texts and models, documentation for the software and tools, examples showing some advanced
capabilities not covered in the tutorial, and some extensions of the system which are not included by
default. All of the files are distributed in a single directory, called actr7.x, which contains four files
and several subdirectories. The files are load-act-r.lisp which is the file that should be loaded to load
the main ACT-R software (see Loading and Running the ACT-R System), load-single-threaded-act-
r.lisp which loads a special “Lisp only” version of the software (see Single-threaded mode),
recompile-act-r.lisp which can be used to force the software to be recompiled if one makes changes to
any of the source code (see Recompiling), and a file called readme.txt which contains some
information about the distributed files. Here is a listing of the subdirectories along with a general

description of their purpose and some of their specific contents.

Subdirectories

commands
This directory contains the Lisp code for user commands for some of the central modules. One

feature of this directory is that any file with a .lisp extension placed into this folder will be compiled

and loaded with the rest of the system.

core-modules
This directory contains the Lisp code that defines the modules which instantiate the main ACT-R

system described in the theory. They are assumed to always be available, but are not absolutely
required. The core modules are Procedural, Declarative, Goal, Vision, Auditory, Motor, Speech, and

Imaginal and are all described in this manual.

dev-tools
This directory contains subdirectories with the scripts that are used to build the distribution bundles

as well as the standalone applications. It is not intended for users and is only included in the

subversion repository — not in the distributed software releases.

devices
This directory previously contained subdirectories where one could provide the implementation of

devices for ACT-R which can interact with particular Lisps’ GUI components. The overall notion of

30

a device for ACT-R has changed as of ACT-R 7.6 to better support remote interactions, and thus the
current version only contains a generic virtual system for models to use. [However, the Lisp specific
implementations from prior versions of ACT-R may be updated and included in the future.] The

details on creating and using devices is described later in this manual and there is also an additional

manual with documentation on using the virtual GUI components implemented with the provided
device called the AGI (ACT-R GUI Interface).

docs
This directory contains the documentation files for ACT-R. They include details on using the system,

as well as documents describing particular features. Most are either Microsoft Word documents (.doc
files) or PDFs depending on how the files were acquired (the Subversion repository holds the .docs
but they are converted to .pdf for the releases found on the website). Here are descriptions of some of

the files found there:

- AGI
0 The manual for the AGI tools.
- compilation.xls
0 An Excel Spreadsheet that is used to define the operation of the production
compilation mechanism for different buffer styles.
- EnvironmentManual
0 A manual for the GUI tools provided by the ACT-R Environment application.
- LGPL.txt
0 The Lesser Gnu Public License text. That is the license under which the ACT-R
software is distributed.
- QuickStart.txt
0 A text file with instructions on how to load ACT-R and start the ACT-R Environment.
- reference-manual
0 This document.
- remote
0 A document which describes the underlying details of the remote interface.
- Task_Interfacing
0 A document indicating some issues to be aware of when building and working with

devices in ACT-R which connect to real GUI items or external systems.

31

In the subversion repository (but not the released versions) there is also a subdirectory called notes
which contains some files with historical documentation on utility learning and production
compilation as well as some files that contain information which is useful for development purposes

(not generally applicable to users).

environment
The environment directory contains all of the files necessary for using the ACT-R Environment.

There are several items in this directory: Lisp files that provide the internal support for the tools, the
Environment applications for Linux, Mac OS X, and Windows, and a gui directory that contains the

Tcl/Tk files used by the Environment application.

examples
Several Lisp files and directories which contain examples of using more advanced components of the

software like multiple models, visual tracking, creating new visual features, making remote
connections in various languages (currently C, Lisp, Java, MATLAB, Node.js, Python, R, and Tcl/tk

examples available), and adding new modules (both locally in Lisp and remotely from Python).

extras
The extras directory contains additional modules and other files that have been contributed to the

distribution, but which are not part of the default ACT-R system and are not loaded by default. Each
addition is included in its own subdirectory and directions for using the extension should be found
within the files themselves or the documentation which accompanies them. For most of the extras
there is a command which can be added to a model file to load the file(s) necessary to use that extra

automatically described in the loading extra components section.

framework
The framework directory contains the Lisp files that define the software framework upon which the

ACT-R system is based. The software framework is a basic discrete event simulation system that

was designed to implement ACT-R, but is not itself a part of the ACT-R theory.

modules
The modules directory contains Lisp files which implement additional modules which are loaded into

the default ACT-R system. As with the commands directory, any files with a .lisp name placed into

this directory will be loaded automatically when ACT-R is loaded.

32

other-files
This directory contains Lisp files that add additional tools for ACT-R. Like the commands and

modules directories, any file with a .lisp extension placed into this directory will be automatically

loaded with the system.

support
The support directory contains Lisp files that may be needed for certain Lisp implementations, by

certain modules of the system, or for particular extensions or tools. These files are loaded when
required by other files. Files with a .lisp name placed here can be compiled and loaded when needed

using the require-compiled command.

test-models
This directory contains tasks and models from the ACT-R tutorial (in both Lisp and Python), other

model and task files, and files of the expected output for the tests. These are used for regression

testing the software and this directory is only available via subversion.

tools
The tools directory contains Lisp files that define additional functions and tools for ACT-R. Like the

commands and modules directories, all files with a .lisp name placed into this folder will be

automatically loaded.

tutorial
The tutorial directory contains several subdirectories. There are directories for each of the units in

the tutorial, and also directories for implementations of the experiments used in the tutorial for
different languages (currently Lisp and Python). Each unit consists of a text on a particular aspect of
ACT-R, one or more demonstration models, a partial model which provides a starting point for an
assignment, a text describing the code that implements the tasks for the models in that unit, and in
some units there is an additional text with more details on using the ACT-R software and how to

debug models along with a broken model to work through the debugging process.

user-loads
The user-loads directory contains no files in the distribution. It is provided as a place for users to add

files which will be loaded automatically after ACT-R has finished loading and initializing. All of the
files in the user-loads directory with a .lisp name will be compiled and loaded in order based on the
file names sorted using the Lisp string< function. Because this occurs after the system has been

initialized it is safe to put a model file into this directory.

33

Loading and Running the ACT-R System

To start ACT-R from source code all one needs to do is load the load-act-r.lisp file into a Lisp which
also has Quicklisp installed. That will load all of the necessary files for ACT-R. The file should only

be loaded into a given Lisp session once.

The files are compiled before loading and that may generate some warnings from the compiler.
Those warnings can usually be safely ignored. The files are only compiled the first time you load
ACT-R. The compiled files are saved with the source files and on subsequent loadings there is no
need to recompile everything. Thus, on all loadings after the first one, it should load faster and
produce fewer warnings, but there may be times when you need to have files compiled again and that

is described in the section below.

Single-threaded mode

If one does not need to use the remote connection ability and is not accessing ACT-R commands
from other threads in Lisp then the load-single-threaded-act-r.lisp file may be used instead. When
that file is loaded Quicklisp is not necessary and the system generally runs faster without the need to

support the remote interface.

ACT-R version details

Once the loading of the ACT-R code is complete, you will see a print out describing the current
version of ACT-R that has been loaded. That is indicated by the line that starts with Software

followed by a version description. That will take one of two general forms:

ACT-R 7 Version Information:
Software : 7.6.1-<internal>

or

HHHHRHHHBHHHHHBHHHBHH B H R R R R
ACT-R 7 Version Information:
Software 1 7.6.1-<2496:2018-01-11>

The first number, 7 in this case, indicates the current version of the ACT-R cognitive architecture.
That will be followed by one or two digits (separated by periods) indicating the specific version of
the software that implements ACT-R, and then a hyphen and a tag in angle brackets which describes

where that code came from. If the tag says “internal” that means that it was not a released version of

34

https://www.quicklisp.org/beta/

the software and it was likely checked out from the subversion repository. For an official release of
the software the tag will indicate which specific repository revision it contains followed by a colon
and then the date on which the release occurred (the above example indicating that it is repository
revision 2496 and was released on January 11th, 2018). If it is a standalone version there will be an

additional letter after after the revision number indicating the OS for which it was built.

The digits representing the software version will be updated when a significant change (not minor
maintenance or bug fixes) to the software occurs. A significant change which does not affect the
operation of existing models (which would usually be an addition of a new capability or extension of
an existing one) will result in an increment of the second version number or setting the second
version number to 1 if it doesn’t currently have one. A change which may affect the operation of

existing models will cause the first version number to be incremented.

That means models written for version 7.A.B should run the same in any version 7.A.C where C is
greater than or equal to B (where B is considered to be 0 if it does not exist) i.e. within a given major
version (the A) models can be expected to run the same in any version after the one in which they
were initially created but not necessarily those before because those prior versions may be lacking in
some new feature or capability. Whereas a model written for major version A is not guaranteed to

run the same in any different major version — it might still work the same but that is not guaranteed.

In a later section there are additional details on how one can test the current version information if
needed, and it also describes a command which can be placed into a model file to warn users if the
version of ACT-R being used may not be compatible with the version for which the model was

written.

Component and Module versions

After the ACT-R version has been printed there will be a listing of all the components and modules
that are currently defined in the software along with their versions and brief descriptions. That will
look like this:

Components
AGI 5.0 Manager for the AGI windows
Modules

AUDICON-HISTORY : 3.0 Module to record audicon changes.

35

The version information for a module is not as structured as the overall ACT-R version, but generally
a change in the major version number for a module indicates a significant change that likely affects
the compatibility with existing models/code (and would trigger a corresponding change in the ACT-R
version). Whereas a minor version number change can occur for many reasons, but typically does

not affect the existing functionality of the module.

The module details will be followed by a line that looks like this:

#i#H##### Loading of ACT-R 7 is complete #########

At that point, all of the ACT-R code has been loaded and if there are no user provided files to be

loaded the software is ready to use.

User Load files

If there are any files in the user-loads directory then there will be at least two additional lines

displayed. The first will be:

#i#H##### Loading user files #########

That will be followed by any information displayed while the files in that directory are compiled and
loaded. After all of those files have been loaded this will then be displayed:

#itt###t User Tiles loaded ##t###H##HtH

The software is then ready to use.

Lisp Compiler Optimizations

Normally, when ACT-R compiles its files it uses the current optimization settings of the Lisp.
However, if :actr-fast is on the features list when load-act-r.lisp is loaded it will apply these settings

before compiling the ACT-R sources:

(proclaim '(optimize (speed 3) (safety 1) (space 0) (debug 0))))

and those settings will remain after the loading is finished. With those settings ACT-R should run
faster, but how much faster will vary from Lisp to Lisp. If the ACT-R source files were compiled
without the switch then setting the switch and recompiling them will be required to see the improved

performance.

Logical Host

36

As part of loading ACT-R a logical host of “ACT-R” is defined which maps to the directory where
the load-act-r.lisp file is located. That logical host is available for use by the user, and it can be
useful when working with the tutorial to load the tutorial models. Here is an example which will load

the count model from unitl (assuming that one has not moved the tutorial files):

> (load "ACT-R:tutorial;unitl;count.lisp")
; Loading C:\Users\db30\Desktop\actr7\tutorial\uniti\count.lisp
T

Note however that some Lisps will not allow a logical pathname to be passed to commands like load

and one will have to translate that into a physical pathname using translate-logical-pathname:

> (load (translate-logical-pathname "ACT-R:tutorial;unitl;count.lisp"))
; Loading C:\Users\db30\Desktop\actr7\tutorialluniti\count.lisp
T

To avoid having to explicitly translate the pathname, there is a function provided which performs
those two steps, and two additional functions which will optionally compile a file as well which can

also be used remotely.

actr-load

Syntax:
actr-load pathname -> [load-return-value | nil]
Arguments and Values:

pathname ::= a string or pathname indicating the location of a file to load
load-return-value ::= a generalized boolean returned from calling the load command

Description:

The actr-load function takes one parameter which is the pathname to a file to be loaded. It will first
use the Lisp function translate-logical-pathname to create a physical pathname to the file and if that

file exists it will be loaded and return the result of the load function call.
If the file does not exist then a warning is printed and nil returned.
Examples:

> (actr-load "ACT-R:tutorial;unitl;count.lisp")
T

E> (actr-load "ACT-R:tutorial;unitl2;no-file.lisp")
#|Warning: File #P"C:\\actr7.x\\tutorial\\unit12\\no-file.lisp" does not exist.|#

37

NIL

load-act-r-model/load-act-r-code

Syntax:

load-act-r-model pathname {compile} -> [t | nil]
load-act-r-code pathname {compile} -> [t | nil]

Remote command names:

load-act-r-model
load-act-r-code

Arguments and Values:

pathname ::= a string or pathname indicating the location of a file to load
compile ::= a generalized boolean indicating whether to compile the file before loading

Description:

The load-act-r-model and load-act-r-code commands take one required parameter which is the
pathname to a file to be loaded. They use the Lisp function translate-logical-pathname to create a
physical pathname to the file. If such a file exists and the optional parameter is not provided or is nil
then they will attempt to load that file. If the optional parameter is provided as a non-nil value then
that file will be compiled and the resulting compiled file will attempt to be loaded. While loading
and compiling the file these commands will capture all of the output which is generated and that
output will be output to the ACT-R warning trace when complete under a line which says “Non-
ACT-R messages during load of pathname:”. These commands also trap any errors which occur
during the compiling and loading and will terminate if an error occurs and output the details of the

error to the warning trace.
If the file is successfully compiled and loaded then a value of t is returned otherwise they return nil.

Only one instance of each of these commands can be operating at a time as a safety measure since
they are available through the remote interface. If a second call is made to one of them before a
current call completes (regardless of the origin of that ongoing call) it will report an error and return

nil.

Examples:

NOTE: The tutorial unit task implementation files like demo2.lisp or demo2.py include a call to load-
act-r-model to load the corresponding model file for the task. The last error output shown indicates a

38

result of T because the warning was generated by the call to load-act-r-code that is in the provided
file (the model file could not be loaded with load-act-r-model) but the demo2.lisp file itself was
successfully loaded.

> (load-act-r-code "ACT-R:tutorial;lisp;demo2.lisp")
#|Warning: Non-ACT-R messages during load of "ACT-R:tutorial;unit2;demo2-model.lisp":
; Loading C:\Users\db30\Desktop\actr7.x\tutorial\unit2\demo2-model.lisp

| #
#|Warning: Non-ACT-R messages during load of "ACT-R:tutorial;lisp;demo2.lisp":
; Loading C:\Users\db30\Desktop\actr7.x\tutorial\lisp\demo2.1lisp

| #
T

> (load-act-r-code "ACT-R:tutorial;lisp;demo2.1lisp" t)
#|Warning: Non-ACT-R messages during load of "ACT-R:tutorial;unit2;demo2-model.lisp":
; Loading C:\Users\db30\Desktop\actr7.x\tutorial\unit2\demo2-model.lisp

| #
#|Warning: Non-ACT-R messages during load of "ACT-R:tutorial;lisp;demo2.lisp":
;15 Compiling file C:\Users\db30\Desktop\actr7.x\tutorial\lisp\demo2.lisp
;15 Writing fasl file C:\Users\db30\Desktop\actr7.x\tutorial\lisp\demo2.fasl
;7 Fasl write complete
; Fast loading C:\Users\db30\Desktop\actr7.x\tutorial\lisp\demo2.fasl

| #
T

E> (load-act-r-model "ACT-R:tutorial;unitl2;no-file.lisp")

#|Warning: Error "Error #<SIMPLE-ERROR File \"ACT-R:tutorial;uniti12;no-file.lisp\" which
translates to #P\"C:\\\\Users\\\\db30\\\\Desktop\\\\actr7.x\\\\tutorial\\\\unit12\\\\no-
file.lisp\" does not exist.> occurred while trying to evaluate command \"load-act-r-
model\" with parameters (\"ACT-R:tutorial;uniti2;no-file.lisp\" NIL)" while attempting to
evaluate the form ("load-act-r-model" "ACT-R:tutorial;unitil12;no-file.lisp" NIL) |#

NIL

E> (load-act-r-model "ACT-R:tutorial;lisp;demo2.lisp")

#|Warning: Error "Load-act-r-model currently loading a model" while attempting to evaluate
the form ("load-act-r-model" "ACT-R:tutorial;unit2;demo2-model.lisp" NIL) [#

#|Warning: Non-ACT-R messages during load of "ACT-R:tutorial;lisp;demo2.lisp":

; Loading C:\Users\db30\Desktop\actr7.x\tutorial\lisp\demo2.1lisp

| #
T

Load order

For those considering adding extensions or just having files loaded automatically, the files and

directories are loaded in the following order:

- framework directory files in a predefined order
- core-modules directory files in a predefined order

- all .lisp files from the commands directory in no particular order

39

- the virtual device files
- any Lisp specific device files
- all .lisp files from the modules directory in no particular order
- all .lisp files from the tools directory in no particular order
0 the ACT-R Environment files are loaded as part of this step
- all lisp files from the other-files directory in no particular order
- all .lisp files from the user-loads directory in order with the file names sorted using the Lisp

string< function.

Recompiling

If one of the source files in the distribution changes (the date on the .lisp file is newer than the date on
the compiled version of that file) then it will automatically be recompiled the next time it is loaded.
However, there may be times when you need to force all of the ACT-R files to be recompiled. For
instance, if you upgrade or change your Lisp system you will likely need to recompile everything.
Also, if you get an update to your current set of ACT-R files it is often best to force a recompile the
next time you load it because there may be some interdependencies that will require more than just

the updated file to be recompiled.

To force ACT-R to recompile all of its files you can add the :actr-recompile switch to the features list

which can be done with this call before loading the load-act-r.lisp file:

(push :actr-recompile *features*)

Alternatively, you can load the recompile-act-r.lisp file which will add that feature and then load the
main ACT-R load file.

If you change which load file is used relative to the version that was loaded previously (from load-
act-r.lisp to load-single-threaded-act-r.lisp or vice-versa) then it will also automatically recompile all
of the files.

There is also a feature switch called :dont-compile-actr which will prevent the loader from compiling
any of the files and instead just load the existing compiled files. This overrides the :actr-recompile
switch. This is likely not useful for users of the system, but can be helpful when testing or upgrading
the ACT-R software itself.

Packaging

40

By default, the ACT-R files are loaded into which ever package is current at the time they are loaded
i.e. there are no package specifications. However, there are two features which can be set that will
change the package into which ACT-R is loaded. If the ACT-R files have been compiled previously,
then it will be necessary to also force the recompiling of the sources when changing the package into
which they are loaded. Note that these options may not work properly in all Lisps since there may be
differences in how other default packages are defined — please contact Dan if you have any problems

or questions with using the packaged ACT-R code.

Clean
The first option is to add the :clean-actr switch to the features list before loading. That will force the

files to be loaded into the :cl-user package in most Lisps (the only exception is that in ACL with the

IDE it will load them into the :cg-user package).

Packaged
The other option is to add the :packaged-actr switch to the features list. That will create a new

package called :act-r when the load-act-r.lisp file is loaded and the ACT-R code will be loaded into
that package. Nothing is exported from that package by the ACT-R code.

Requiring files

Files placed into the support directory of the distribution can be compiled and loaded when needed by
using an ACT-R extension of the Lisp require function.

require-compiled

Syntax:

require-compiled lisp-module-name {pathname} -> [load-return-value | nil]

Arguments and Values:

lisp-module-name ::= a string containing the name of a Lisp module (the value provided in the file)
pathname ::= a string or pathname indicating the location of a .lisp file which provides the module
load-return-value ::= a generalized boolean returned from calling the load command

Description:

The require-compiled function has one required parameter and one optional parameter. The required
parameter is the Lisp module name string as would be passed to the require function (note this is not

the same as an ACT-R module name). The optional parameter is the pathname to the file to be

41

loaded. If the pathname is not provided, then it will try to load the file with the module name given
(converted to all lowercase characters) and a .lisp type from the ACT-R support directory. In the
ACT-R source code files, only those in the support directory use the provide function to specify a

module name for use in requiring.

The reason for using require-compiled compared to just loading the file directly is that require-
compiled will only compile and load the file if it has not been loaded previously, the previously
compiled version was from a different ACT-R mode, or the mode under which the previous version
was compiled is unknown. That way one can specify that a particular support file is necessary in
multiple files and only the first one will actually compile and load it. The differences between this
and the Lisp require function is that this will guarantee that the file is compiled instead of just being
loaded and the optional pathname for this function must be a single pathname instead of a list of

pathname designators.

If the file is compiled and loaded the return value will be the one returned by that load. If it does not

need to be compiled and loaded it will return nil.

To go along with the intended use of this command there is another logical host created when ACT-R
is loaded called “ACT-R-support” which refers to the support directory of the current ACT-R source

code tree.

Examples:

1> (require-compiled "TIME-FUNCTIONS")

;55 Compiling file C:\Users\db30\actr7.x\support\time-functions.lisp
;575 Writing fasl file C:\Users\db30\actr7.x\support\time-functions.fasl
;7 Fasl write complete

; Fast loading C:\Users\db30\actr7.x\support\time-functions.fasl

T

2> (require-compiled "TIME-FUNCTIONS")

NIL

> (require-compiled "CENTRAL-PARAMETERS" "ACT-R-support:central-parameters")
NIL

42

Overall Software Design

The ACT-R software is composed of three major subsystems. From the perspective of the user, they
operate together to implement “ACT-R”, but it is important to note that not everything in the software

is a representation of elements of the ACT-R cognitive architecture.

The first subsystem is a discrete event simulation system which controls the timing and coordination
of operations within ACT-R. It was designed to provide all of the support necessary to implement
the current ACT-R theory, but is not itself a part of the theory. It defines the abstractions and tools

which underlie the operations of the system, namely a meta-process, a model, a module, a

component, a buffer, a chunk and a parameter. Some of those items are elements of the theory of

ACT-R, for example buffers and chunks, but their specific implementation in the software is not

prescribed by the theory.

The next subsytem is the RPC server which provides the remote interface for the system to interact
with other software (typically referred to as the dispatcher). This is not a component of the ACT-R
cognitive architecture and is purely a construct for the software implementation. As part of providing

the external interface, the dispatcher is also used to coordinate the output of the system in a way that

makes it available remotely. Many of the commands described in this manual are available remotely
through the dispatcher. When that is the case, the remote name and any additional details needed will
be described with the command. However, this document does not describe the operation of the
underlying RPC system itself. That information is found in the document called remote in the docs

directory.

The last subsystem is the set of modules that instantiate the theory of ACT-R. These modules contain
the components that are used to model human cognition as described in the paper “Integrated Theory
of the Mind” and the book “How Can the Human Mind Occur in the Physical Universe?”. The
actions and timing profiles generated by these modules when a model is run are the actual predictions
of the theory. Anything else, for instance the actual time it takes the software to run the simulation, is
not based on the theory. Those distinctions can be important so that the modeler appropriately
differentiates what is a psychological claim of a model and what is just a consequence of the current

software implementation.

43

Model files

Generally, when working with ACT-R one will generate text files that contain the description of a
model which will be loaded into the ACT-R system. This is not the only way to develop models in
ACT-R, but is by far the most typical usage.

An ACT-R model file is a text file of Lisp source code. It can be generated in any text editor.
Because it will be loaded into Lisp it must be syntactically correct Lisp code. Thus, it can be useful to
use an editor that helps with that. The editors built into the GUI based Lisp systems (like CCL on a
Mac, LispWorks, or ACL with its IDE) are good choices if using such a Lisp, but if not, an editor like

Emacs which has automatic Lisp indenting and parentheses matching can also help.

A typical model file will have the following structure:

(clear-all)
{supporting Lisp code}

(define-model model-name
(sgp {parameter value}*)
{chunk-type definitions}
{initial chunks are defined}
{productions are specified}
{any additional model set-up commands}
{additional model parameter settings}

The ACT-R commands shown above and the model components referenced (chunk-types, chunks,
and productions) will be described in detail in later sections of this document, but for now here is a
basic description of what the components of the model file do (information on creating and using

models is covered in the ACT-R tutorial).

- (clear-all)
The clear-all command completely resets ACT-R’s state to a clean slate. This does not have to be
the first thing in the file, but it should occur before defining any models.

- {supporting Lisp code}
Since the model file will be loaded into ACT-R (which is running in Lisp) it can be convenient to
also create the experiment/task for the model in Lisp along with the actual ACT-R model, and
sometimes one may also want to extend or modify the operation of the ACT-R system by
providing support functions for things like generating similarity values dynamically.

- (define-model model-name

44

The define-model command is used to specify exactly what constitutes the components of the
model and to give it a name for reference. Everything between the name specified for the model
and the closing parenthesis of this command are considered the model’s initial configuration. The
commands are processed sequentially from left to right (which would be top down if spread over
multiple lines as shown above).

(sgp {parameter value}*)
The sgp command is used to set parameters that control the general operation of the system. This
is typically the first command in the model’s definition so that all of the conditions are properly
set before anything else occurs.

{chunk-type definitions}
Descriptions are given for declaring the configuration of slots that will be used in the chunks in the
model.

{initial chunks are defined}
The initial chunks for the model are created and typically placed into the model’s declarative
memory.

{productions are specified}
The productions that control how the model will act are usually specified after the chunk-types

and chunks have been defined.

{any additional model set-up commands}
Any other commands necessary to configure components of the model or modules are specified.

{additional model parameter settings}

Parameters for chunks and productions specified above are set.

The define-model call is ended with a closing parenthesis.

45

ACT-R Output

The output of ACT-R is coordinated through signals. All of the ACT-R output commands result in
the generation of a signal with the corresponding output in a string. There are four output signals
which can be monitored through the dispatcher for displaying the various types of ACT-R output. By
default, all of the output signal strings are sent to *standard-output* for display in Lisp. That output
can be disabled and reenabled using commands described below. The commands for generating

output are described in a later section.

Commands & Signals

general-trace

Signal:

general-trace output-string

Arguments and Values:

output-string ::= a string containing output from an ACT-R output command
Description:

The general-trace signal is used to provide ACT-R output which is not dependent upon there being a

current model.

model-trace

Signal:

model-trace output-string

Arguments and Values:

output-string ::= a string containing output from an ACT-R output command
Description:

The model-trace signal is used to provide ACT-R output from a model. That output is controlled by
the :v parameter in the printing module for that model.

command-trace

46

Signal:

command-trace output-string

Arguments and Values:

output-string ::= a string containing output from an ACT-R output command

Description:

The command-trace signal is used to provide ACT-R output from a model. That output is controlled

by the :cmdt parameter in the printing module for that model.

warning-trace

Signal:

warning-trace output-string

Arguments and Values:

output-string ::= a string containing output from an ACT-R output command
Description:

The warning-trace signal is used to provide ACT-R output which indicates a warning or error has

occurred. Some warnings can be suppressed through the :model-warnings parameter in the printing

module for a model.

echo-act-r-output

Syntax:

echo-act-r-output -> name

Arguments and Values:

name ::= a string containing the name of the command which is used to monitor the output signals
Description:

The echo-act-r-output command is used to route all of the output generated by ACT-R to *standard-
output* in Lisp. When it is called, first it removes any existing output signal monitors which were
previously created by echo-act-r-output. Then it generates a new name for a command to use to print

output to the current *standard-output*. That new command is then set to monitor all four of the

47

output signals: model-trace, command-trace, warning-trace, and general-trace. It returns the name of

the command which it created.

This command is called during the loading of ACT-R which means that all of the output is displayed
by default.

Examples:

> (echo-act-r-output)
"G2354"

turn-off-act-r-output

Syntax:

turn-off-act-r-output -> [t, nil |
Arguments and Values:
none

Description:

The turn-off-act-r-output command is used to stop printing the output from ACT-R to *standard-
output* in Lisp as enabled by echo-act-r-output. When it is called, it removes any output signal
monitors which were previously created by echo-act-r-output. If there were output signal monitors

then it returns t otherwise it returns nil.

Examples:

1> (turn-off-act-r-output)
-

2> (turn-off-act-r-output)
NIL

suppress-act-r-output

Syntax:

suppress-act-r-output form* -> result
Arguments and Values:

form ::= a Lisp form to be evaluated
result ::= the return value from the last form evaluated

48

Description:

The suppress-act-r-output command can be used to temporarily disable the outputting of information
through echo-act-r-output. It is a macro which can be wrapped around any number of Lisp forms to
evaluate. While those forms are being evaluated any output which is created is not sent to *standard-
output* by the echo-act-r-output monitoring commands, but those monitoring commands (if there are
any) are not removed. It returns the return value from the last form evaluated. This does not affect

any other commands which may be monitoring the output signals.

This is generally more efficient than turning off the output and then echoing it again for short blocks
of code since the removal and addition of monitors is costly. However, for large blocks of code it
may be more efficient to turn it off and then echo again since the monitoring function is still active

during suppressed output and will be called even though it is not printing to *standard-output*.

Examples:

1> (echo-act-r-output)
"G2360"

2> (act-r-output "This")
This
NIL

3> (suppress-act-r-output
(act-r-output "That"))
NIL

> (act-r-output "Other")

Other
NIL

49

Software Operation

The next several sections are going to discuss the operation and data structures of the underlying
software. Although some of these are used to represent components of the ACT-R cognitive
architecture, like chunks, the specific implementation and operations of these items are not a part of
the cognitive architecture itself. For example, while the architecture says that declarative knowledge
is represented in chunks which contain slots and values, it does not say how those chunks are

represented nor what specific operators should be available to work with them.

50

Meta-process

The operation of the discrete event simulation system is controlled by a mechanism called the meta-
process. The meta-process maintains the schedule of events, the simulation clock, the available
models, and executes the events at the appropriate times when it is run. Currently, with this version
of ACT-R, there is only one meta-process which is defined automatically when the software starts
and it is not possible to create any others. [Note: some prior versions of ACT-R allowed for the
creation of more than one meta-process and you may still see references to the “current meta-
process” in this documentation. The single meta-process in this version of ACT-R will always be the

current meta—process.]

The operation of the scheduling and running will be discussed in following sections. Here we will

describe the high-level commands applicable to the meta-process.

Commands & Signals
clear-all

Syntax:

clear-all -> nil
Arguments and Values:
none

Description:

Clear-all restores ACT-R to its initial state:

* It generates the clear-all-start signal.

* It removes all currently defined models and their associated modules.
* Itremoves all events from the event queue and the waiting queue.

* It removes all event hooks which have been created.

* It sets the current simulation time to 0.

* It restores the default real time clock.

* It initializes all components which have been added.

51

In addition, the current binding of the Lisp variable *load-truename* is recorded for use by the reload

command.

The typically usage of clear-all is to place it at the top of a model file to ensure that when the model

is defined it starts with a clean system and that the reload command can be used.

Clear-all cannot be used while the meta-process is actively running, and doing so will result in the
generation of a Lisp error which provides details on how to resolve that issue under the typical

situations where it can occur.

Examples:

> (clear-all)
NIL

clear-all-start

Signal:

clear-all-start
Arguments and Values:
none

Description:

The clear-all-start signal is generated whenever the clear-all command starts to initialize the system,
and there are no parameters associated with the signal.

reset

Syntax:

reset -> [t | nil]

Remote command name:
reset

Arguments and Values:
none

Description:

52

The reset command is used to clear the event queue and restore the current set of models and modules

to their initial states (unlike clear-all which removes all of the models and modules).

* It generates a reset-start signal.

* Itremoves all events from the event queue and the waiting queue.

* It sets the current simulation time to 0.

* It resets all components, modules, and models.

The details of what happens when a model, module, and component are reset are described in the

corresponding sections.

Reset cannot be used while the model is running and trying to do so will result in a warning being

output to indicate that. If the reset completes successfully then it will return t otherwise it will return

nil.

Examples:

> (reset)
T

E> (reset)

#|Warning: Top-level-lock unavailable.

NIL

reset-start

Signal:

reset-start

Arguments and Values:
none

Description:

Reset cannot be used. |#

The reset-start signal is generated whenever the reset command starts to reset the system, and there
are no parameters associated with the signal.

reload

Syntax:

53

reload {compile?} -> [load-return-value | :none]
Remote command name:

reload

Arguments and Values:

compile? ::= a generalized boolean indicating whether or not to compile the file
load-return-value ::= a generalized boolean returned from calling the load command

Description:

The reload command calls the Lisp load command to load the file recorded during the last call to the
clear-all command. It is provided as a shortcut for loading a model file that has been edited. If the
compile? parameter is specified with a true value and that file has a type of “lisp” it will be compiled
before loading. If the compile? parameter is specified as true but the recorded file is not of type

“lisp” then it is not compiled, a warning is printed, and the file is just loaded.

If there is no file recorded by clear-all then no file is loaded and the keyword :none is returned.
Reload cannot be used while the system is running. If there are any errors generated during the
reloading of the model they will be automatically handled and the error messages printed as
warnings. There may be additional information printed in warnings even for a successful load
because all output to Lisp *standard-output* and *standard-error* during the load will be captured

and printed in warnings.
If the reload completes successfully it will return a true value, otherwise it will return nil.

Examples:

> (reload)
T

> (reload)
#|Warning: Non-ACT-R messages during load of #P"C:demo-model.lisp":

; Loading C:demo-model.lisp

| #
.

> (reload t)

#|Warning: To use the compile option the pathname must have type lisp. |#
; Loading C:\model.txt

T

E> (reload)

#|Warning: No model file recorded to reload. |#
:NONE

54

mp-time

Syntax:

mp-time -> current-time

Remote command name:

mp-time

Arguments and Values:

current-time ::= a number representing the current simulation time in seconds
Description:

Mp-time returns the current time of the meta-process in seconds.

This is generally used for two purposes, either debugging a model or collecting response time data

from a model.

Examples:

> (mp-time)
0.3

mp-time-ms

Syntax:

mp-time-ms -> current-time

Remote command name:

mp-time-ms

Arguments and Values:

current-time ::= a number representing the current simulation time in milliseconds

Description:

Mp-time-ms returns the current time of the meta-process like mp-time. The difference is that mp-

time-ms returns the time as an integer count of milliseconds.

Examples:
> (mp-time-ms)

55

300

mp-print-versions
Syntax:

mp-print-versions -> nil
Remote command name:
mp-print-versions
Arguments and Values:
none

Description:

Mp-print-versions outputs using the general-trace the specific version number of the ACT-R software
with a tag indicating whether the code is an official release or an internal version checked out of the

source repository followed by the name, version number, and documentation string of each of the

components and modules which is currently defined in the system. It always returns nil.

Examples:

> (mp-print-versions)
ACT-R 7 Version Information:

Software 1 7.6.2-<internal>
Components
AGI Manager for the AGI windows

5.0
CHUNK-SPEC 3.0 Maintains a table of chunk-specs for remote use
HISTORY-RECORDER: 1.0 Maintain the tables of defined history recorders and state
KEYBOARD-TABLE : 2.0 Record the keyboards used for each model.
MOUSE - TABLE 1 2.0 Record the mouse devices that are used.

NAMING 2.0 Provides new symbol generation for the system.
TRACE-HISTORY 1.0 Component for recording trace information

Modules

AUDICON-HISTORY Module to record audicon changes.

AUDIO A module which gives the model an auditory attentional
BOLD A module to produce BOLD response predictions from
BUFFER-HISTORY Module to record buffer change history.

BUFFER-PARAMS Module to hold and control the buffer parameters
BUFFER-TRACE A module that provides a buffer based history mechanism.
CENTRAL -PARAMETERS a module that maintains parameters used by other modules

ArBANNDMORWORNMO®
[cNoNoN ol il Vo oNoNol piNo]

DECLARATIVE The declarative memory module stores chunks from the
DEVICE The device interface for a model

GOAL The goal module creates new goals for the goal buffer
HISTORY -RECORDER al Module to support the saving and accessing of ...
IMAGINAL The imaginal module provides a goal style buffer with
MOTOR Module to provide a model with virtual hands

56

NAMING-MODULE
PRINTING-MODULE
PROCEDURAL

PRODUCTION-COMPILATION:

PRODUCTION-HISTORY
RANDOM-MODULE
RETRIEVAL-HISTORY
SPEECH

STEPPER

TEMPORAL

UTILITY
VISICON-HISTORY
VISION

NIL

OWANRERAOANRENNORDN
[cNoNoN S Nol S NoNoNoNoNoNGNO]

Provides safe and repeatable new name generation for
Coordinates output of the model.

The procedural module handles production definition

A module that assists the primary procedural module
Module to record production history for display in
Provide a good and consistent source of pseudorandom
Module to record retrieval history data.

A module to provide a model with the ability to speak
Store the model specific information for the

The temporal module is used to estimate short time

A module that computes production utilities

Module to record visicon changes.

A module to provide a model with a visual attention system

57

Events

As indicated in the description of the meta-process, the simulation system for ACT-R is implemented
using discrete events. The system runs by executing a sequence of events each occurring at a specific
simulated time. Effectively, every action of the model is performed by an event in the system, and

the model’s trace when it runs is a printing of those events as they occur.

Each event consists of the time at which it should occur, an indication of which, if any, module
created the event, and an action to perform. There are some additional details and capabilities of
events (like the ability to have them wait for some other action to occur instead of having a pre-

specified time) and those will be described in the section on creating events. This section will only

describe the commands for inspecting the events which exist in the current meta-process.

Commands
mp-show-queue

Syntax:

mp-show-queue {indicate-traced} -> event-count
Remote command name:

mp-show-queue

Arguments and Values:

indicate-traced ::= a generalized boolean indicating whether to mark events that will occur in the trace
event-count ::= a number indicating how many items are in the event queue

Description:

Mp-show-queue outputs a line of text that says “Events in the queue:” followed by all of the events
that are on the event queue in the order that they will be executed using the general-trace output

sk

signal. If the indicate-traced value is provided and is non-nil then the character will be displayed
before the events which will be displayed in the trace with the current parameter settings for the

associated model. It returns the number of events in the queue.

This command can be useful for debugging a model as well as when working on creating modules

and experiments which generate events.

58

Examples:

> (mp-show-queue)
Events in the queue:

0.000

0.000

0.000

0.000
4

NONE
GOAL
PROCEDURAL
GOAL

> (mp-show-queue t)
Events in the queue:

0.000

0.000

0.000

0.000
4

NONE
GOAL
PROCEDURAL
GOAL

mp-queue-text

Syntax:

CHECK-FOR-ESC-NIL
SET-BUFFER-CHUNK GOAL FREE NIL
CONFLICT-RESOLUTION
CLEAR-DELAYED-GOAL

CHECK-FOR-ESC-NIL
SET-BUFFER-CHUNK GOAL FREE NIL
CONFLICT-RESOLUTION
CLEAR-DELAYED-GOAL

mp-queue-text {indicate-traced} -> events-string

Remote command name:

mp-queue-text

Arguments and Values:

indicate-traced ::= a generalized boolean indicating whether to mark events that will occur in the trace
events-string ::= a string containing the printed event details

Description:

Mp-queue-text generates a string containing the printed form of all of the events that are on the event

queue in the order that they will be executed. If the indicate-traced value is provided and is non-nil

then the character “*” will be included before the events which will be displayed in the trace with the

current parameter settings for the associated model. That generated string is returned.

Examples:

=V

0.000
0.000
0.000
0.000

=V

0.000
0.000
0.000

*

(mp-queue-text)

NONE
GOAL
PROCEDURAL
GOAL

(mp-queue-text t)
0.000

NONE
GOAL
PROCEDURAL
GOAL

CHECK-FOR-ESC-NIL
SET-BUFFER-CHUNK GOAL FREE NIL
CONFLICT-RESOLUTION
CLEAR-DELAYED-GOAL

CHECK-FOR-ESC-NIL
SET-BUFFER-CHUNK GOAL FREE NIL
CONFLICT-RESOLUTION
CLEAR-DELAYED-GOAL

59

mp-queue-count

Syntax:

mp-queue-count -> event-count

Remote command name:

mp-queue-count

Arguments and Values:

event-count ::= a number indicating how many items are in the event queue
Description:

Mp-queue-count returns the number of events which are currently in the queue of the meta-process.

Examples:

> (mp-queue-count)
4

mp-show-waiting

Syntax:

mp-show-waiting -> event-count

Remote command name:

mp-show-waiting

Arguments and Values:

event-count ::= a number indicating how many items are in the waiting queue
Description:

Mp-show-waiting outputs all of the events that are on the waiting queue of the meta-process to the
general-trace along with the description of the condition for which it is waiting to occur to be added
to the main event queue. The first element in the waiting description indicates whether it is waiting

for any event or a particular module. If it is waiting on a module then the second element indicates

60

which module. The last element of the description indicates whether a maintenance event will satisfy

the condition. It returns the number of events that are in the waiting queue.

This command can occasionally be useful for debugging, but is generally more important when

working on creating modules and experiments.

Examples:

> (mp-show-waiting)
Events waiting to be scheduled:

NIL PROCEDURAL CONFLICT-RESOLUTION Waiting for: (ANY NIL)
1

mp-modules-events

Syntax:
mp-modules-events module-name -> event-list

Arguments and Values:

module-name ::= the name of a module
event-list ::= a list of event numbers for the events scheduled for the named module

Description:

Mp-modules-events returns a list of all of the events from both the regular and waiting queues of the
meta-process which have a module specified that matches the module-name provided. The elements
of the list are the actual event structures which should only be accessed with the commands described

in the event accessors section.

Examples:

> (mp-modules-events 'goal)
(4 3)

> (mp-modules-events 'not-a-module)
NIL

61

Component

A component is a software construct used to build the system that implements the ACT-R theory, but
which has no basis in the theory. A component is a data structure which is instantiated once in the
software and can provide commands which will be called automatically when clear-all, reset, model

definition, and model deletion occur. Currently, the interface for creating and working with

components is only an internal mechanisms and is not documented for user use.

62

Module

Module is an overloaded term in ACT-R (as well as outside of ACT-R). Within ACT-R it has
different connotations when talking about the software and the theory. At the software level a
module is a part of the system which may be instantiated for each model that is defined. It can serve
any number of purposes, for instance there is a printing module, a pseudorandom number generator
module, as well as a vision module, a declarative memory module and many others. Each module is
essentially an independent structure, and it is the modules which provide the functionality for a
model. There are basically no restrictions on what a software module can do and adding new

modules is the primary way of extending or modifying the overall system.

From the ACT-R theory perspective a module is a reference to some cognitive faculty which can
typically be ascribed to a particular region of the brain. Thus, something like the printing module in
the software obviously would not be considered a module of the theory. To further complicate the
issue, the implementation of the cognitive modules as software modules is not always one-to-one.
For example, the vision system of ACT-R, which is implemented in the software as one module, is
probably more appropriately considered as two cognitive modules — one for location information and
one for object information. In the other direction, the theory’s single procedural module is actually
implemented as three modules in the software (one that controls production definition and matching,

one to handle the utility computations, and one to implement the production compilation mechanism).

Often the context in which one encounters “module” with respect to ACT-R makes it clear what is
being discussed (the software or the theory) so it is not always as confusing as it might seem. For
clarity, from this point on in the manual, when it says module, the reference will be to the software

modules unless explicitly stated otherwise.

Each of the specific modules of the ACT-R software will be described in its own section of this
manual. There will also be sections describing the mechanisms which can be used in a module, like

buffers and parameters, as well as how to implement a new module. This section will only include

the command for getting the names of all the currently defined modules.

Commands
all-module-names

Syntax:

63

all-module-names -> (module-name?*)

Remote command name:

all-module-names

Arguments and Values:

module-name ::= the name of a module in the system
Description:

All-module-names returns a list of the names of the currently defined modules in the system in

alphabetical order.

Examples:

> (all-module-names)
(:AUDICON-HISTORY :AUDIO BOLD BUFFER-HISTORY BUFFER-PARAMS BUFFER-TRACE ...)

use-modules

Syntax:

use-modules module-name* -> nil
use-modules-fct (module-name*) -> nil

Arguments and Values:
module-name ::= the name of a module in the system
Description:

The use-modules command allows one to restrict the set of modules that are used in models. It can
be called when there are no models defined to specify the set of modules that are needed. It takes any
number of module names as parameters. Those modules along with any that are required (see the
define-module command for details on how a module can be required) will be the only ones
instantiated in the models. Most of the support modules (things like printing, random, and naming, as
well as helper modules like utility and production-compilation) are required by default or when their
corresponding cognitive module is used. Therefore, it will typically only be the cognitive modules
which will be necessary to specify: goal, imaginal, declarative, procedural, temporal, :vision,
:motor, :speech, and :audio. However, if one is using additional data processing tools like those for
BOLD predictions or history recorders then the corresponding modules would also need to be

specified as well when using a restricted set of modules.

64

If use-modules is not used, then all modules will be available just like before, and clear-all will also

return the system to using all modules.

This reason one would use this is to speedup the time it takes to reset and run a model. Models that
use few modules and get reset frequently will see the biggest improvement, whereas models that use
most of the modules or run for a long time between resetting will see little to no improvement from

restricting the set of modules.

Examples:

> (use-modules goal imaginal :vision :motor procedural declarative)
NIL

> (use-modules-fct (list 'goal 'procedural :audio))
NIL

E> (use-modules :bad-name)
#|wWarning: :BAD-NAME is not a valid module name in call to use-modules |#
NIL

E> (use-modules procedural)

#|wWarning: Use-modules can only be used when there are no models defined. |#
NIL

65

Buffers

Buffers in ACT-R are the interfaces between modules. Each buffer is connected to a specific module
and has a unique name by which it is referenced e.g. the goal buffer or the retrieval buffer which are
associated with the goal and declarative modules respectively. A buffer is used to relay requests for
actions to its module, to query its module about the module’s state, to hold one chunk which is visible

to all other modules, and it will respond directly to queries about the contents of the buffer itself.

A module will respond to a query through its buffer with a generalized-boolean indicating the result.
In response to a request, the module will usually generate one or more events to perform some
action(s) and may place a chunk into the buffer to indicate the result of that action. Any module may
access or modify the chunk in any buffer at any time, but typically a module will only manipulate its

own buffer(s).

The buffer itself responds to five queries all specified with the name buffer and the possible values:
empty, full, failure, requested, and unrequested. Each query will return t if the condition is true and
nil if it is false. The first three query values, empty, full, and failure, are determined based on
whether there is a chunk in the buffer and whether or not the failure flag for the buffer has been set.
Only one of those queries will be true at a time. If the buffer contains a chunk then full will be true.
If the failure flag has been set then failure will be true (it is not possible to set the failure flag if there
is a chunk in the buffer). If neither of those is true then empty will be true. The other two queries
indicate whether the chunk which is in the buffer or the failure flag, if it is set, was the result of a
request or not. The determination of whether a chunk or failure flag in the buffer was the result of a
request is indicated when calling the command that sets that item (see the Using Buffers section for
details). If there is no chunk in the buffer and the failure flag is not set then both of those queries will

be false.

An important thing to note is that when a chunk is placed into a buffer the buffer makes a copy of that
chunk which it then makes available. Any changes made to the chunk in the buffer only affect the
copy that it holds — they do not affect the original chunk from which it was copied. Another thing to
note about the chunk which is held in a buffer is that it my not always have a new name i.e. copying a
chunk into a buffer may result in a chunk in the buffer with the same name as a chunk previously in
the buffer. This is done for efficiency reasons, and will not affect the model as long as all the

modules which use the buffer do so appropriately (all the provided modules treat the chunks in

66

buffers appropriately). If one needs a buffer's chunk to always have a unique name when a copy is

created, then the buffer-requires-copies command can be used to indicate that.

One of the current research areas with ACT-R is in using the buffers to track the activity of their
associated modules and then comparing that activity to data from neruoimaging studies (fMRI, MEG,
or EEG) to find correlations between regions of the brain and particular buffer/module activity in
ACT-R models. Thus providing a mechanism for mapping cognitive modeling work onto actual
brain regions and even being able to make predictions about where activation should show up in

future neruoimaging research. Details on how that is done can be found in the Module Activity and

Brain Predictions section.

The commands described here provide general information about buffers which is most often needed
for modeling in ACT-R. The Using Buffers section describes the commands one can use for more

low-level interaction with the buffers which would be necessary for creating a new module.

Commands

buffers

Syntax:

buffers {sorted} -> (buffer-name¥)
Remote command name:
buffers

Arguments and Values:

sorted ::= a generalized boolean indicating whether to sort the list of names
buffer-name ::= the name of a buffer

Description:

The buffers command will return a list with the names of all the currently defined buffers (it does not
require a current model). If the sorted parameter is provided with a non-nil value then the list will be

in alphabetical order otherwise it will be in no particular order.

Examples:

> (buffers)

67

(RETRIEVAL IMAGINAL MANUAL GOAL IMAGINAL-ACTION VOCAL AURAL PRODUCTION VISUAL-LOCATION
AURAL -LOCATION TEMPORAL VISUAL)

> (buffers t)
(AURAL AURAL-LOCATION GOAL IMAGINAL IMAGINAL-ACTION MANUAL PRODUCTION RETRIEVAL TEMPORAL
VISUAL VISUAL-LOCATION VOCAL)

model-buffers

Syntax:

model-buffers {sorted} -> (buffer-name*)
Remote command name:
model-buffers

Arguments and Values:

sorted ::= a generalized boolean indicating whether to sort the list of names
buffer-name ::= the name of a buffer which exists in the current model

Description:

The model-buffers command will return a list with the names of all the buffers which are available in
the current model. If the sorted parameter is provided with a non-nil value then the list will be in
alphabetical order otherwise it will be in no particular order. This differs from the buffers command
because it is possible that a model does not have an instance of every defined buffer because the use-

modules command can restrict the set of modules that a model uses.

Examples:

> (model-buffers)
(RETRIEVAL IMAGINAL MANUAL GOAL IMAGINAL-ACTION VOCAL PRODUCTION VISUAL-LOCATION VISUAL)

> (model-buffers t)
(GOAL IMAGINAL IMAGINAL-ACTION MANUAL PRODUCTION RETRIEVAL VISUAL VISUAL-LOCATION VOCAL)

E> (model-buffers)
#|Warning: No current model in call to model-buffers. |[#
NIL

buffer-chunk

Syntax:

buffer-chunk buffer-name* -> [((buffer-name {chunk-name})*) | (lchunk-name | :error]*) | nil]
buffer-chunk-fct (buffer-name?*) -> [((buffer-name {chunk-name})*) | ([chunk-name | :error]*) | nil]

Remote command name:

68

buffer-chunk
Arguments and Values:

buffer-name ::= the name of a buffer
chunk-name ::= the name of a chunk

Description:

Generally, the buffer-chunk command prints out the names of buffers along with the chunks those

buffers hold in the current model using the command-trace.

If no buffer names are specified, then it prints all the buffers and the chunk name of the chunk in that
buffer (or nil if the buffer is empty) one per line to the command-trace and returns a list of lists where
the first element of each sublist is the name of a buffer and if the buffer holds a chunk there will be a

second element in the list containing the name of that chunk.

If specific buffers are provided, then for each of those buffers, in the order provided, it prints the
buffer name followed by the name of the chunk in that buffer (or nil if the buffer is empty) and if
there is a chunk in the buffer that chunk is also printed. In this case it returns a list of the names of
the chunks in the buffers provided in the same order as they were specified in the call. If an invalid
buffer name is provided the corresponding value in the return list will be the keyword :error and

nothing will have been printed.
If there is no current model then a warning is printed and nil is returned.

The remote version of the command takes parameters in the same way as the macro buffer-chunk —

any number of buffer names.

Examples:

These examples (except for the final error example) were generated after running the addition model
in unit 1 of the tutorial like this:

1> (actr-load "ACT-R:tutorial;unitil;addition.lisp")

T
2> (run 1)
0.000 GOAL SET-BUFFER-CHUNK GOAL SECOND-GOAL NIL
0.550 ------ Stopped because no events left to process
0.55
77
NIL

69

> (buffer-chunk)

AURAL: NIL

AURAL-LOCATION: NIL

GOAL: NIL

IMAGINAL: NIL

IMAGINAL-ACTION: NIL

MANUAL: NIL

PRODUCTION: NIL

RETRIEVAL: NIL

TEMPORAL: NIL

VISUAL: NIL

VISUAL-LOCATION: NIL

VOCAL: NIL

((AURAL) (AURAL-LOCATION) (GOAL) (IMAGINAL) (IMAGINAL-ACTION) (MANUAL) (PRODUCTION)
(RETRIEVAL) (TEMPORAL) (VISUAL) ...)

> (buffer-chunk-fct '(retrieval goal))
RETRIEVAL: NIL
GOAL: GOAL-CHUNKO
GOAL - CHUNKO
ARG1 FIVE
ARG2 TWwO
SUM SEVEN

(NIL GOAL-CHUNKO)

E> (buffer-chunk-fct '(bad-buffer-name))
(:ERROR)

E> (buffer-chunk retrieval bad-name goal)
RETRIEVAL: NIL
GOAL: GOAL-CHUNKO
GOAL -CHUNKO
ARG1 FIVE
ARG2 TWwO
SUM SEVEN
(NIL :ERROR GOAL-CHUNKO)
E> (buffer-chunk)

#|Warning: buffer-chunk called with no current model. |[#
NIL

printed-buffer-chunk

Syntax:

printed-buffer-chunk buffer-name* -> [output-string | nil]
Remote command name:

printed-buffer-chunk

Arguments and Values:

buffer-name ::= the name of a buffer
output-string ::= a string containing the output of the corresponding buffer-chunk

Description:

The printed-buffer-chunk command works like the buffer-chunk command except that it does not
print the information to the command-trace and instead of returning the list of chunks or buffers and
chunks it returns a string containing the output that buffer-chunk would have sent to the command-

trace.

Examples:

These examples (except for the final error example) were generated after running the addition model
in unit 1 of the tutorial like this:

1> (actr-load "ACT-R:tutorial;unitil;addition.lisp")

T
2> (run 1)
0.000 GOAL SET-BUFFER-CHUNK GOAL SECOND-GOAL NIL
0.550 ------ Stopped because no events left to process
0.55
77
NIL

> (printed-buffer-chunk)
"RETRIEVAL: NIL
IMAGINAL: NIL
MANUAL: NIL

GOAL: GOAL-CHUNKO
IMAGINAL-ACTION: NIL
VOCAL: NIL

AURAL: NIL
PRODUCTION: NIL
VISUAL-LOCATION: NIL
AURAL-LOCATION: NIL
TEMPORAL: NIL
VISUAL: NIL

n

> (printed-buffer-chunk 'retrieval 'goal)
"RETRIEVAL: NIL

GOAL: GOAL-CHUNKO

GOAL - CHUNKO

ARG1 FIVE
ARG2 TWO
SUM SEVEN

E> (printed-buffer-chunk 'bad-buffer-name)

nn

E> (printed-buffer-chunk)
#|Warning: printed-buffer-chunk called with no current model. [#
NIL

buffer-status

Syntax:

buffer-status buffer-name* -> [([buffer-name | :error]*) | nil]

71

buffer-status-fct (buffer-name®*) -> [([buffer-name | :error]*) | nil]
Remote command name:

buffer-status

Arguments and Values:

buffer-name ::= the name of a buffer

Description:

The buffer-status command prints the current values for the possible queries to which the buffers and
their modules respond from the current model using the command-trace. For each buffer specified
(or all buffers if none are specified) the buffer name is printed followed by the current result of the
buffer’s queries and the required module queries, one per line, indicating t for a true query and nil for
a false result. That is followed by any module specific status the module prints (the module specific
status is not constrained by the system and could be any type of output). It returns a list of the buffer

names of the buffers for which the status was printed.

If specific buffers are provided, and an invalid buffer name is specified, the corresponding value in

the return list will be the keyword :error and nothing will have been printed.
If there is no current model then a warning is printed and nil is returned.
The remote version of the command uses the same syntax as the buffer-status macro.

Examples:

> (buffer-status)

RETRIEVAL:
buffer empty T
buffer full : NIL
buffer failure : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL
recently-retrieved nil: NIL
recently-retrieved t : NIL

IMAGINAL:
buffer empty T
buffer full : NIL
buffer failure : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL

MANUAL :

72

buffer empty T

buffer full : NIL
buffer failure : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T

state busy : NIL
state error : NIL
preparation free T

preparation busy : NIL
processor free T

processor busy : NIL
execution free T

execution busy : NIL
last-command : NONE

(RETRIEVAL IMAGINAL MANUAL VISUAL AURAL PRODUCTION VOCAL ...)

> (buffer-status goal)

GOAL:
buffer empty T
buffer full : NIL
buffer failure : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL

(GOAL)

> (buffer-status-fct '(retrieval))

RETRIEVAL:
buffer empty T
buffer full : NIL
buffer failure : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL
recently-retrieved nil: NIL
recently-retrieved t : NIL

(RETRIEVAL)

E> (buffer-status goal non-buffer)

GOAL:
buffer empty T
buffer full : NIL
buffer failure : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL

(GOAL :ERROR)

E> (buffer-status)
#|Warning: buffer-status called with no current model. |#
NIL

printed-buffer-status

Syntax:

printed-buffer-status buffer-name* -> [output-string | nil]
Remote command name:
printed-buffer-status

Arguments and Values:

buffer-name ::= the name of a buffer
output-string ::= a string containing the output of the corresponding buffer-chunk

Description:

The printed-buffer-status command works like the buffer-status command except that it does not print
the information to the command-trace and instead of returning the list of buffers it returns a string

containing the output that buffer-status would have sent to the command-trace.

Examples:

> (printed-buffer-status)

"RETRIEVAL:
buffer empty T
buffer full : NIL
buffer failure : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL
recently-retrieved nil: NIL
recently-retrieved t : NIL

IMAGINAL:
buffer empty T
buffer full : NIL
buffer failure : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL

MANUAL :
buffer empty T
buffer full : NIL
buffer failure : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL
preparation free : T
preparation busy : NIL
processor free : T
processor busy : NIL
execution free : T
execution busy : NIL
last-command : NONE

74

> (printed-buffer-status 'goal)

"GOAL:
buffer empty T
buffer full : NIL
buffer failure : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL"

E> (printed-buffer-status)
#|Warning: printed-buffer-status called with no current model. |#
NIL

buffer-requires-copies

Syntax:

buffer-requires-copies buffer-name -> [t | nil]
Remote command name:
buffer-requires-copies

Arguments and Values:

buffer-name ::= the name of a buffer
Description:

The buffer-requires-copies command can be called to ensure that the specified buffer creates a chunk
with a new unique name every time it creates a copy of a chunk. This should be called at reset time
by a module which requires its buffer to always have unique chunks or in the model definition before
productions are defined. If the buffer-name provided is valid then that buffer will generate uniquely

named copies and t will be returned. Otherwise a warning will be printed and nil will be returned.

Note that this would only be necessary for a model if there is additional code with the model that is

reading the name of the chunk in a buffer and recording it for use at a later time.

Examples:

> (buffer-requires-copies 'goal)
T

> (buffer-requires-copies 'not-a-buffer)

#|Warning: buffer-requires-copies called with an invalid buffer name NOT-A-BUFFER |#
NIL

75

reusable-buffer-p

Syntax:

reusable-buffer-p buffer-name -> [t | nil]
Remote command name:
reusable-buffer-p

Arguments and Values:

buffer-name ::= the name of a buffer
Description:

The reusable-buffer-p command can be called to check whether the specified buffer is creating a
chunk with a new unique name every time it creates a copy of a chunk or if it is reusing a chunk with
a fixed name for the copies. If the buffer-name provided is valid then it will return t if that buffer is
reusing a single chunk for copies and nil if it generates uniquely named copies. Otherwise a warning

will be printed and nil will be returned.

Examples:

1> (reusable-buffer-p 'goal)
T

2> (buffer-requires-copies 'goal)
T

3> (reusable-buffer-p 'goal)
NIL

> (reusable-buffer-p 'not-a-buffer)

#|Warning: reusable-buffer-p called with an invalid buffer name NOT-A-BUFFER |#
NIL

76

Models

An ACT-R model is one simulated cognitive agent. Theoretically the software can have any number
of models defined simultaneously (practically there is of course a limit that will depend on the
hardware and Lisp software). All of the defined models will be run at the same time by the meta-
process. However, the most common usage of ACT-R is to work with only one model at a time.
Most of this manual assumes that one is working with only one model at a time. Information about

dealing with more than one model simultaneously is covered in the multiple models section.

A model is referenced by the name specified when it is defined, and that name must be unique among
the currently defined models. A model consists of the code specified in its definition, an instance of
each module in the system (which is independent of any other model’s copy of that module unless a
specific module indicates otherwise), and its set of chunks (which are always independent of the

chunks of any other model).

A model is created using the define-model command which specifies the model’s name and its initial

conditions and results in the creation of a new instance of each module for that model to use.

Specifically, when a model is created the following sequence of actions occur:

* A new instance of each module is created for that model

* The default chunk-types and chunks are created

* All of the buffers for that model are set to empty

* The model’s modules have their primary reset commands called (in no specific order)

* The parameters of all the model’s modules are set to their default values (in no specific order)
* The model’s modules have their secondary reset commands called (in no specific order)

* The model’s definition code is evaluated in the order given (left to right)

* The model’s modules have their tertiary reset commands called (in no specific order)

When a model is reset a similar sequence of actions occurs. The difference is that new module

instances are not created and instead any chunks and chunk-types in the model are deleted first.

Regardless of how many models are defined, only one is accessible at any given time. This is
referred to as the current model. Only the current model may be manipulated or inspected by ACT-R

commands. If there is only one model defined, then it will be the current model. If there is more

77

than one model defined, then it is up to the modeler to specify which is current before executing any

commands (see the multiple models section for more details).

Commands

define-model

Syntax:

define-model model-name {model-code*} -> [model-name | nil]
define-model-fct model-name ({model-code*}) -> [model-name | nil]

Arguments and Values:

model-name ::= a symbol that will be the name of the model
model-code ::= a Lisp expression that will be evaluated when the model is created and when it is reset

Description:

The define-model command creates a new model with the given model-name. Its initial conditions

are specified by the model-code provided.

If there is not already a model by that name and there are no errors in evaluation of the model-code

forms then the new model is created and model-name is returned.

If the model-name is already the name of a defined model or an error occurs during the evaluation of

the model-code then a warning is printed and nil is returned.

Examples:

Only basic usage of define-model is shown here — see the tutorial for the definitions of actual
cognitive models that perform meaningful tasks.

> (define-model-fct 'model-10 (list '(chunk-type start slot)))

MODEL-10

1> (define-model model-1 (chunk-type goal state))
MODEL-1

2E> (define-model-fct 'model-1 nil)

#|Warning: MODEL-1 is already the name of a model in the current meta-process. Cannot be
redefined. |#

NIL

E> (define-model model-3 (pprint "start") (pprnt "end"))

"start"
#|Warning: Error encountered in model form:

78

(PPRNT "end")

Invoking the debugger. |#

#|Warning: You must exit the error state to continue. |#
Debug: attempt to call "PPRNT' which is an undefined function.
[condition type: UNDEFINED-FUNCTION]

#|Warning: Model MODEL-3 not defined. |#

NIL

delete-model

Syntax:

delete-model {model-name} -> [t | nil]
delete-model-fct model-name -> [t | nil]

Arguments and Values:
model-name ::= the name of a model
Description:

The delete-model command removes the model with the specified model-name. If model-name is not
provided the current model is deleted. Deleting a model removes all events generated by that model
from the event queues, deletes each of the model’s instances of the modules, and removes the model

from the set of models currently defined. If a model is successfully deleted then t is returned.

If model-name is not the name of a currently defined model or no model-name is given and there is

no current model, then a warning is printed and nil is returned.
The delete-model command is typically only useful when working with multiple models.

Examples:

\%

(delete-model)

\

(delete-model-fct 'model)
T

E> (delete-model)
#|wWarning: No current model to delete. |#
NIL

E> (delete-model-fct 'model)

#|wWarning: No model named MODEL in current meta-process. |#
NIL

79

Chunks & Chunk-types

Chunks are the elements of declarative knowledge in the ACT-R theory and are used to communicate
information among modules through the buffers. A chunk consists of a set of named slots each
holding a single value. A chunk also has a name which is used to reference it, however, the name is
not considered to be a part of the chunk itself from a theoretical standpoint. Previous versions of
ACT-R also required each chunk to have a specific chunk-type associated with it that defined the set
of slots which it had. As of ACT-R 6.1 chunks are no longer cast into specific types. A chunk may
have any combination of slots desired without having to first specify an appropriate type, and a chunk
may also now have slots removed as well as added. Chunk-types still exist as a potentially useful

tool for modelers, but they are no longer a required component of chunks.

In the ACT-R software, chunks exist at the “model level” and may be created and used by any
module or additional code — they do not have to be associated with a model’s declarative memory
module unlike older versions of ACT-R (those prior to 6.0). In addition to the slots and values of a
chunk, in the software each chunk also maintains a set of parameters which contain additional
information needed by the modules or the modeler. A modeler may add chunk parameters for

recording additional information as needed. See the section on extending chunks for more

information on adding and manipulating chunk parameters. Along with the parameters, there are two
additional features associated with a chunk in the software. The first indicates whether the slots and
values of the chunk can be modified or not. When a chunk is created it is initially able to have its
content modified, but the modeler (or a module) may mark a chunk as “immutable” at any point after
it has been created. Once a chunk is marked as immutable it cannot be changed back to modifiable.
The other feature is whether the chunk has a unique name and is safe to store for later use, or should
be copied before storing. This relates to the buffers possibly reusing chunk names for efficiency. If a
chunk is marked as not storable then one should create a copy it the contents may be needed later or
set the buffer from which it came to always require creating new copies. The final thing to note
about chunks is that they should always be referenced by their name and only manipulated through
the provided mechanisms — the underlying representation of a chunk in the code is not considered to
be part of the ACT-R software’s API.

Chunk-types in ACT-R are used as a pre-processing mechanism in the definition of a model. A
chunk-type associates a name with a set of slots and optional default values for those slots. That
chunk-type name may then be used when creating chunks and specifying productions to indicate the

slots which are intended and to include the default slot values from that chunk-type for any slots not

80

specified in the chunk or production. The chunk-type name itself does not get recorded in the model
with the chunk or production it is used in — it only serves as a declaration which will be used to
provide warnings if the chunk or production does not conform to the chunk-type indicated and to fill
in any default slot values from that chunk-type. If a chunk-type does not include default values for its
slots then whether it is specified or not in the creation of a chunk or production will not affect the

resulting item — it will be the same with or without the chunk-type specification.

When creating chunk-types they may be organized into a hierarchy, with new chunk-types inheriting
slots from one or more parent chunk-types. If a chunk-type is created with one or more parent chunk-
types then that new type will include all the slots and default values from all of the parent chunk-
types along with those specified in the new chunk-type. A default value specified for a slot directly
in a chunk-type overrides any default value which would be inherited from a parent type. If multiple
parent chunk-types specify a default value for the same slot then unless those default values are all
the same such a chunk-type cannot be created. When specifying a chunk-type in creating a chunk or
production a parent type may be specified and use any of the slots specified for the children of that

chunk-type, but only the default values for the specific chunk-type named will be applied.

Note on slot contents

The software allows any Lisp data to be specified as the value of a slot. However, not all Lisp data
types may be transmitted through the remote interface. Thus, only names, numbers, and strings are

recommended for use as the values in slots if one wants to access that content remotely.

Default Chunk-types

There are a few chunk-types created with every model automatically. Those are, chunk, constant-
chunks, query-slots, and clear. These are used to create some of the default chunks for the model and
may be used freely in creating additional chunks or productions. Many of the provided modules also

specify new chunk-types which may be used and those will be indicated with a module’s description.

chunk

The chunk-type named chunk has no slots specified for it. Its purpose is to serve as the root of the
chunk-type hierarchy i.e. all chunk-types which are created implicitly inherit from the chunk-type

named chunk.

81

constant-chunks

The constant-chunks chunk-type specifies one slot named name.

query-slots

The query-slots chunk-type specifies three slots named state, buffer, and error. Those are the names
of the queries which all buffers will respond to and by creating a chunk-type with those slot names

one can create chunk-specs which use those slots to perform queries from code.

clear

The clear chunk-type has one slot named clear which has a default value of t. It is provided as a
convenient and consistent mechanism for use when creating a module which needs to provide a

request which performs some sort of “clearing” of the module.

Default Chunks

There are several chunks created for each model automatically which may be used as needed. All of
these default chunks are marked as immutable. There will also be many chunks created by the

provided modules and the details of those can be found in the specific module sections.

Chunks named free, busy, error, empty, full, failure, requested, and unrequested are created each with
a slot named name that is set to the chunk’s name i.e. the chunk named free has one slot called name

with the value free.

A chunk named clear is created having one slot named clear with a value of t.

Commands

The commands described here are general chunk and chunk-type actions which can be used for any
chunk. Some modules provide additional commands for manipulating or inspecting the chunks that
are being used by that module and the details of those commands can be found in the specific module
sections.

Chunk-type Commands

chunk-type

Syntax:

82

chunk-type { [new-name | (new-name (:include parent-name)*) | {doc-string} [slot-name |
(slot-name default-value)]*} -> [type-name | (type-name*) | nil]

chunk-type-fct [nil | ([new-name | (new-name (:include parent-name)*) | {doc-string} [slot-name |
(slot-name default-value)]*)] -> [type-name | (type-name*) | nil]

Remote command name:

chunk-type [nil | ([new-name | (new-name (:include parent-name)’) | {'doc-string’} [slot-name |
(slot-name 'default-value’)]*)] -> [type-name | (type-name*) | nil]

Arguments and Values:

new-name ::= the name of the new chunk-type

type-name ::= the name of a chunk-type

parent-name ::= the name of a chunk-type to be a parent type of this new chunk-type

doc-string ::= a string that is used as documentation for this chunk-type

slot-name ::= the name of a slot which will be part of this chunk-type

default-value ::= any value which specifies the value that will be used as the default value for the
corresponding slot-name

Description:

The chunk-type command creates a new chunk-type for the current model or displays all of the

currently defined chunk-types for the current model.

If no parameters are passed to the chunk-type command (or nil to the function) then all of the existing

chunk-types in the current model are printed to the command-trace as described by pprint-chunk-type

and a list of their names is returned (in no particular order).

If a valid chunk-type specification is provided then a new chunk-type is created for the current model
and the name of that chunk-type is returned. If the chunk-type provides the same specification as an

existing chunk-type in the model then a warning will be displayed.

If there is no current model, the given new-name already names an existing chunk-type in the current
model, or there is an error in the specification of the chunk-type then a warning is printed and nil is

returned.

Examples:

> (chunk-type)
SOUND

KIND
CONTENT

83

EVENT

AUDIO-COMMAND

MOVE-CURSOR <- MOTOR-COMMAND
OBJECT
LoC
DEVICE

(SOUND AUDIO-COMMAND MOVE-CURSOR ...)

1> (chunk-type goal slotl state)
GOAL

2> (chunk-type-fct '(other-type slotl slot2))
OTHER-TYPE

3> (chunk-type (subgoall (:include goal)) new-slot)
SUBGOAL1

4> (chunk-type-fct '((subgoal2 (:include goal) (:include other-type))))
SUBGOAL2

5> (chunk-type new-type (slot default-value) (other-slot 4))
NEW-TYPE

6> (chunk-type detailed-type "The chunk-type detailed-type" slot)
DETAILED-TYPE

7> (chunk-type-fct nil)

GOAL
SLOT1
STATE

OTHER-TYPE
SLOT1
SLOT2

SUBGOAL1 <- GOAL
NEW-SLOT
SLOT1
STATE

SUBGOAL2 <- GOAL, OTHER-TYPE
SLOT2
SLOT1
STATE

NEW-TYPE
SLOT (DEFAULT-VALUE)
OTHER-SLOT (4)

DETAILED-TYPE "The chunk-type detailed-type"
SLOT

84

(CHUNK CONSTANT-CHUNKS CLEAR AUDIO-EVENT SET-AUDLOC-DEFAULT SOUND GENERIC-ACTION ...)
8E> (chunk-type repeat slotl state)

#|Warning: Chunk-type REPEAT has the same specification as the chunk-type GOAL. |#
REPEAT

E> (chunk-type (new-type (:include bad-type)))

#|Warning: Non-existent chunk-type BAD-TYPE specified as an :include in NEW-TYPE chunk-
type definition. |#

NIL

E> (chunk-type (bad :include goal))

#|Warning: Invalid modifier list specified with the chunk-type name: (:INCLUDE GOAL) |#
NIL

E> (chunk-type no-model)

#|Warning: chunk-type called with no current model. |#
NIL

pprint-chunk-type

Syntax:

pprint-chunk-type type-name -> [type-name | nil]

pprint-chunk-type-fct type-name -> [type-name | nil]

Remote command name:

pprint-chunk-type

Arguments and Values:

type-name ::= the name of a chunk-type

Description:

The pprint-chunk-type command is used to print a description of a chunk-type. The output is sent to

the command-trace.

If the parameter provided is the name of a chunk-type in the current model then that chunk-type is
printed like this: the chunk-type name is printed and if the chunk-type has any parent types specified
then the name is followed by “<-” and the names of the parent chunk-types are printed separated by
commas, the documentation string for the chunk-type, if it has one, is printed, and then the slot names
of the chunk-type are printed one per line with the slot’s default value in parentheses after the slot

name if one was provided.

If there is no current model or the given type-name does not name an existing chunk-type in the

current model then a warning is printed and nil is returned.

85

Examples:

1> (chunk-type test slotl (slot2 2))
TEST

2> (chunk-type (subtest (:include test)) "a subtype of test" slot3)
SUBTEST

3> (pprint-chunk-type test)
TEST
SLOT1
SLOT2 (2)
TEST
4> (pprint-chunk-type-fct 'subtest)
SUBTEST <- TEST "a subtype of test"
SLOT1
SLOT2 (2)
SLOT3
SUBTEST
E> (pprint-chunk-type not-a-chunk-type)
#|Warning: NOT-A-CHUNK-TYPE does not name a chunk-type in the current model. |#
NIL
E> (pprint-chunk-type chunk)

#|Warning: pprint-chunk-type called with no current model. |#
NIL

chunk-type-p

Syntax:

chunk-type-p chunk-type-name? -> [t | nil]
chunk-type-p-fct chunk-type-name? -> [t | nil]

Remote command name:

chunk-type-p

Arguments and Values:

chunk-type-name? ::= a symbol to be tested to determine if it names a chunk-type
Description:

The chunk-type-p command returns t if chunk-type-name? is a symbol that names a chunk-type in the
current model and returns nil if it does not. If there is no current model then a warning is printed and

nil is returned.

86

Examples:

\%

(chunk-type-p clear)
T

\%

(chunk-type-p-fct 'chunk)
T

> (chunk-type-p bad-name)
NIL

> (chunk-type-p-fct 'non-chunk-type)
NIL

E> (chunk-type-p chunk)
#|Warning: get-chunk-type called with no current model. |#
NIL

all-chunk-type-names

Syntax:

all-chunk-type-names -> (type-name?*)
Remote command name:
all-chunk-type-names

Arguments and Values:

type-name ::= the name of a chunk-type
Description:

All-chunk-type-names takes no parameters and returns a list of all the chunk-type names in the
current model. The type names are ordered based on the order in which they were defined (first name

in the list is the first one defined).
If there is no current model a warning is printed and nil will be returned.

Examples:

> (all-chunk-type-names)
(CHUNK CONSTANT-CHUNKS CLEAR QUERY-SLOTS AUDIO-EVENT SET-AUDLOC-DEFAULT SOUND ...)

E> (all-chunk-type-names)

#|Warning: all-chunk-type-names called with no current model. |#
NIL

87

chunk-type-possible-slot-names-fct

Syntax:

chunk-type-possible-slot-names-fct chunk-type-name -> [(slot-name*) | nil]
Remote command name:

chunk-type-possible-slot-names-fct

Arguments and Values:

chunk-type-name ::= the name of a chunk-type
slot-name ::= the name of a slot usable in the specified chunk-type

Description:

Chunk-type-possible-slot-names-fct takes one parameter which should be the name of a chunk-type.
It returns a list of all the names of slots which are valid for use with that chunk-type in the current
model along with all of the request parameters which have been defined for the buffers. A slot is
valid for the chunk-type if it is specified in that chunk-type’s definition, is specified in a chunk-type
which has the specified chunk-type as a parent, or is a slot which has been added to chunks through

extension with extend-possible-slots.

If there is no current model or the specified name does not name a chunk-type in the current model

then a warning is printed and nil is returned.

Examples:

> (chunk-type-possible-slot-names-fct 'clear)
(CLEAR :MP-VALUE :RECENTLY-RETRIEVED :CENTER :NEAREST :FINISHED :ATTENDED)

> (chunk-type-possible-slot-names-fct 'chunk)
(SCALE RIGHT LEFT TYPE SET-VISLOC-DEFAULT SIZE DISTANCE SCREEN-Y SCREEN-X COLORS ...)

E> (chunk-type-possible-slot-names-fct 'bad-name)

#|Warning: Invalid chunk-type name BAD-NAME passed to chunk-type-possible-slot-names-fct.
| #

NIL

E> (chunk-type-possible-slot-names-fct 'chunk)

#|Warning: get-chunk-type called with no current model. |#

#|Warning: Invalid chunk-type name CHUNK passed to chunk-type-possible-slot-names-fct. |#
NIL

88

Chunk Commands

define-chunks

Syntax:

define-chunks [chunk-description* | chunk-name*] -> (chunk*)
define-chunks-fct (chunk-description* | chunk-name?*) -> (chunk*)

Remote command name:
define-chunks ['chunk-description * | chunk-name?*]
Arguments and Values:

chunk-description ::= ({chunk-name}{[doc-string isa chunk-type | isa chunk-type]} {slot value}*)
chunk-name ::= the name of the chunk to create

doc-string ::= a string that will be the documentation for the chunk

chunk-type ::= a name of a chunk-type in the model

slot ::= the name of a slot for the chunk

value ::= any value which will be the contents of the correspondingly named slot for this chunk
chunk ::= the name of a chunk that was created

Description:

The define-chunks command creates a new chunk in the current model for each valid chunk
description list provided or all the chunk names provided and then returns a list of the names of the

chunks that were created.

Within a chunk description list the chunk name is optional. If a chunk-name is provided, it must not
name an existing chunk in the current model and must be a non-keyword, non-nil symbol that begins
with an alphanumeric character. If a chunk-name is not provided, a new name will be generated for

the chunk, and that name is guaranteed to be unique.

The name may be followed by an optional chunk-type specification and if it does it may also include
a documentation string for the chunk. If a chunk-type is specified it must name a valid chunk-type in

the current model.

That may then be followed by any number of slot and value pairs for the chunk. If a given slot is
named more than once in the definition then the last value it is given (rightmost) will be the one set
for the chunk. If the value for a slot is non-nil then that slot is added to the chunk being created with

the value specified.

89

If a chunk-type is specified then each of the slots specified will be tested to see if it is a valid slot for
the type indicated. If it is not then a warning will be printed, but the chunk will still be created. If it
is not a valid slot for any chunk-type then it will automatically extend the valid slots for chunks with

that slot name.

If a chunk-type is specified and there are slots with default values in that chunk-type’s definition
which are not included in the chunk definition the chunk will get all of those unspecified slots with

their corresponding default values.

If a value for a slot is a non-nil symbol other than the Lisp true symbol t then it is assumed to be the
name of a chunk. If there is not already a chunk by that name, then one is created automatically

which has no slots and a warning is printed to indicate that.

However, within a call to define-chunks one can use the names of the chunks that are being defined
in the other chunks without having them created as default chunks. Here is an example to clarify
that:

(define-chunks (a slot b)

(b slot a)
(c slot d))

Because both a and b are being defined in the same call to define-chunks neither will need to be
created automatically. However, unless d already names a chunk in the model a chunk with that

name will be created automatically in the process of creating chunk c.

If the syntax is incorrect or any of the components are invalid in a description list then a warning is
displayed and no chunk is created for that chunk description, but any other valid chunks defined will

still be created.
If there is no current model no chunks are created and nil is returned.

Examples:

1> (chunk-type testl slot1l)
TEST1

2> (chunk-type test2 slotl (slot2 2))
TEST2

3> (define-chunks (a isa testl) (b isa test2))
(A B)

4> (define-chunks-fct '((c slotl a) (d slot2 c)))
(C D)

90

5> (define-chunks ("this is chunk e" isa testl slotl 100))
(TEST10)

6E> (define-chunks-fct '((isa testl slot2 "value")))

#|Warning: Invalid slot SLOT2 specified when creating chunk with type TEST1, but creating
chunk TEST11 anyway. |#

(TEST11)

7> (define-chunks ())
(CHUNKO)

8> (define-chunks c1 c2 c3)
(C1 Cc2 C3)

9E> (define-chunks (slotl new-name))
#|Warning: Creating chunk NEW-NAME with no slots |#
(CHUNK1)

10E> (define-chunks ("not allowed" slot2 t))

#|Warning: Invalid chunk definition: ("not allowed" SLOT2 T) chunk name is not a valid
symbol. |[#

NIL

11E> (define-chunks (slotl t new-slot 10))

#|Warning: Extending chunks with slot named NEW-SLOT because of chunk definition (SLOT1 T
NEW-SLOT 10) |#

(CHUNK2)

E> (define-chunks (z isa chunk))

#|Warning: define-chunks called with no current model. |#
NIL

pprint-chunks & pprint-chunks-plus

Syntax:

pprint-chunks chunk-name* -> [chunk-name-list | nil]
pprint-chunks-fct (chunk-name*) -> [chunk-name-list | nil]
pprint-chunks-plus chunk-name* -> [chunk-name-list | nil]
pprint-chunks-plus-fct (chunk-name*) -> [chunk-name-list | nil]

Remote command name:

pprint-chunks
pprint-chunks-plus

Arguments and Values:

chunk-name ::= the name of a chunk
chunk-name-list ::= ([chunk-name | :error]*)

Description:

91

The pprint-chunks family of commands are used to print a description of each of the chunks
specified, or all of the chunks in the model if no names are provided. The output is sent to the

command-trace.

For each chunk specified, on one line it will print the chunk’s name followed by its “true name” in
parentheses if the chunk’s true name differs from the chunk’s current name (see merge-chunks and
true-chunk-name below for more details on a chunk’s true name). If a documentation string was
provided for the chunk that is printed on the next line. Then one per line, each of the chunk’s slots is

printed followed by that slot’s value.

The pprint-chunks-plus command prints all of the chunk’s parameters after the description of the
chunk is printed. The parameters are printed one per line with the name of the parameter and its
current value. Note, that these chunk parameters are the ones that have been added to the chunks
(typically by a module as described in the extending chunks section) and may not have any direct
significance to the model or modeler. For example, the declarative memory parameters of chunks

used by the declarative module to compute and record the activation of chunks should be viewed

using the declarative module’s sdp command because the values shown with pprint-chunks-plus are
values used internally by the declarative module and may not adequately reflect the current value of
activations as would be shown by calling the module’s command for inspecting the declarative

memory chunk’s parameters (sdp).

These commands return a list with the names of all the chunks that were printed in the same order as
they were specified. If an invalid chunk-name is given nothing is printed for that item and the value

:error is returned in its place in the list.
If there is no current model then a warning is printed and nil is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (pprint-chunks)

TEST10
"this is chunk e"
SLOT1 100
BUSY
NAME BUSY
SPEAK
NAME SPEAK
CURRENT

92

NAME CURRENT

SUBVOCALIZE
NAME SUBVOCALIZE

AUDIO-EVENT

NAME AUDIO-EVENT

SLoT2 C

CHUNKO

(TEST10 BUSY SPEAK CURRENT SUBVOCALIZE AUDIO-EVENT D CHUNKO B MAGENTA ..

> (pprint-chunks a b test10)
A

SLOT2 2
TEST10
"this is chunk e"
SLOT1 100
(A B TEST10)

> (pprint-chunks-fct '(c d))
c

SLOT1 A
D

SLOT2 C
(C D)

> (pprint-chunks-plus chunko)
CHUNKO

--chunk parameters--
VISUAL-APPROACH-WIDTH-FN NIL
REAL-VISUAL-VALUE NIL
SPECIAL-VISUAL-OBJECT NIL
VISUAL-OBJECT NIL
VISUAL-TSTAMP NIL
VISUAL-FEATURE-NAME NIL
VISICON-ENTRY NIL
VISUAL-NEW-P NIL
SYNTH-FEAT NIL
FAST-MERGE-KEY NIL
RETRIEVAL-TIME NIL
RETRIEVAL-ACTIVATION NIL
SJIS NIL

PERMANENT-NOISE 0.0
SIMILARITIES NIL
REFERENCE-COUNT ©
REFERENCE-LIST NIL
SOURCE-SPREAD 0
LAST-BASE-LEVEL ©
BASE-LEVEL NIL
CREATION-TIME 0

FAN-IN NIL

C-FAN-OUT ©

FAN-OUT ©

IN-DM NIL

»)

93

ACTIVATION ©O
BUFFER-SET-INVALID NIL

(CHUNKO)

E> (pprint-chunks a bad-name b)
A

SLOT2 2
(A :ERROR B)

E> (pprint-chunks)
#|Warning: pprint-chunks called with no current model. [#
NIL

chunk-p

Syntax:

chunk-p chunk-name? -> [t | nil]
chunk-p-fct chunk-name? ->[t | nil]

Remote command name:

chunk-p

Arguments and Values:

chunk-name? ::= a value to be tested to determine if it names a chunk

Description:

The chunk-p command returns t if chunk-name? is the name of a chunk in the current model and
returns nil if it does not. If there is no current model then a warning is printed and nil is returned.
Examples:

These examples assume that chunks named a and b have been created.

> (chunk-p a)
T

> (chunk-p not-chunk)
NIL

> (chunk-p-fct 'b)
T

E> (chunk-p-fct 'a)

#|Warning: get-chunk called with no current model. |#
NIL

94

chunk-documentation

Syntax:

chunk-documentation chunk-name -> [doc-string | nil]
chunk-documentation-fct chunk-name -> [doc-string | nil]

Remote command name:

chunk-documentation

Arguments and Values:

chunk-name ::= the name of a chunk
doc-string ::= a string of the documentation provided when chunk-name was created

Description:

Chunk-documentation returns the documentation string of the chunk chunk-name from the current
model if it names a valid chunk and has a documentation string. If it does not have a documentation
string it returns nil. If chunk-name is not the name of a chunk in the current model or there is no

current model then a warning is printed and nil is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (chunk-documentation test10)
"this is chunk e"

> (chunk-documentation a)
NIL

> (chunk-documentation-fct 'test10)
"this is chunk e"

E> (chunk-documentation-fct 'not-a-chunk)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (chunk-documentation c)

#|wWarning: get-chunk called with no current model. |#
NIL

chunk-slot-value

Syntax:

95

chunk-slot-value chunk-name slot-name -> [slot-value | nil]
chunk-slot-value-fct chunk-name slot-name -> [slot-value | nil]

Remote command name:
chunk-slot-value chunk-name slot-name -> ['slot-value' | nil]
Arguments and Values:

chunk-name ::= the name of a chunk
slot-name ::= the name of a slot in the chunk chunk-name
slot-value ::= the value from slot-name in chunk chunk-name

Description:

Chunk-slot-value is used to get the value of a slot in a chunk. If chunk-name is the name of a chunk
in the current model and slot-name is the name of a slot in chunk-name then the value in the slot-
name slot of the chunk chunk-name is returned. If chunk-name is the name of a chunk but it does not

have a slot named slot-name then nil will be returned.

If chunk-name does not name a chunk in the model or there is no current model then a warning is

printed and nil is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (chunk-slot-value c slotl)
A

> (chunk-slot-value c slot2)
NIL

>(chunk-slot-value-fct 'd 'slot2)
C

> (chunk-slot-value a other-slot)
NIL

E> (chunk-slot-value bad-chunk-name slot1l)

#|Warning: BAD-CHUNK-NAME does not name a chunk in the current model. |[#
NIL

E> (chunk-slot-value c slotl)

#|Warning: get-chunk called with no current model. |#
NIL

set-chunk-slot-value

Syntax:

96

set-chunk-slot-value chunk-name slot-name slot-value -> [slot-value | nil]
set-chunk-slot-value-fct chunk-name slot-name slot-value -> [slot-value | nil]

Remote command name:

set-chunk-slot-value chunk-name slot-name 'slot-value' -> ['slot-value' | nil]
Arguments and Values:

chunk-name ::= the name of a chunk
slot-name ::= the name of a slot
slot-value :;= a value for slot-name in chunk chunk-name

Description:

Set-chunk-slot-value is used to set the value of the slot slot-name in the chunk chunk-name in the

current model to the value slot-value. If successful, slot-value is returned.

If slot-value is a name and that name is not the name of a chunk in the current model then it is created

as a new chunk with no slots and a warning is displayed.

If a slot-value of nil is specified for a slot that will remove that slot from the chunk.

If the chunk chunk-name has been marked as immutable then a warning is printed, no changes are

made to the chunk and nil is returned.

If either chunk-name or slot-name is invalid or there is no current model then a warning is printed

and nil is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (set-chunk-slot-value a slotl 10)
10

> (set-chunk-slot-value-fct 'b 'slot2 "value")
"value"

> (set-chunk-slot-value a slot2 new-chunk)
#|wWarning: Creating chunk NEW-CHUNK with no slots |#
NEW-CHUNK

1> (make-chunk-immutable 'b)
T

2E> (set-chunk-slot-value b slotl 10)

#|Warning: Cannot change contents of chunk B. |#
NIL

97

E> (set-chunk-slot-value-fct 'not-a-chunk 'slotl t)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#

NIL

E> (set-chunk-slot-value c not-a-slot b)

#|Warning: NOT-A-SLOT is not a valid slot name. You can use extend-possible-slots to add
it first if needed. |#

NIL

E> (set-chunk-slot-value a slotl b)

#|Warning: get-chunk called with no current model. |[#
NIL

mod-chunk

Syntax:

mod-chunk chunk-name {slot-name slot-value}* -> [chunk-name | nil]
mod-chunk-fct chunk-name ({slot-name slot-value}*) -> [chunk-name | nil]

Remote command name:

mod-chunk chunk-name '{slot-name slot-value}*

Arguments and Values:

chunk-name ::= the name of a chunk

slot-name ::= the name of a slot in the chunk chunk-name

slot-value ::= a value for the corresponding slot-name in chunk chunk-name

Description:

Mod-chunk is used to set the value of multiple slots in the chunk named chunk-name in the current

model. It is essentially a short hand for multiple calls to set-chunk-slot-value.

If chunk-name is the name of a chunk in the current model and there are an even number of items
specified thereafter, then those items are considered pair-wise to be the name of a slot and a value for
that slot in that chunk. All of those slots in the chunk are set to the values specified and chunk-name

is returned.

If any slot-value is a name and not the name of a chunk in the current model then it is created as a

new chunk with no slots and a warning is displayed.

A slot name may only be specified once in the set of slot-names. If a slot name is specified more than

once a warning is printed, no changes are made to the chunk, and nil is returned.

98

If any slot name provided is not a valid slot for chunks no changes are made to the chunk, and nil is

returned.

If the chunk chunk-name has been marked as immutable then a warning is printed, no changes are

made to the chunk and nil is returned.

If chunk-name does not name a chunk in the current model or there are an odd number of items

provided after the chunk-name then a warning is displayed, no changes are made, and nil is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

\

(mod-chunk a slotl b slot2 c)

\%

(mod-chunk-fct 'b '(slotl 10 new-slot t))
B

> (mod-chunk a slotl new-chunk-name)
#|Warning: Creating chunk NEW-CHUNK-NAME with no slots |[#
A

1> (make-chunk-immutable 'b)
-

2E> (mod-chunk b slotl 10)

#|Warning: Cannot modify chunk B because it is immutable. |#

NIL

E> (mod-chunk a slotl 1 slotl 2)

#|Warning: Slot name used more than once in modifications list. |#
NIL

E> (mod-chunk-fct 'a '(slotl b slot2))

#|Warning: 0dd length modifications list in call to mod-chunk. |#
NIL

E> (mod-chunk a slotl b)

#|Warning: get-chunk called with no current model. |#
NIL

copy-chunk

Syntax:

copy-chunk chunk-name -> [new-name | nil]
copy-chunk-fct chunk-name -> [new-name | nil]

Remote command name:
copy-chunk

Arguments and Values:

99

chunk-name ::= the name of a chunk
new-name ::= a unique name for a new chunk

Description:

Copy-chunk creates a copy of the chunk chunk-name in the current model and returns the name of the

newly created chunk. The newly created copy has the same slots and values as the chunk chunk-

name. The values of the parameters defined for the new chunk will have the default value unless the

parameter was specified with a copy-function, in which case, the value will be the one returned by

that function.

If chunk-name does not name a chunk in the current model or there is no current model then a

warning is displayed and nil is returned.

Examples:

These examples assume that there are chunks named a and b in the current model.

> (copy-chunk a)
A-0

> (copy-chunk-fct 'b)
B-0

E> (copy-chunk not-a-chunk)
#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (copy-chunk a)
#|Warning: get-chunk called with no current model. |#
NIL

chunk-copied-from

Syntax:

chunk-copied-from chunk-name -> [original-name | nil] {other}
chunk-copied-from-fct chunk-name -> [original-name | nil] {other}

Remote command name:
chunk-copied-from

Arguments and Values:
chunk-name ::= the name of a chunk

original-name ::= the name of a chunk
other ::= a generalized boolean indicating whether this chunk was a copy and is still unmodified

100

Description:

The chunk-copied-from command returns one or two values. If chunk-name is the name of a chunk in
the current model then two values will be returned. If chunk-name was created with copy-chunk, it
has not been modified since its creation, and the original chunk has not been modified such that it
now differs from the copy (the original could have been modified but if it is still a match using equal-
chunks it is still considered the same) then the name of the chunk from which chunk-name was
copied is returned as both the first and second value. If it was not created using copy-chunk, it has
since been modified, or the original chunk has been modified in such a way that the two now differ
(including being deleted) then nil is returned for the first value. If the chunk was created using copy-
chunk and has not been modified then the second value will be the name of the chunk from which it
was copied (which may no longer be an interned symbol in Lisp if that chunk was purged) otherwise

the second value will be nil.

If chunk-name does not name a chunk in the current model or there is no current model then a

warning is displayed and a single value of nil is returned.

This command is rarely used by modelers because needing to copy chunks and keep track of how
they came about are not typical actions. However, it can be important to those creating new modules
where it can be used to determine if a chunk passed in as part of a request is a copy of a chunk which
the module had placed into a buffer i.e. the request is using a copy of a chunk for which the module

has created the original.

Examples:

1> (chunk-type test slotl slot2)
TEST

2> (define-chunks (a slotl 10 slot2 "answer") (b slotl a))
(A B)

3> (copy-chunk a)
A-0

4> (copy-chunk b)
B-0

5> (chunk-copied-from a-0)
A

A

6> (chunk-copied-from a)
NIL

NIL

7> (mod-chunk a slotl 5)

101

A

8> (chunk-copied-from-fct 'a-0)
NIL

A

9> (chunk-copied-from-fct 'b-0)
B

B

10> (mod-chunk b-0 slot2 10)
B-0

11> (chunk-copied-from b-0)

NIL
NIL

E> (chunk-copied-from-fct 'not-a-chunk)
#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (chunk-copied-from b-0)
#|Warning: get-chunk called with no current model. |#
NIL

chunks

Syntax:

chunks -> [(chunk-name*) | nil]

Remote command name:

chunks

Arguments and Values:

chunk-name ::= the name of a chunk in the current model

Description:

The chunks command returns a list of the names of all the chunks defined in the current model in no

particular order.

If there is no current model then a warning is printed and nil is returned.

Examples:

> (chunks)
(GREEN CYAN SPEECH C DARK-CYAN RED-COLOR B-0 OVAL ...)

E> (chunks)

#|Warning: chunks called with no current model. |#
NIL

102

chunk-slot-equal

chunk-slot-equal val-1 val-2 -> equal-result
Remote command name:
chunk-slot-equal ‘val-1 ‘ ‘val-2
Arguments and Values:

val-1 ::= any value
val-2 ::= any value
equal-result ::= a generalized boolean indicating whether the values are equal slot contents

Description:

The chunk-slot-equal function is used to determine if two values are considered equivalent for the
contents of slots in chunks. It relies upon three Lisp equality functions, and the values will be

equivalent if one of the following is true:

* the values are eq (the same Lisp object)
* both values are names of chunks in the current model and eq-chunks for the names is true
* both values are strings and those strings return true from string-equal (case insensitive match)

* if the values are not both chunk names and not both strings and they return true from equalp

(a general equivalency test in Lisp)
If the two values are equivalent, then a true value is returned. Otherwise, nil will be returned.

Examples:

> (chunk-slot-equal 1 1)
T

> (chunk-slot-equal 1 1.5)
NIL

\%

(chunk-slot-equal "Stringl" "strING1")

\

(chunk-slot-equal 'not-a-chunk 'not-a-chunk)
T

> (chunk-slot-equal 'not-a-chunk :not-a-chunk)
NIL

1> (define-chunks (c1)(c2))
(c1 c2)

103

2> (chunk-slot-equal 'cl 'c2)
NIL

3> (merge-chunks c1 c2)
c1

4> (chunk-slot-equal 'cl 'c2)
T

equal-chunks

equal-chunks chunk-name-1 chunk-name-2 -> equal-result
equal-chunks-fct chunk-name-1 chunk-name-2 -> equal-result

Remote command name:

equal-chunks

Arguments and Values:

chunk-name-1 ::= the name of a chunk

chunk-name-2 ::= the name of a chunk

equal-result ::= a generalized boolean indicating whether the chunks are equal

Description:

The equal-chunks command can be used to determine if the chunks named by chunk-name-1 and
chunk-name-2 in the current model are equivalent chunks. They will be equivalent if they are eq-
chunks or if they have the same set of slots and for each slot the values of those slots in the two

chunks are the same as determined by the chunk-slot-equal test. If the two chunks are equivalent,

then a true value is returned. Otherwise, nil will be returned.

If either name does not name a chunk or there is no current model, then a warning is printed and nil is

returned.

Examples:

1> (chunk-type testl slotl slot2)
TEST1

2> (chunk-type test2 slot2 slot3)
TEST2

3> (define-chunks (cl1l isa testl)
(c2 isa test2)
(c3 isa testl slotl 10 slot2 "value")
(c4 isa testl slotl 10 slot2 "VALUE")
(c5 isa testl slot2 10)
(c6 isa test2 slot2 10))

(C1 C2 C3 C4 C5 C6)

104

4> (equal-chunks c1 c2)
T

5> (equal-chunks-fct 'cl 'c3)
NIL

6> (equal-chunks-fct 'c3 'c4)
T

7> (equal-chunks c5 c6)
T

8> (mod-chunk c5 slot3 t)
C5

9> (equal-chunks c5 c6)
NIL

E> (equal-chunks not-a-chunk free)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (equal-chunks c1 c2)

#|Warning: get-chunk called with no current model. |#

#|Warning: get-chunk called with no current model. |[#
NIL

eq-chunks

Syntax:

eq-chunks chunk-name-1 chunk-name-2 -> equal-result
eqg-chunks-fct chunk-name-1 chunk-name-2 -> equal-result

Remote command name:

eq-chunks

Arguments and Values:

chunk-name-1 ::= the name of a chunk

chunk-name-2 ::= the name of a chunk

equal-result ::= a generalized boolean indicating whether the chunks are the same

Description:

Eg-chunks is used to determine if the chunks named by chunk-name-1 and chunk-name-2 are the
exact same chunk in the current model. They will be the same chunk if chunk-name-1 and chunk-
name-2 are the same name or if the two named chunks have been merged. If they are the same

chunk, then a true value is returned. Otherwise nil will be returned.

105

If either name does not name a chunk or there is no current model, then a warning is printed and nil is

returned.

Examples:

1> (chunk-type testl slotl slot2)
TEST1

2> (chunk-type test2 slot2 slot3)
TEST2

3> (define-chunks (c1) (c2)
(c3 isa testl slot2 10)
(c4 isa test2 slot2 10))
(C1 Cc2 C3 c4)

4> (eqg-chunks c1 c1)
T

5> (eqg-chunks-fct 'cl 'c2)
NIL

6> (merge-chunks c1 c2)
Cc1

7> (eqg-chunks c1 c2)
T

8> (eq-chunks c3 c4)
NIL

E> (eq-chunks c1 not-a-chunk)
#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (eq-chunks c1 c2)

#|Warning: get-chunk called with no current model. |#
#|wWarning: get-chunk called with no current model. |#
NIL

delete-chunk

Syntax:

delete-chunk chunk-name -> [chunk-name | nil]
delete-chunk-fct chunk-name -> [chunk-name | nil]

Remote command name:

delete-chunk
Arguments and Values:
chunk-name ::= the name of a chunk

Description:

106

Delete-chunk removes the chunk named chunk-name from the set of chunks in the current model. If
chunk-name is the name of a chunk in the current model then after that chunk is deleted chunk-name

is returned.

If chunk-name has been marked as immutable then it cannot be deleted, a warning will be printed and

nil will be returned.

If chunk-name does not name a chunk in the current model or there is no current model then a

warning is printed and nil is returned.

Note: there is no additional clean-up done in conjunction with deleting the chunk. Thus, if it is used
as a slot value in other chunks or currently residing in a buffer the consequences of deleting it are
undefined and warnings or errors could result from later actions involving such chunks or buffers.
Delete-chunk should be used rarely and only when it is certain that the chunk being deleted is not

referenced elsewhere.

Examples:

These examples assume that chunks named a, b, and c exist.

> (delete-chunk a)
A

1> (delete-chunk-fct 'b)
B

2E> (delete-chunk b)
#|Warning: B does not name a chunk in the current model. |#
NIL

1> (make-chunk-immutable 'c)
T

2E> (delete-chunk c)

#|wWarning: Cannot delete chunk C because it is marked as immutable. [#
NIL

E> (delete-chunk c)

#|wWarning: get-chunk called with no current model. |#
NIL

purge-chunk

Syntax:

purge-chunk chunk-name -> [t | nil]
purge-chunk-fct chunk-name -> [t | nil]

107

Remote command name:
purge-chunk

Arguments and Values:
chunk-name ::= the name of a chunk
Description:

Purge-chunk removes the chunk named chunk-name from the set of chunks in the current model
using delete-chunk and releases the name of that chunk using the release-name command as
described under the naming module. If chunk-name is the name of a chunk in the current model and

its name was released then t is returned.

If chunk-name does not name a chunk in the current model or there is no current model then a

warning is printed and nil is returned.
If the chunk is deleted, but the name is not released nil is returned without a warning being printed.

As with delete-chunk, there is no additional clean-up done in conjunction with purging the chunk.
Thus, if it is used as a slot value in another chunk or currently residing in a buffer undefined

consequences could arise.

Because purge-chunk also attempts to unintern the name of the chunk it should only be used for
chunks for which the name was automatically generated by ACT-R or explicitly generated with the
new-name command. This is not going to be a command used by most modelers. However, in
situations where (computer) memory usage is important in long running models or models which

generate a lot of temporary chunks, explicitly freeing some of that space may be necessary.

Examples:

These examples assume that there are chunks named a and b.

1> (copy-chunk b)
B-0

2> (purge-chunk-fct 'b-0)

T

3E> (purge-chunk b-0)

#|Warning: B-0 does not name a chunk in the current model. |#

NIL

> (purge-chunk a)
NIL

108

E> (purge-chunk a)
#|Warning: get-chunk called with no current model. |#
NIL

merge-chunks

Syntax:

merge-chunks chunk-name-1 chunk-name-2 -> [chunk-name-1 | nil]
merge-chunks-fct chunk-name-1 chunk-name-2 -> [chunk-name-1 | nil]

Remote command name:
merge-chunks
Arguments and Values:

chunk-name-1 ::= the name of a chunk
chunk-name-2 ::= the name of a chunk

Description:

If the chunks named by chunk-name-1 and chunk-name-2 are equivalent chunks as determined by

equal-chunks then both chunks are replaced by a single chunk. Effectively, the two chunks are

merged into one chunk. The “true name” of the merged chunk will be chunk-name-1, but references

which use either name will still be valid and now refer to the single chunk resulting from the merge.

If the chunks are merged, then any additional chunk parameters that have been added to the chunks

will remain those that existed for chunk-name-1 unless there is a merge-function defined for the

parameter.

If either chunk is later deleted, both of the chunks will become unavailable i.e. deleting any one of a

set of merged chunks deletes all of those merged chunks since there is only one underlying chunk.

If the chunks are equivalent as tested by eg-chunks then no actions are taken and chunk-name-1 is

returned.

If the chunks are successfully merged, then chunk-name-1 is returned.

If the chunks are not equal-chunks nil is returned.

109

If either name does not name a chunk in the current model or there is no current model then a

warning is displayed and nil is returned.

The merge-chunks command is primarily for use by the declarative memory module, and it is not
expected to be used elsewhere but is available if one finds a need. As with delete-chunk, it should be
used carefully to avoid circumstances were chunks to which other modules already have references

are merged which could result in unexpected consequences.

It is safe to merge a chunk which is not storable with another existing chunk when the storable chunk
is the second chunk provided. In that case only the parameters of the existing chunk will be updated
— the name of the non-storable chunk will not be associated with the existing chunk. However, using
a non-storable chunk as the first chunk in a merging pair may not always perform as desired (given

how merging as the second chunk is handled) and should typically be avoided.

Examples:

1> (chunk-type test slotl slot2)
TEST

2> (define-chunks (a slotl 10)

(b slot1 10)

(c slotl 10 slot2 t))
(A BC)

3> (merge-chunks a a)
A

4> (eqg-chunks a b)
NIL

5> (merge-chunks-fct 'a 'b)
A

6> (eq-chunks a b)
T

7> (merge-chunks a c)
NIL

E> (merge-chunks a not-a-chunk)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (merge-chunks a b)

#|Warning: get-chunk called with no current model. |#

#|wWarning: get-chunk called with no current model. |#
NIL

create-chunk-alias

Syntax:

110

create-chunk-alias chunk-name alias -> [alias | nil]
create-chunk-alias-fct chunk-name alias -> [alias | nil]

Remote command name:

create-chunk-alias
Arguments and Values:

chunk-name ;:= the name of a chunk
alias ::= a name that is not the name of a chunk

Description:

If the chunk specified by chunk-name exists in the current model and the name provided as an alias is
not the name of a chunk in the current model then alias will be added as a reference to the chunk
chunk-name. This works essentially the same as if a chunk named alias had been merged with the

chunk named chunk-name.
If the alias is successfully created, then alias is returned.

If chunk-name does not name a chunk in the current model, alias is not a valid name, alias is already
the name of a chunk in the model, or there is no current model then a warning is displayed and nil is

returned.

This command is not likely to be used often, but it may be helpful if a chunk which has a long name
is generated automatically by the model and one needs to perform lots of actions or tests using that
chunk.

Examples:
1> (define-chunks (a) (b))
(A B)

2> (chunk-p alias)
NIL

3> (create-chunk-alias a alias)
ALIAS

4> (eq-chunks a alias)
T

5E> (create-chunk-alias-fct 'a 'b)

#|Warning: B is already the name of a chunk in the current model and cannot be used as an
alias. |#

NIL

E> (create-chunk-alias ¢ new-chunk-name)

111

#|Warning: C is not the name of a chunk in the current model. [#
NIL

E> (create-chunk-alias a alias)

#|Warning: create-chunk-alias called with no current model. |#
NIL

make-chunk-immutable

Syntax:
make-chunk-immutable chunk-name -> [t | nil]
Remote command name:

make-chunk-immutable
Arguments and Values:
chunk-name ::= the name of a chunk
Description:

The make-chunk-immutable command (which is a Lisp function despite the lack of a —fct) can be
used to prevent a chunk’s contents from being modified. The parameters of that chunk may still be
modified, but the slot contents will remain fixed in the model — the immutability is not reversible.
This is not a command which will likely ever be needed when creating a model, but it can be
important for the implementation of a module. The declarative memory model relies on this to

prevent changes from occurring to the stored chunks.

If chunk-name names a chunk in the current model then it is marked as immutable and t is returned.
If chunk-name does not name a chunk in the current model or there is no current model then nil is

returned, and a warning will be printed in the case of no current model.

Examples:

1> (define-chunks (a value 1))

(A)

2> (chunk-slot-value a value)
1

3> (mod-chunk a value 2)
A

4> (chunk-slot-value a value)
2

5> (make-chunk-immutable 'a)
T

112

6E> (mod-chunk a value 3)
#|Warning: Cannot modify chunk A because it is immutable. |#
NIL

7> (chunk-slot-value a value)
2

E> (make-chunk-immutable 'not-a-chunk)
NIL

E> (make-chunk-immutable 'a)
#|Warning: get-chunk called with no current model. |#
NIL

true-chunk-name

Syntax:

true-chunk-name chunk-name -> [true-name | chunk-name]
true-chunk-name-fct chunk-name -> [true-name | chunk-name]

Remote command name:
true-chunk-name
Arguments and Values:

chunk-name ::= any value
true-name ::= the name of a chunk in the current model

Description:

True-chunk-name is used to find the “true name” of a chunk in the current model. The true name of a
chunk which has not been merged with another chunk is its own name. The true name of a chunk
that has been merged with another chunk is the true name of the chunk that was returned from a
merging of that chunk with another. The true name of a chunk alias is the true name of the chunk to

which it was aliased.

If chunk-name is the name of a chunk in the current model then its true name is returned. If chunk-

name is any other value, then chunk-name is returned.

If there is no current model then a warning is printed and chunk-name is returned.

Examples:

1> (define-chunks (a) (b) (c))
(A BC)

113

2> (merge-chunks a b)
A

3> (create-chunk-alias b alias)
ALIAS

4> (true-chunk-name a)
A

5> (true-chunk-name-fct 'c)
6> (true-chunk-name b)
7> (true-chunk-name alias)

8> (true-chunk-name d)
D

> (true-chunk-name 100)
100

E> (true-chunk-name t)
#|Warning: get-chunk called with no current model. |#
T

normalize-chunk-names

normalize-chunk-names { unintern } -> nil
Remote command name:
normalize-chunk-names

Arguments and Values:

unintern ::= a generalized boolean indicating whether to delete the merged chunks and release the
names

Description:

The normalize-chunk-names command will iterate through all chunks in the current model and
replace all chunk references in slots with the true name of that chunk. That may be useful for

debugging purposes and the naming module has a parameter (:ncnar) which can trigger this call

automatically.

In addition, if the unintern parameter is true then all chunks which have been merged with other
chunks (those for which their name is not the chunk’s true name) will be deleted from the model and

the chunk name will be released using release-name.

114

The command will always return nil. If there is no current model then a warning will be printed

indicating that.

Notes: This command may take a long time to run if the model has a large number of chunks. Also,
the unintern option is generally not recommended because it may cause problems for modules which
have stored internal references to those temporary names. However, in some extreme circumstances
(a very long continuous run or a model which does a lot of buffer manipulations over a long run) a
model can generate so many chunk name symbols than it can become unable to continue running (the
Lisp heap or the physical memory of the machine is exhausted) thus calling normalize-chunk-names
periodically with the unintern option would be necessary to continue running. If you are
encountering such situations, please let me know about it because there may be other options or

changes that could be made.

Examples:

To show the command in use, there must be a chunk which has been merged with another and also
used in a slot value.

1> (chunk-type test slotl slot2)
TEST

2> (define-chunks (c1 slotl 10 slot2 t)
(c2 slotl 1 slot2 t)
(c3 slotl c2))

(C1 Cc2 C3)
3> (pprint-chunks c3)
C3
SLOT1 C2
(C3)
4> (merge-chunks cl1 c2)
Cc1
5> (normalize-chunk-names)
NIL
6> (pprint-chunks c3)
C3
SLOT1 C1
(C3)
7> (pprint-chunks c2)
Cc2 (C1)
SLOT1 1
SLOT2 T
(C2)
8> (normalize-chunk-names t)
NIL

115

9> (pprint-chunks c2)
(:ERROR)

E> (normalize-chunk-names)

#|Warning: No current model in which to normalize chunk names. |#
NIL

chunk-filled-slots-list

Syntax:

chunk-filled-slots-list chunk-name {sorted} -> [(slot-name*) | nil]
chunk-filled-slots-list-fct chunk-name {sorted} -> [(slot-name*) | nil]

Remote command name:

chunk-filled-slots-list
Arguments and Values:

chunk-name ::= the name of a chunk
slot-name ::= the name of a slot
sorted ::= a generalized boolean indicating whether the returned list should be in a canonical order

Description:

Chunk-filled-slots-list is used to get a list of the slots which contain values in the chunk specified by
chunk-name in the current model. If the optional sorted parameter is provided with a non-nil value
then the list returned will be sorted so that if two chunks have the same set of slots with values then
this command will return the same list for both. If the sorted parameter is not provided or specified
as nil then there is no guarantee on the ordering of the list returned — two calls with the same chunk
may return lists in different orders and different chunks with the same set of slots may return lists in

different orders.
If chunk-name is invalid or there is no current model then a warning is printed and nil is returned.

Examples:

1> (define-chunks
(a color blue value "a")
(b value "b" color green)
(c)
(d size 100))

(A B C D)

2> (chunk-filled-slots-1list a)
(COLOR VALUE)

3> (chunk-filled-slots-list-fct 'b)

116

(VALUE COLOR)

4> (chunk-filled-slots-list c)
NIL

5> (chunk-filled-slots-list-fct 'd)
(SIZE)

6> (chunk-filled-slots-list a t)
(VALUE COLOR)

7> (chunk-filled-slots-list b t)
(VALUE COLOR)

E> (chunk-filled-slots-1list "not-a-chunk")
#|Warning: "not-a-chunk" does not name a chunk in the current model. |#
NIL

E> (chunk-filled-slots-1list a)
#|Warning: get-chunk called with no current model. |[#
NIL

chunk-not-storable

Syntax:

chunk-not-storable chunk-name -> [t | nil]
Remote command name:
chunk-not-storable

Arguments and Values:

chunk-name ::= the name of a chunk
Description:

Chunk-not-storable is used to check whether the chunk specified by chunk-name in the current model
is safe to store for later use or should be copied before being stored for later use. The chunks which
are not storable are chunks which are reused by buffers. If the chunk is not storable then this
command will return t. Otherwise it will return nil, and it will print a warning if there is no current

model.

This is not something that is likely to be used by a modeler, but those creating new modules,
particularly something that functions like declarative memory, may require checking chunks with this

command.

Examples:

1> (load-act-r-model "ACT-R:tutorial;unitl;addition.lisp")

117

2> (run 1)

3> (chunk-not-storable
NIL

4> (buffer-chunk goal)
GOAL: GOAL-CHUNKO
GOAL - CHUNKO

ARG1 FIVE
ARGZ2 TWO
SUM SEVEN

(GOAL - CHUNKO)

5> (chunk-not-storable
e

6> (chunk-not-storable
NIL

E> (chunk-not-storable

#|Warning: get-chunk called with no current model.

NIL

'seven)

'goal-chunko)

:not-a-chunk)

|a)

| #

118

General Parameters

General parameters are the primary means of configuring the operation of ACT-R both from a
usability standpoint and at the level of controlling the performance of a model. They can be used to
control how much output is shown when a model runs or to adjust how long it takes a model to
retrieve a chunk from its declarative memory as well as many other things. Each module in the
system can make available any number of general parameters that are relevant to its operation. The
specific parameters of each module will be described in that module’s section. In this section, the
common aspects of those parameters will be described along with the commands that can be used to

set, get, and show them.

The general parameters are each referenced by a name which is a Lisp keyword (a symbol that starts
with a colon character) e.g. :v or :trace-detail, and can be set to some value which is meaningful to
the module that owns the parameter. Each one has a default value specified by the owning module
and often there are limits as to what values can be given to a particular parameter. Attempting to set
an invalid value will result in a warning and no change in the parameter. In most cases the parameter
values are specific to the model in which it is set i.e. two concurrent models could have different
values for the same general parameter. However, there can be exceptions to that. For example, a
module created to provide models with an interface to an external simulation might provide
parameters to specify the details for connecting to that simulation, and all models which use that
module will be using the same parameter values, regardless of which model set them, to connect to
the same simulation. None of the provided modules operate that way, but it is worth noting that

modules could be added which have parameters that are linked between models.

One final thing to note about general parameters is that it is possible for modules other than the
parameter’s owning module to monitor the parameter setting and possibly modify the parameter. The

details of doing that are covered in the module creation section. Because of that, one should be aware

that it is possible for parameters to start with values other than their specified default after a model is
reset or to be set to a value different than one the user requests if a monitoring module changes it. An
example of the first situation (a starting value other than the default) exists in the main ACT-R
system with the :do-not-harvest parameter. The procedural module owns that parameter and specifies
a default value of nil, but the goal module will change that parameter at reset time to include the goal
buffer. Also, if one is using the ACT-R Environment many of the tools it makes available will set
parameters to get the information so that they can get the desired information. There are no modules

in the provided set which modify the values a user specifies, but an example where such a situation

119

could be used might be a module which provides support for modeling alertness or sleepiness. It
could automatically adjust the parameters that a user specifies for controlling other modules to take
into account the current alertness setting. Of course it would not have to work that way, but it is a

possibility.

Commands

sgp
Syntax:

sgp {[param-name*| param-value-pair*]} -> [nil | ([param-value | :bad-parameter-name | :invalid-value]*)]
sgp-fct ({[param-name*| param-value-pair*]}) -> [nil | ([param-value | :bad-parameter-name |
:invalid-value]*)]

Arguments and Values:

param-name ::= the name of a parameter

param-value-pair ::= param-name new-param-value

new-param-value ::= a value to which the preceding param-name is to be set
param-value ::= the current value of a param-name

Description:

Sgp is used to set or get the value of the parameters from the modules of the current model.

If no parameters are provided, all of the current model's parameters are printed to the command-trace.
They are organized alphabetically by module name and then by parameter name within a module, and
nil is returned. For each parameter, its name and current value is printed followed by the default

value and any documentation provided by the module that owns the parameter.

If all of the parameters passed to sgp are keywords, then it is a request for the current values of those
general parameters’ values in the current model. Those parameters are printed and a list of their
values in the order requested is returned. If any of the names are not of valid parameters then a
warning is displayed and the keyword :bad-parameter-name is returned for that position in the list.
Note: because the test to determine that a call to sgp is a request for parameter values is that all the
values passed to sgp are keywords, a module should never have a parameter accept a keyword as a

possible value because it will not be possible to set such a parameter value on its own.

If there are any non-keyword parameters in the call to sgp and the total number of elements is even,

then they are assumed to be pairs of a parameter name and a parameter value. Each of those

120

parameter values will be passed to the corresponding parameter’s owning module and all monitoring
modules. The return value will be the current settings of those parameters in the order given (the
values may or may not be the same as the values passed in to set them depending on the module)
unless a parameter value was not of the appropriate type as required by the module. In that case, a

warning is printed and the value returned in that position will be the keyword :invalid-value.

If there are non-keywords passed to sgp and the number of items is odd or if there is no current model

at the time of the call, then a warning is displayed and nil is returned.

Examples:

:DIGIT-DETECT-DELAY 0.3 default:
:DIGIT-DURATION 0.6 default:
:DIGIT-RECODE-DELAY 0.5 default:
*HEAR-NEWEST-ONLY NIL default:
:SOUND-DECAY-TIME 3.0 default:
:TONE-DETECT-DELAY 0.05 default:
:TONE-RECODE-DELAY 0.285 default:

Lag between onset and detectability for digits
Default duration for digit sounds.
: Recoding delay for digit sound content.
: Whether to stuff only the newest unattended
: The amount of time after a sound has
5 : Lag between sound onset and detectability ...
85 : Recoding delay for tone sound content.

OO W=Z2000
e e 2 e o«
NOOrr oo w

> (sgp :v :1f)

:V T (default T) : Verbose controls model output
:LF 1.0 (default 1.0) : Latency Factor

(T 1.0)

> (sgp-fct '(:v nil :1f 4.5))
(NIL 4.5)

E> (sgp-fct '(:v t :1f nil))
#|Warning: Parameter :LF cannot take value NIL because it must be a positive number. |#
(T :INVALID-VALUE)

E> (sgp :not-a-parameter 10)

#|Warning: Parameter :NOT-A-PARAMETER is not the name of an available parameter |#
(:BAD-PARAMETER-NAME)

E> (sgp :esc t :v)

#|Warning: 0dd number of parameters and values passed to sgp. |#
NIL

E> (sgp)
#|Warning: sgp called with no current model. |#
NIL

get-parameter-default-value

Syntax:

121

get-parameter-default-value param-name -> [param-default | :bad-parameter-name |
Arguments and Values:

param-name ::= the name of a parameter
param-default ::= the default value specified for param-name when it was defined

Description:

The get-parameter-default-value command is used to get the default value that a parameter was given
when it was defined. If param-name is the name of a general parameter then the default value
specified for that parameter is returned. If param-name does not name a general parameter then a

warning is printed and :bad-parameter-name is returned.

Examples:

> (get-parameter-default-value :v)

E> (get-parameter-default-value :not-a-param)
#|Warning: Invalid parameter name :NOT-A-PARAM in call to get-parameter-default-value. |#
:BAD-PARAMETER-NAME

with-parameters

Syntax:

with-parameters parameter-list form* -> [result | nil]
with-parameters-fct parameter-list form* -> [result | nil]

Arguments and Values:

parameter-list ::= ({param-name value}*)

param-name ::= the name of a parameter

value ::= a value to which the preceding parameter should temporarily be set
form ::= a valid Lisp expression to evaluate

result ::= the value returned from the last form evaluated

Description:

The with-parameters command is used to temporarily set some parameters in the current model and
then execute some commands. If all of the param-name values provided name valid parameters then
each will be set to the corresponding value given before evaluating the forms. After those forms have

been evaluated each of those parameters will be set back to the value it had previously and the result

122

of the last form evaluated will be returned. The forms are evaluated in an unwind-protect so that the

restoring of the parameters occurs even if the forms result in an error.

If any of the param-name values do not name a valid parameter or there is no current model then a

warning will be printed, the forms will not be evaluated, and nil is returned.

The difference between with-parameters and with-parameters-fct is not quite the same as it is for

other commands. In this case both are macros, but with-parameters-fct evaluates the items on the

parameter-list and with-parameters does not. Thus the parameter-list for with-parameters will look

similar to what one would provide to sgp whereas the parameter-list for with-parameters-fct may

contain expressions and variables which need to be evaluated.

Examples:

This example sequence assumes that the count model from unit 1 of the tutorial is loaded.

1> (reset)
T

CG-USER(42):

(o)

.000
0.000
.000
.000
.050
.050
.050
.050
.050
.050
.050

[cNoNoNoNoNoNoNoNO])

0.05
13
NIL

2> (with-parameters (:v nil)
(run .05))

0.05
6
NIL

(run .05)
GOAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
DECLARATIVE
PROCEDURAL

SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL

CONFLICT-RESOLUTION
PRODUCTION-SELECTED START
BUFFER-READ-ACTION GOAL
PRODUCTION-FIRED START
MOD-BUFFER-CHUNK GOAL
MODULE-REQUEST RETRIEVAL
CLEAR-BUFFER RETRIEVAL
start-retrieval
CONFLICT-RESOLUTION

Stopped because time limit reached

3> (with-parameters-fct (:trace-detail 'low)

0.150

TWO
0.150

0.05

7

NIL

4> (run .05)
0.200
0.200
0.200
0.200
0.200

(run .05))

PROCEDURAL

DECLARATIVE
DECLARATIVE
PROCEDURAL
PROCEDURAL
PROCEDURAL

PRODUCTION-FIRED INCREMENT

Stopped because time limit reached

RETRIEVED-CHUNK THREE
SET-BUFFER-CHUNK RETRIEVAL THREE
CONFLICT-RESOLUTION
PRODUCTION-SELECTED INCREMENT
BUFFER-READ-ACTION GOAL

123

0.200 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
0.200 ------ Stopped because time limit reached
0.05
7
NIL
E> (with-parameters (:not-valid 10)
(run .05))
#|Warning: :NOT-VALID is not the name of a parameter. with-parameters body ignored. |#
NIL
E> (with-parameters-fct (:v)
(run .05))
#|Warning: 0dd length parameters list in call to with-parameters. The body is ignored. |#
NIL
E> (with-parameters (:v t)
(run 1))

#|Warning: with-parameters called with no current model. |#
NIL

get-parameter-value

Syntax:
get-parameter-value param-name -> [param-value | :bad-parameter-name | :no-model]
Remote command name:

get-parameter-value param-name -> ['param-value' | :bad-parameter-name | :no-model |

Arguments and Values:

param-name ::= the name of a parameter
param-value ::= the current value for the parameter param-name

Description:

The get-parameter-value command is used to get the current value that a parameter has in the current
model. If param-name is the name of a parameter then the current value for that parameter is
returned. If param-name does not name a general parameter then a warning is printed and :bad-
parameter-name is returned. If there is no current model then a warning is printed and :no-model is

returned.

Examples:

> (get-parameter-value :1f)
0.05

E> (get-parameter-value 'bad)

#|Warning: Invalid parameter name BAD in call to get-parameter-value. |#
: BAD-PARAMETER-NAME

124

E> (get-parameter-value :v)
#|Warning: get-parameter-value called with no current model. |#
:NO-MODEL

set-parameter-value

Syntax:

set-parameter-value param-name new-value -> [param-value | :bad-parameter-name | :invalid-value |
:no-model]

Remote command name:

set-parameter-value param-name 'new-value' -> ['param-value' | :bad-parameter-name | :invalid-value |
:no-model]

Arguments and Values:
param-name ::= the name of a parameter
new-value ::= a value which will be set as the new value for param-name

param-value ::= the current value for the parameter param-name

Description:

The set-parameter-value command is used to set the current value for a parameter in the current

model. If param-name is the name of a parameter and param-value is a valid value for that parameter

then the current value for that parameter is set to the new-value provided and the current value

reported by the module is returned (that might not be the same as new-value depending on the

module). If param-name does not name a general parameter then a warning is printed and :bad-

parameter-name is returned. If param-value is not a valid value for param-name then a warning is

printed and :invalid-value is returned. If there is no current model then a warning is printed and :no-

model is returned.

Examples:

> (set-parameter-value :v t)
T

> (set-parameter-value :do-not-harvest 'visual)
(VISUAL TEMPORAL GOAL)

E> (set-parameter-value :bad-name t)
#|Warning: Parameter :BAD-NAME is not the name of an available parameter |#
: BAD-PARAMETER - NAME

E> (set-parameter-value :1f t)
#|Warning: Parameter :LF cannot take value T because it must be a non-negative number. |#
:INVALID-VALUE

125

E> (set-parameter-value :v t)
#|Warning: set-parameter-value called with no current model. |#
:NO-MODEL

126

System Parameters

System parameters are similar to general parameters, but they are only used for configuring the
operation of the ACT-R software itself. They do not have to be connected to any particular module
or model and changing one will affect all models. They also retain their settings across a reset or
clear-all therefore they will generally only need to be set once if one needs to use them and probably

will not be included in a model definition.

Commands

ssp

Syntax:

ssp {[param-name* | param-value-pair*]} -> [nil | ([param-value | :bad-parameter-name | :invalid-value]*)]
ssp-fct ({[param-name* | param-value-pair*]}) -> [nil | ([param-value | :bad-parameter-name |
:invalid-value]*)]

Arguments and Values:

param-name ::= the name of a system parameter

param-value-pair ::= param-name new-param-value

new-param-value ::= a value to which the preceding param-name is to be set
param-value ::= the current value of a param-name

Description:

The ssp command is used to set or get the value of the system parameters.

If no parameters are provided, all of the current system parameters are printed to the general-trace
and nil is returned. For each parameter, its name and current value is printed followed by the default

value and any documentation it has.

If all of the parameters passed to ssp are keywords, then it is a request for the current values of those
parameters. Those parameters are printed and a list of their values in the order requested is returned.
If any of the names are not of valid parameters then a warning is displayed and the keyword :bad-

parameter-name is returned for that position in the list.

If there are any non-keyword parameters in the call to ssp and the total number of elements is even,
then they are assumed to be pairs of a parameter name and a parameter value. Each of those

parameters will be set to the provided value. The return value will be the current settings of those

127

parameters in the order given unless a parameter value was not an appropriate value. In that case, a

warning is printed and the value returned in that position will be the keyword :invalid-value.

If there are non-keywords passed to ssp and the number of items is odd then a warning is displayed

and nil is returned.

Examples:

> (ssp)

:ACT-R-VERSION "7.26-<internal>"
:ACT-R-MAJOR-VERSION 26

: STARTING-PARAMETERS NIL
*ACT-R-MINOR-VERSION 0

:MCTRT NIL

:MCTS NIL

:SAFE-PERCEPTUAL -BUFFERS (TEMPORAL VISUAL-LOCATION AURAL-LOCATION)

:ACT-R-ARCHITECTURE-VERSION 7
:HIGH-PERFORMANCE NIL
:CHECK-ACT-R-VERSION T
NIL

> (ssp :mcts)
(NIL)

> (ssp :mcts 10000)
(10000)

E> (ssp :mcts 'this)

#|Warning: System parameter :MCTS cannot take value (QUOTE THIS) because it must be

positive number or nil. |#
(: INVALID-VALUE)

E> (ssp :bad-name)
(: BAD-PARAMETER-NAME)

E> (ssp :mcts 100 :mctrt)
#|Warning: 0dd number of parameters and values passed to ssp. |[#
NIL

get-system-parameter-value

Syntax:

default:
default:
default:
default:
default:
default:
default:
default:
default:
default:

get-system-parameter-value param-name -> [param-value | :bad-parameter-name]

Remote command name:

get-system-parameter-value param-name -> ['param-value' | :bad-parameter-name]

Arguments and Values:

param-name ::= the name of a system parameter
param-value ::= the current value for the system parameter param-name

128

Description:

The get-system-parameter-value command is used to get the current value of a system parameter. If
param-name is the name of a parameter then the current value for that parameter is returned. If
param-name does not name a system parameter then a warning is printed and :bad-parameter-name

is returned.

Examples:

> (get-system-parameter-value :act-r-version)
"7.10-<internal>"

E> (get-system-parameter-value :does-not-exist)
:BAD-PARAMETER-NAME

set-system-parameter-value

Syntax:

set-system-parameter-value param-name new-value -> [param-value | :bad-parameter-name |
:invalid-value]

Remote command name:

set-system-parameter-value param-name 'new-value' -> ['param-value' | :bad-parameter-name |
:invalid-value]

Arguments and Values:

param-name ::= the name of a system parameter
new-value ::= a value which will be set as the new value for param-name
param-value ::= the current value for the parameter param-name

Description:

The set-system-parameter-value command is used to set the current value for a system parameter. If
param-name is the name of a system parameter and param-value is a valid value for that parameter
then the current value for that parameter is set to the new-value provided and the current value is
returned (that might not be the same as new-value depending on the parameter). If param-name does
not name a system parameter then a warning is printed and :bad-parameter-name is returned. If
param-value is not a valid value for param-name then a warning is printed and :invalid-value is

returned.

Examples:

129

> (set-system-parameter-value :mcts 400)
400

E> (set-system-parameter-value :bad-name 1)

#|Warning: Parameter :BAD-NAME is not the name of an available system parameter |#
:BAD-PARAMETER-NAME

E> (set-system-parameter-value :mcts "a")

#|Warning: System parameter :MCTS cannot take value a because it must be positive number

or nil. |#
:INVALID-VALUE

Parameters
:high-performance

The high-performance system parameter can be set to change the default values for several of the
normal parameters as well as to disable the system output (more thoroughly than just setting the :v

parameter to nil).

The possible values for :high-performance are:

* nil - normal system operation (the default value)

* t — disables ACT-R output commands and sets the default values of these parameters as
shown: (:ncnar nil :style-warnings nil :model-warnings nil :cmdt nil :lhst nil :rhst nil :stable-

loc-names nil :visual-movement-tolerance 0).

The default value is nil. This system parameter can only be changed when there are no models
defined.

130

Generating Output

Many of the commands in ACT-R result in output being printed. There is a printing module which
can be used to control where and when certain things are printed, and that is described in detail in a
separate section. For now the general aspects of the output will be described as well as the
commands that are used to generate the output. The generated output is sent through the appropriate

signal of the dispatcher described in the ACT-R Output section.

Model Output

Model output is essentially all the things that are printed by a running model. The trace of the model
is considered model output as are various internal module specific traces and notices. Model output

is usually sent using the model-trace signal, but the printing module has a parameter named :v which

allows one to redirect the output elsewhere or disable it.

Command Output

Command output is what gets printed when one calls one of the ACT-R commands, for example the
parameter listing when one calls sgp. Command output depends upon there being a current model.
By default this is sent using the command-trace signal, but like model output, it is configurable by a

separate printing module parameter named :cmdt. Thus, one could have model output going one

place and command output going elsewhere if desired. Often, one does not need or want the printed
output from an ACT-R command because only the returned value is important. In those situations,

there is a command called no-output that can be used to temporarily disable command output in Lisp.

Warnings

Warnings from ACT-R are always enclosed inside of a Lisp comment block (between the characters
#| and |#) and start with “Warning:”. The reason they are inside a comment block is so they do not
create a problem if someone is using Lisp to read an output file generated by a model trace which
might contain warnings. It also distinguishes them from any other warnings that may be generated by
the system in Lisp or some other language when accessed remotely. There are two general classes of
warnings and they are created with different commands. The first is referred to as model warnings.
These are things like “undefined chunk FOO being created with no slots.” They inform the modeler
of something that was under specified or unusual within a model. They are generally just hints or

suggestions and can often be ignored. In fact, there is a parameter to automatically suppress such

131

warnings if desired (though if the model is not working as one would expect turning the model
warnings back on and reading them carefully is probably a good first thing to check). The other type
is just referred to as a warning, and they are generated when an ACT-R command receives invalid
parameters or a more serious issue has occurred e.g. the “... called with no current model” warning.
These are usually more important issues and cannot be turned off with a simple switch. Warnings are

sent using the warning-trace signal.

Other Output

If one needs to create other output which does not depend upon a model and/or is not a warning, then

there is a command for that as well. That output will be sent using the general-trace signal.

Commands
model-output

Syntax:

model-output control-string {args*} -> nil

Remote command name:

model-output output-string

Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

output-string ::= a string to be output

Description:

Model-output is used to print model related output based on the settings of the current model.

Typically, that output will go to the model-trace, but can be redirected by the printing module. The

Lisp command will pass the provided control-string and args to format to generate the string to
output, but the remote version requires specifying the string to display completely. The output
created will be followed by a new line. The Lisp version does not test the control-string or args for

correctness, so any problems will likely trigger an error or warning from the format function.

If there is no current model a warning is printed and no other output is generated.

132

It always returns nil.

Examples:

> (model-output "This is ~A the ACT-R ~d model-output command" "output from" 7)
This is output from the ACT-R 7 model-output command

NIL

E> (model-output "This is ~A the ACT-R ~d model-output command" "output from" 7)

#|Warning: get-module called with no current model. |#
NIL

meta-p-output

Syntax:
meta-p-output control-string {args*} -> nil
Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

Description:

Meta-p-output is used to send the same output to all of the currently defined models. It sends that
output using model-output for each model, but only sending out once to each different output
destination i.e. if all models are configured to send output to the default location then only one output
will occur. It does not test the control-string or args for correctness, so any problems will likely

trigger an error or warning from the format function.
It always returns nil.

Meta-p-output is used internally for printing the trace because there can be multiple models running
concurrently. It is not likely that users or module writers will have need for meta-p-output because it
is above the level of a model or module, but it is described because its results are seen when using

simultaneous multiple models.

One thing to note about meta-p-output is that it will evaluate the args separately for each stream to
which the output is written. If there are no output streams (all models have :v set to nil for example)
then the args are not evaluated. Thus, if there are any actions with side effects in the args the results

could differ when the number of different locations to which output is written changes.

Examples:

133

> (meta-p-output "This is from ~s" "meta-p-output")
This is from "meta-p-output"
NIL

command-output

Syntax:

command-output control-string {args*} -> nil

Remote command name:

command-output output-string

Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

output-string ::= a string to be output

Description:

Command-output is used to print model related output from user commands based on the settings of

the current model. Typically, that output will go to the command-trace but can be redirected by the

printing module. The Lisp command will pass the provided control-string and args to format to
generate the string to output, but the remote version requires specifying the string to display
completely. The output created will be followed by a new line. The Lisp version does not test the
control-string or args for correctness, so any problems will likely trigger an error or warning from the

format function.

If there is no current model a warning is printed and no other output is generated.

It always returns nil.

Command-output is intended for use by things that print in response to being called outside of a
model run, like the display of parameters from sgp or the chunk printing from pprint-chunks and can

be turned off by the modeler using a parameter or the no-output command.

Examples:

> (command-output "A command-output ~s" 'example)
A command-output EXAMPLE
NIL

E> (command-output "A command-output ~s" 'example)
#|Warning: get-module called with no current model. |#

134

NIL

no-output

Syntax:
no-output {form*} -> [result | nil]
Arguments and Values:

form ::= a Lisp form to evaluate
result ::= the return value from the last form evaluated

Description:

No-output is used to disable the command output of the current model while evaluating the forms

provided. It returns the value returned by the last form evaluated.
If there is no current model a warning is printed and nil is returned.

No-output can be useful if one wants to get the results from an ACT-R command without having to
see any of its output and without needing to explicitly disable and then possibly re-enable the
command output parameter. The “wrapping” of forms like this macro provides is not something that
is possible through the remote interface, but one can suppress the output remotely by not monitoring
and displaying the output signals. However, that is not exactly the same as what happens with no-

output since no-output prevents the output signal from being generated at all.

Examples:

> (no-output (pprint-chunks))
(EXTERNAL LIGHT-GRAY INTERNAL DIGIT CURRENT FULL FREE BLACK ...)

> (no-output (sgp-fct '(:v :1f)))
(T 1.0)

E> (no-output (sgp-fct '(:v :1f)))
#|Warning: get-module called with no current model. |#
NIL

print-warning

Syntax:

print-warning control-string {args*} -> nil

135

Remote command name:
print-warning output-string
Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided
output-string ::= a string to be output

Description:

Print-warning is used to print a warning message using the warning-trace. The Lisp command will
pass the provided control-string and args to format to generate a string to output, but the remote
version requires specifying the string to display completely. The generated output string is printed
after “#| Warning:” and followed by “[#” and a new line. It does not test the control-string or args for

correctness, so any problems will likely trigger an error or warning from the format function.
It always returns nil.

Print-warning is intended for use in printing important notices of problems or errors that occurred

within a module or command.

Examples:

> (print-warning "This is a warning from ACT-R ~a" "!!I")
#|Warning: This is a warning from ACT-R !! |#

NIL

model-warning

Syntax:

model-warning control-string {args*} -> nil

Remote command name:

model-warning output-string

Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)

args ::= arguments as required by the control-string provided
output-string ::= a string to be output

136

Description:

Model-warning is used to print a warning message using the warning-trace. The Lisp command will
pass the provided control-string and args to format to generate a string to output, but the remote
version requires specifying the string to display completely. The generated output string is printed
after “#| Warning:” and followed by “[#” and a new line. It does not test the control-string or args for
correctness, so any problems will likely trigger an error or warning from the format function. If there
is more than one model currently defined then the warning will also include the name of the model in
which the warning was generated. If there is no current model then a warning about that situation is

printed instead of the specified warning.

Model-warning differs from print-warning in that it requires a current model and the printing module

of that model can suppress the model-warning output through the :model-warnings parameter.

It always returns nil.

Model-warning is intended for use when the model causes a problem within a module or a less
serious situation has occurred which the modeler might want to be informed about but which may

often be safely ignore.

Examples:

> (model-warning "This may not be what you wanted: ~s" 'bad-value)
#|Warning: This may not be what you wanted: BAD-VALUE |#
NIL

> (with-model bar (model-warning "There is more than one model defined."))
#|wWarning (in model BAR): There is more than one model defined. |#
NIL

E> (model-warning "This may not be what you wanted: ~s" 'bad-value)
#|wWarning: get-module called with no current model. |#
NIL

one-time-model-warning

Syntax:

onhe-time-model-warning tag control-string {args*} -> nil
Remote command name:

one-time-model-warning tag output-string

Arguments and Values:

137

tag ::= any Lisp value

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

output-string ::= a string to be output

Description:

One-time-model-warning operates like the model-warning command, except that it also requires
specifying a tag which identifies the warning. One-time-model-warning will only output the given
warning if this is the first time that tag has been used (as tested with the Lisp equal function) in a call

to one-time-model-warning in the current model since the system has been reset.
It always returns nil.

Like model-warning, one-time-model-warning is intended for use when the model causes a problem
within a module or a less serious situation has occurred which the modeler might need to be informed
about but which may often be safely ignore. One-time-model-warning can be used if that situation

may occur repeatedly to avoid a new warning being printed each time.

Examples:

1> (one-time-model-warning :demo "This is a warning")
#|Warning: This is a warning |#
NIL

2> (one-time-model-warning :demo "This is a warning")
NIL

3> (one-time-model-warning "different tag" "Another warning")
#|Warning: Another warning |#
NIL

> (with-model bar (one-time-model-warning :other "the ~s warning" 'first))
#|Warning (in model BAR): the FIRST warning |#
NIL

E> (one-time-model-warning :demo "This is a warning")

#|Warning: get-module called with no current model. |#
NIL

138

Running the system

Running the system means executing the events that are in the queue of the meta-process. Those
events may lead to other events being scheduled and that will continue until the stopping condition
specified for the command used to run the system is met. There are several commands for running
the system which have various stopping conditions, which include allowing users to specify an
arbitrary stopping condition. Because it is the meta-process which is run, all of the models that are
defined will be running together, and information about using more than one model at a time is

included in the multiple models section.

The system can run in either a simulated time frame where the events are processed as fast as
possible or in “real time mode” where the execution of the events is synchronized with the passing of
time from some other source. By default, running in real time mode is associated with the actual

passage of time (with a scale factor which can be specified by the modeler) and the model is

constrained to that, but it is possible to synchronize it with other time sources. For now, we will

focus mostly on the simulated time operation.

When running in simulated time the time stamps on the events control the advancement of the clock
in the meta-process. When the meta-process is initialized and whenever it is reset the current time is
set to 0.0. The event with the lowest time stamp is always the next one executed and if that time is
greater than the current time the clock is updated. This allows the system to run much faster than real
time for most models. The important thing to remember is that the timing of the events is produced
by the modules which instantiate the ACT-R theory and thus the predictions of a model do not

depend on how the model is run or the source of the clock.

While the meta-process is running it will print out the events which it executes as they occur. What
is displayed for an event is dependent upon the details of the event itself and the settings of the
printing module for the model which generated the event. That output is referred to as the trace of
the run. That output will be sent to the model-trace using meta-p-output.

Commands & signals

run-start

Signal:

run-start time

139

Arguments and Values:

time ::= the current model time in milliseconds

Description:

The run-start signal is generated every time that the system starts running and provides the current

time.

run-stop

Signal:

run-stop time

Arguments and Values:

time ::= the current model time in milliseconds

Description:

The run-stop signal is generated every time that the system stops running and provides the current

time.

run

Syntax:

run run-time {real-time?} -> [nil | time-passed event-count break?]
Remote command name:

run

Arguments and Values:

run-time ::= a number greater than 0 indicating the number of seconds to run

real-time? ::= a generalized boolean to indicate whether to run in real time and possibly the scale for
the real time clock (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run

event-count ::= a number indicating how many events were executed during this run

break? ::= [t| nil] indicating whether the run terminated due to a break event

Description:

140

Run will run the meta-process until there are either no events remaining to execute, run-time seconds
have passed, or a break event is executed. If the optional real-time? value is provided with a non-nil
value then the model will be run in real time mode. If real-time? is a positive number that will be
used as a scale for the real time clock (a number greater than one would cause the meta-process to run

faster than real time and a number less than one would cause it to run slower than real time).

If run-time is not a number greater than 0 then the meta-process is not run, a warning is printed, and

nil is returned.

If the meta-process is run, then when one of the end conditions has been met, run will output a line in

the trace to indicate which condition terminated the run and it will return three values.

The first value is the number of seconds that passed during this run. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the run was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

Examples:

For these examples the count model from unit 1 of the ACT-R tutorial is the only model defined.

> (run 10)
0.000 GOAL
0.000 PROCEDURAL

SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
CONFLICT-RESOLUTION

0.350 ------
0.35
53
NIL

Stopped because no events left to process

> (run .1 t)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
0.100 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
0.100 ------ Stopped because time limit reached
0.1
20
NIL
1> (schedule-break .075)
6
2> (run 10)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.050 PROCEDURAL CONFLICT-RESOLUTION

141

0.075 ------ BREAK-EVENT

E> (run 0)

#|Warning: run-time must be a number greater than zero. |#
NIL

E> (run 'foo)

#|Warning: run-time must be a number greater than zero. |#
NIL

run-full-time

Syntax:
run-full-time run-time {real-time?} -> [nil | time-passed event-count break?]
Remote command name:

run-full-time
Arguments and Values:

run-time ::= a number greater than 0 indicating the number of seconds to run

real-time? ::= a generalized boolean to indicate whether to run in real time and possibly the scale for
the real time clock (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run

event-count ::= a number indicating how many events were executed during this run

break? ::= [t| nil] indicating whether the run terminated due to a break event

Description:

Run-full-time will run the meta-process until either run-time seconds have passed or a break event is
executed. This differs from the run command because unless there is a break event run-full-time will
always run for the full run-time specified. If the optional real-time? value is provided with a non-nil
value then the model will be run in real time mode. If real-time? is a positive number that will be
used as a scale for the real time clock (a number greater than one would cause the meta-process to run

faster than real time and a number less than one would cause it to run slower than real time).

If run-time is not a number greater than 0 then the meta-process is not run, a warning is printed, and

nil is returned.

If the meta-process is run, then when one of the end conditions has been met, run-full-time will

output a line in the trace to indicate which condition terminated the run and it will return three values.

142

The first value is the number of seconds that passed during this run. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the run was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

Examples:

For these examples the count model from unit 1 of the ACT-R tutorial is the only model defined.

> (run-full-time 1.0)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.350 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.350 PROCEDURAL CONFLICT-RESOLUTION
1.000 ------ Stopped because time limit reached
1.0
54
NIL

1> (schedule-break .55)

3
2> (run-full-time 2.0 t)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.350 PROCEDURAL CONFLICT-RESOLUTION
0.550 @ ------ BREAK-EVENT
0.55
54
T

E> (run-full-time -1)
#|Warning: run-time must be a number greater than zero. |#
NIL

E> (run-full-time "2.0")
#|Warning: run-time must be a number greater than zero. |#
NIL

run-until-time

Syntax:

run-until-time end-time {real-time?} -> [nil | time-passed event-count break?]
Remote command name:

run-until-time

Arguments and Values:

143

end-time ::= a number greater than 0 indicating the explicit time at which the run should stop

real-time? ::= a generalized boolean to indicate whether to run in real time and possibly the scale for
the real time clock (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run

event-count ::= a number indicating how many events were executed during this run

break? ::= [t| nil] indicating whether the run terminated due to a break event

Description:

Run-until-time will run the meta-process until either the specified end-time is reached (which
includes the current time already having passed the specified time) or a break event is executed. This
differs from the run and run-full-time commands because an explicit time is provided instead of a
duration. If the optional real-time? value is provided with a non-nil value then the model will be run
in real time mode. If real-time? is a positive number that will be used as a scale for the real time
clock (a number greater than one would cause the meta-process to run faster than real time and a

number less than one would cause it to run slower than real time).

If end-time is not a number greater than 0 then the meta-process is not run, a warning is printed, and

nil is returned.

If the meta-process is run, then when one of the end conditions has been met, run-until-time will

output a line in the trace to indicate which condition terminated the run and it will return three values.

The first value is the number of seconds that passed during this run. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the run was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

Examples:

For these examples the count model from unit 1 of the ACT-R tutorial is the only model defined.

1> (run-until-time .125)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.100 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
0.125 ------ Stopped because time limit reached
0.125
21
NIL

2> (run-until-time .1)
0.125 ------ Stopped because end time already passed
0

144

0

NIL
3> (run-until-time 10)
0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT
TWO
0.150 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.350 PROCEDURAL CONFLICT-RESOLUTION
10.000 ------ Stopped because time limit reached
9.875
34
NIL
1> (schedule-break .4)
2
2> (run-until-time .5)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.350 PROCEDURAL CONFLICT-RESOLUTION
0.400 ------ BREAK-EVENT
0.4
54
T

E> (run-until-time -10)
#|Warning: end-time must be a number greater than zero. |#
NIL

run-until-condition

Syntax:

run-until-condition condition {real-time?} -> [nil | time-passed event-count break?]
Remote command name:

run-until-condition

Arguments and Values:

condition ::= a command identifier

real-time? ::= a generalized boolean to indicate whether to run in real time and possibly the scale for
the real time clock (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run

event-count ::= a number indicating how many events were executed during this run

break? ::= [t| nil] indicating whether the run terminated due to a break event

Description:

Run-until-condition will run the meta-process until either the command specified as the condition

returns a non-nil value when called, there are no events to process, a break event is executed, or an

145

error occurs calling that command. The command provided will be called before every event that is to
be executed and it will be passed one parameter which is the time of the next event in milliseconds.
If the optional real-time? value is provided with a non-nil value then the model will be run in real
time mode. If real-time? is a positive number that will be used as a scale for the real time clock (a
number greater than one would cause the meta-process to run faster than real time and a number less

than one would cause it to run slower than real time).

If condition is not a valid command identifier then the meta-process is not run, a warning is printed,

and nil is returned.

If the meta-process is run, then when one of the end conditions has been met, run-until-condition will

output a line in the trace to indicate which condition terminated the run and it will return three values.

The first value is the number of seconds that passed during this run. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the run was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

Examples:

For these examples the count model from unit 1 of the ACT-R tutorial is the only model defined.
The Lisp function symbolp used in the examples returns a true value if the parameter passed to it is a
symbol and nil if it is not, and since the value passed to the condition will always be a number it is

always going to return nil.

> (run-until-condition 'symbolp)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.350 PROCEDURAL CONFLICT-RESOLUTION
0.350 ------ Stopped because no events to process
0.35
53
NIL
1> (schedule-break .275)
5
2> (run-until-condition 'symbolp)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.250 PROCEDURAL CONFLICT-RESOLUTION

146

0.275 ------ BREAK-EVENT

1> (defvar *count* 0)
COUNT

2> (defun stop-at-10 (x)
(> (incf *count*) 10))

STOP-AT-10
3> (run-until-condition 'stop-at-10)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 ------ Stopped because condition is true
0.05
10
NIL

1> (defun always-nil (x))
ALWAYS-NIL

2> (add-act-r-command "always-nil" 'always-nil "Test fn for run-until-condition example")
T
"always-nil"

3> (run-until-condition "always-nil")

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.350 PROCEDURAL CONFLICT-RESOLUTION
0.350 ------ Stopped because no events to process
0.35
53
NIL

E>: (run-until-condition "not-a-valid-command")
#|Warning: condition must be a function or valid dispatch command string. |#
NIL

run-until-action

Syntax:

run-until-action action {real-time?} -> [nil | time-passed event-count break?]
Remote command name:

run-until-action 'action’ {real-time?}

Arguments and Values:

action ::= a symbol or string indicating an event action to stop after
real-time? ::= a generalized boolean to indicate whether to run in real time and possibly the scale for

147

the real time clock (default is nil)
time-passed ::= a number indicating the number of seconds in model time which passed during the run
event-count ::= a number indicating how many events were executed during this run
break? ::= [t | nil] indicating whether the run terminated due to a break event

Description:

Run-until-action will run the meta-process until either an event with an action that matches the one
specified has been executed, there are no events to process, or a break event is executed. If the
optional real-time? value is provided with a non-nil value then the model will be run in real time
mode. If real-time? is a positive number that will be used as a scale for the real time clock (a number
greater than one would cause the meta-process to run faster than real time and a number less than one

would cause it to run slower than real time).

If action is not a valid command identifier then the meta-process is not run, a warning is printed, and

nil is returned.

If the meta-process is run, then when one of the end conditions has been met, run-until-action will

output a line in the trace to indicate which condition terminated the run and it will return three values.

The first value is the number of seconds that passed during this run. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the run was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

Because an action for an event can be specified in multiple ways, there are some subtleties in how the
given action is compared to an event’s action. First, although when running in Lisp only mode one
can provide event actions using Lisp function objects (instead of just a function name) actions of that
type cannot be tested by run-until-action. If the command identifier condition is provided as a
symbol it will be tested in a case-insensitive way to the action of the event regardless of whether that
event action is a symbol or string. If the command identifier condition is a string it will be tested
with a case insensitive test to an event action symbol and case sensitive to an event action that is a
string. That can be seen in the example below where the production-fired event has a symbol as the

event action whereas the “get-time” event has a string as an action.

One final thing to note is that what is shown in the trace for an event may not actually be the action

itself if the event was scheduled with details to display instead of the action. Therefore, it is possible

148

for the run to continue past an event which has trace output that matches the action provided if that

event’s true action was different from the details displayed by the event.

Examples:

For these examples the following model is the only model defined and it schedules an event that has a

command string as the action:

(define-model test
(goal-focus-fct (car (define-chunks (value 1))))

(p repeat
=goal>
< value 5
value =v
==>
Ibind! =x (1+ =v)
=goal> value =x)

(schedule-event-relative .175 "get-time" :output nil))

> (run-until-action 'production-fired)

0.000 GOAL SET-BUFFER-CHUNK GOAL CHUNKO NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.050 PROCEDURAL PRODUCTION-FIRED REPEAT
0.050 ------ Stopped because PRODUCTION-FIRED action occurred
0.05
8
NIL
> (run-until-action "production-fired")
0.000 GOAL SET-BUFFER-CHUNK GOAL CHUNKO® NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.050 PROCEDURAL PRODUCTION-FIRED REPEAT
0.050 ------ Stopped because production-fired action occurred
0.05
8
NIL
> (run-until-action "Production-Fired")
0.000 GOAL SET-BUFFER-CHUNK GOAL CHUNKO NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.050 PROCEDURAL PRODUCTION-FIRED REPEAT
0.050 ------ Stopped because Production-Fired action occurred
0.05
8
NIL
> (run-until-action 'get-time)
0.000 GOAL SET-BUFFER-CHUNK GOAL CHUNKO® NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.050 PROCEDURAL PRODUCTION-FIRED REPEAT
0.050 PROCEDURAL CONFLICT-RESOLUTION
0.100 PROCEDURAL PRODUCTION-FIRED REPEAT
0.100 PROCEDURAL CONFLICT-RESOLUTION
0.150 PROCEDURAL PRODUCTION-FIRED REPEAT
0.150 PROCEDURAL CONFLICT-RESOLUTION
0.175 ------ Stopped because GET-TIME action occurred

> (run-until-action "get-time")

149

0.000
0.000
0.050
0.050
0.160
0.100
0.150
0.150
0.175

0.175

26

NIL

> (run-until-action "Get-Time")

0.000
0.000
0.050
0.050
0.160
0.100
0.150
0.150
0.200
0.200
0.200

0.2

29

NIL

GOAL

PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL

GOAL

PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL

E> (run-until-action 2)

#|Warning: run-until-action must be given a name(symbol) or a string,
a FIXNUM. |#

NIL

run-n-events

Syntax:

SET-BUFFER-CHUNK GOAL CHUNKO NIL
CONFLICT-RESOLUTION

PRODUCTION-FIRED REPEAT
CONFLICT-RESOLUTION

PRODUCTION-FIRED REPEAT
CONFLICT-RESOLUTION

PRODUCTION-FIRED REPEAT
CONFLICT-RESOLUTION

Stopped because get-time action occurred

SET-BUFFER-CHUNK GOAL CHUNKO NIL
CONFLICT-RESOLUTION
PRODUCTION-FIRED REPEAT
CONFLICT-RESOLUTION
PRODUCTION-FIRED REPEAT
CONFLICT-RESOLUTION
PRODUCTION-FIRED REPEAT
CONFLICT-RESOLUTION
PRODUCTION-FIRED REPEAT
CONFLICT-RESOLUTION

Stopped because no events left to process

run-n-events num-events {real-time?} -> [nil | time-passed event-count break?]

Remote command name:

run-n-events

Arguments and Values:

num-events ::= a number greater than 0 indicating the number of events to run
real-time? ::= a generalized boolean to indicate whether to run in real time and possibly the scale for

the real time clock (default is nil)

but given 2 which is

time-passed ::= a number indicating the number of seconds in model time which passed during the run
event-count ::= a number indicating how many events were executed during this run
break? ::= [t| nil] indicating whether the run terminated due to a break event

Description:

150

Run-n-events will run the meta-process until either num-events have been executed, there are no
events to process, or a break event is executed. If the optional real-time? value is provided with a
non-nil value then the model will be run in real time mode. If real-time? is a positive number that
will be used as a scale for the real time clock (a number greater than one would cause the meta-
process to run faster than real time and a number less than one would cause it to run slower than real

time).

If num-events is not a number greater than 0 then the meta-process is not run, a warning is printed,

and nil is returned.

If the meta-process is run, then when one of the end conditions has been met, run-n-events will output

a line in the trace to indicate which condition terminated the run and it will return three values.

The first value is the number of seconds that passed during this run. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the run was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

Examples:

For these examples the count model from unit 1 of the ACT-R tutorial is the only model defined.

> (run-n-events 10)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 ------ Stopped because event limit reached
0.05
10
NIL
> (run-n-events 100)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.350 PROCEDURAL CONFLICT-RESOLUTION
0.350 ------ Stopped because no events to process
0.35
53
NIL

1> (schedule-break .225)
5

151

2> (run-n-events 50)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.200 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
0.225 ------ BREAK-EVENT
0.225
35
T

E> (run-n-events "count")
#|Warning: event-count must be a number greater than zero. |#
NIL

run-step

Syntax:
run-step -> time-passed event-count break?

Arguments and Values:

time-passed ::= a number indicating the number of seconds in model time which passed during the run
event-count ::= a number indicating how many events were executed during this run
break? ::= [t| nil] indicating whether the run terminated due to a break event

Description:

Run-step is only available from a Lisp prompt, and it will run the meta-process one event at a time.
For each event a summary of the event is printed to *standard-output* and the user is prompted to
respond as to whether that event should be executed, deleted, or the run terminated. This will stop for
all events, even those which do not get displayed in the trace. The user can also show various
debugging information before deciding what to do with the current event. The response is read from
standard-input and should be one of the characters indicated in the prompt. It will continue to run
the model until the user requests it to stop, there are no events remaining, or a break event is

executed. Run-step cannot run the model in real time mode.

When one of the end conditions has been met, run-step will output a line in the trace to indicate

which condition terminated the run and it will return three values.

The first value is the number of seconds that passed for the model. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the trial was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

152

Run-step can be a useful function for debugging a model because it allows one to walk through the

events one at a time and to inspect the state of the system before every one.

Examples:

For these examples the count model from unit 1 of the ACT-R tutorial is the only model defined.

> (run-step)

Next Event: 0.000 NONE CHECK-FOR-ESC-NIL
[Albort (or [q]uit)
[D]elete

[S]how event queue
[W]aiting events
[B]uffer contents

[V]isicon

[R]eport buffer status

[E]lxecute

e

Next Event: 0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
[Albort (or [q]uit)

[D]elete

[S]how event queue
[W]aiting events
[B]uffer contents
[V]isicon

[R]eport buffer status
[E]lxecute

b

RETRIEVAL: empty
IMAGINAL: empty
MANUAL: empty

GOAL: empty
IMAGINAL-ACTION: empty
VOCAL: empty

AURAL: empty
PRODUCTION: empty
VISUAL-LOCATION: empty
AURAL-LOCATION: empty
TEMPORAL: empty
VISUAL: empty

Next Event: 0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
[Albort (or [q]uit)
[D]elete

[S]how event queue
[W]aiting events
[B]uffer contents
[V]isicon

[R]eport buffer status
[E]lxecute

0.000 ------ Stepping stopped
0.0
1
NIL

153

Scheduling Events

The event system that drives ACT-R models is also available to the modeler for use in writing
experiments or other interactive tasks for the models. In fact, because ACT-R relies on the events to
trigger actions such as conflict-resolution, this is the recommended mechanism for creating
experiments or making other run-time changes. It is also essential when adding new modules. That
is because for other modules to be able to detect that a change has occurred (especially the procedural
module) those changes need to happen during an event. Therefore any change to a buffer, change of
the internal state of a module, or outside action performed by a module should be done through a

scheduled event.

When writing experiments for a model, one useful approach is to have the model’s actions trigger the
events that make changes in such a way that one only needs to call one of the ACT-R “run” functions
to execute both the model and the task. That has the benefit of not introducing any discrepancies into
the model timing relative to the task and also allows for the task to be run using the provided stepping
tools or continued after a break in the model. That is not always practical for a simple model/task
and often one may instead use a run, stop, change, run again approach (sometimes referred to as run-
stop-run or “trial at a time”). However, even when using the run-stop-run approach for a task, it is
still important to schedule any direct effects that one makes to buffers or chunks so that the model

properly notes the changes.

In general, most of the module commands will schedule some event as a response, but many of the
general commands which perform similar actions may not. For example, mod-chunk (a general
command) does not generate an event, but mod-focus (a similar command provided by the goal

module for updating its buffer) does.

Details of events

Each event has several attributes associated with it that are specified when the event is created with
one of the scheduling functions provided. Most of the time the user will not need to work with the
events directly, but there are some situations where access to the details of an event may be useful
(for instance the event hooks allow one to add commands which see each event before or after it is

executed). Here are the attributes which an event has that are accessible by the user.

time

154

The simulation time at which the event will occur. All times are rounded to the millisecond when the

event is created.
priority

When multiple events are scheduled to occur at the same time they are ordered by their priorities.
The priority is either a number or one of the keywords :max or :min. An event with a priority of
:max will occur before any event at the same time which has a priority other than :max. An event
with a priority of :min will occur after any event at the same time which has a priority other than
:min. An event with a numeric priority will be executed before any other events at the same time
which have a lower numeric priority i.e. numeric priorities are ordered from highest to lowest with no
bounds on the numbers given. Events which have both the same time and same priority will occur in
the order which they were scheduled -- the earlier scheduled item will occur before the later

scheduled one.

action

The command that will be called when this event is executed. It is possible when creating an event to
specify nil as the action to just provide details in the trace, but such an event will have an action that

is indicated as internal-dummy-event-fn.

parameters

The list of values which will be passed to the action command when the event is executed.

model

The name of the model in which the event was generated and in which the action will be evaluated.

module

The name of the module indicated as creating the event or the keyword :none if no module was

specified when the event was created.

destination

If this action is to be sent to a specific module, then that module’s name can be given as the

destination and the instance of that module will be passed as the first parameter to the action. Using

155

this is can be simpler and more informative than just making the instance of the module the first

element in the parameters list.

details

The details can be a string which will be output in the trace for the event. If details are specified that
is all that is printed after the time, model and module. If the details are not specified then the action

and parameters are printed in the trace.

output

Output controls under which trace-detail levels the event will be displayed. It can have a value of t,
high, medium, low, or nil. A value of t or high means it will be displayed only for the high trace
detail setting. Nil means not to show it at all. Medium means that it should be shown under both
medium and high trace details, and a value of low means it will be shown for any trace detail setting.

The output value effectively specifies the lowest detail setting for which the output will be displayed.

Event Implementation

The specific implementation of an event is not part of the API for ACT-R. The value returned when
creating an event and the values passed through a hook function that provide events will be an integer
that can be used to access the information about that event (referred to as an event-id). There is no

way to modify an event directly once it has been created.

Event Accessors

To access the information from an event using the event-id, a set of accessors are provided. Because
all of the accessors operate the same way they are all presented in one description, and there is a

remote version of each one.

Syntax:

evt-time event-id -> [time | nil], valid

evt-mstime event-id -> [mstime | nil], valid
evt-priority event-id ->[priority | nil], valid
evt-action event-id -> [action | nil], valid
evt-params event-id -> [parameters | nil], valid
evt-model event-id -> [model | nil], valid
evt-module event-id -> [module | nil], valid
evt-destination event-id -> [destination | nil], valid
evt-details event-id -> [details | nil], valid
evt-output event-id -> [output | nil], valid

156

Arguments and Values:

event-id ::= an integer

time ::= the time of the event in seconds

mstime ::= the time of the event in milliseconds

priority ::= the event’s priority

action ::= the event’s action

parameters ::= the event’s parameters list

model ::= the name of the model in which the event was generated or nil

module ::= the name of the module which generated the event or :none

destination ::= the name of the module which is the destination for the event or nil
details ::= the details string of the event or nil

output ::= the output value of the event
valid = [t] nil]

Description:

Each of the event accessors returns two values. The second one indicates whether there was an event
which corresponds to the id provided. If it is t then the first value provided will be the appropriate
attribute from that event. If there is no event with the event-id provided then both return values will

be nil.

For the remote version of evt-action the result will be an embedded string with the value of the

action, and the remote version of evt-params will return a list which uses embedded strings to

differentiate between names and actual strings.

Examples:

1> (define-model foo0)
FOO

2> (schedule-event 1 "set-buffer-chunk" :module :vision :output 'low
:params '(visual-location chunkl1) :priority 10)
7

3> (evt-time 7)
1.0
T

4> (evt-mstime 7)
1000
T

5> (evt-priority 7)
10

T

6> (evt-action 7)
"set-buffer-chunk"
T

7> (evt-model 7)

157

FOO
T

8> (evt-module 7)
:VISION

T

9> (evt-destination 7)
NIL

T

10> (evt-params 7)
(VISUAL-LOCATION CHUNK1)
T

11> (evt-details 7)
NIL

T

> (evt-output 7)

LOwW

T

E> (evt-time -4)

NIL
NIL

General Event Commands

These commands allow for getting additional information about events related to whether they will
be displayed in the trace and how their output will look.
event-displayed-p

Syntax:

event-displayed-p event-id -> [t | nil]

Remote command name:

event-displayed-p

Arguments and Values:

event-id ::= an integer

Description:

Event-displayed-p can be used to determine whether or not an event will be printed in the trace given
the current setting of the :trace-detail and :trace-filter parameters for the model in which it was

generated. If the event indicated by the given id will be printed with the current settings of that

158

model’s parameters, then t is returned and if not then nil is returned. If the id does not reference a

valid event then nil is returned.

This command might be useful when working with the event hooks or for developing an interactive

stepper or tracing tool.

Examples:

> (let ((event (schedule-event-now nil :output 'medium)))
(with-parameters (:trace-detail high)
(act-r-output ":trace-detail high and :output medium : ~s"
(event-displayed-p event)))
(with-parameters (:trace-detail medium)
(act-r-output ":trace-detail medium and :output medium : ~s"
(event-displayed-p event)))
(with-parameters (:trace-detail low)
(act-r-output ":trace-detail low and :output medium : ~s"
(event-displayed-p event))))
:trace-detail high and :output medium : T
:trace-detail medium and :output medium : T
:trace-detail low and :output medium : NIL
E> (event-displayed-p 'not-an-event)
NIL

format-event

Syntax:

format-event event-id -> [event-string | nil]
Remote command name:

format-event

Arguments and Values:

event-id ::= an integer identifying an ACT-R event
event-string ::= a string that contains the text that would be printed for this event in the trace

Description:

Format-event can be used to get a string with the representation of what the provided event will look
like in the trace when it is executed. If the event-id does not correspond to a valid ACT-R event then

nil is returned.

This would likely be used with the development of additional stepping tools or a data logger which

was tied into the event hooks to be able to record and/or display an event independently of the trace.

159

Examples:

> (let ((event (schedule-event 20 "set-buffer-chunk" :params '(goal c0))))
(format-event event))
" 20.000 NONE set-buffer-chunk GOAL C@"

> (format-event 'not-event)
NIL

Scheduling Commands

Events can be generated using a variety of scheduling functions described here, as well as
automatically by certain module commands. There are three different types of events that can be
generated: model events, maintenance events, and break events. Model events are actions which are
generated by the cognitive modules or outside actions which the model may need to detect.
Maintenance events are used for actions which are not of importance to the model itself. Break
events are a special type of maintenance event which have no actions other than to terminate the

current run of the model.

Events can be scheduled to occur at a specified time, or their scheduling can be delayed until a
specified condition is met (referred to as waiting events). A waiting event may also specify whether
it should respond to only the first event that satisfies its condition or whether it will continue to
respond to new events that are scheduled and possibly change its scheduling as new events occur. A
waiting event which continues to update its scheduled position as new events occur is referred to as a
dynamic event. A dynamic event will always follow the earliest event (closest to the current time)

which satisfies its waiting condition.

There are two differences between model and maintenance events. The first is an indirect difference.
Waiting events can be specified to consider any event or only model events when determining
whether to stop waiting and actually be scheduled. The events which are scheduled by the cognitive
modules that might need to wait for other events (in particular the conflict-resolution event of the
procedural module) will only consider model events because those are the actions which are
meaningful to the model. The other difference is that a maintenance event may specify a command
as a precondition to determine whether or not it will occur. When a maintenance event with a
precondition is the next event in the queue its precondition is called with the parameters for the event.
If the precondition returns a value other than nil then the event is executed as normal. If the
precondition returns nil then the event is removed from the queue and not executed. That is another
reason why waiting events should typically only check model events. With the current

implementation of the scheduling system, a waiting event stops waiting and gets scheduled when an

160

event which satisfies its waiting condition is scheduled. If the event which caused the waiting event
to be scheduled is a maintenance event and its precondition causes it to be ignored when it is its time
to be executed the scheduler does not currently have a way to return the waiting event which was
scheduled because of that maintenance event back to a waiting state, and it will be executed even

though the event it was waiting on did not actually occur.

When a new event is scheduled all of the waiting events will be tested to determine if the new event
satisfies the conditions for which those events are waiting and may schedule them to occur. If any
were scheduled, then the waiting events will be tested again based on those scheduled events, and
that will continue until no new events are scheduled. In addition to that, any waiting event which was
marked as being dynamic and which has already been scheduled will test the new events to see if the

dynamic event should be rescheduled because of the new events.

When an event’s action is executed the current model will be set to the model which generated the
event if there was one (only break events can be created without a current model). When working
with a single model that does not make a difference, but in the context of multiple models it means
that the action function does not typically need to use with-model or make any explicit checks to

ensure that it is working in the proper context.

The Lisp versions of the scheduling functions take keyword parameters for providing the features of

the event and the remote commands use an options list.

schedule-event, schedule-event-relative, schedule-event-now

Syntax:

schedule-event time action {:module module-value} {:destination destination-value} {:priority priority-value}
{:params params-value} {:time-in-ms time-units} {:details details-value}
{:maintenance maintenance-value} {:precondition precondition-value}
{:output output-value} -> [event-id | nil]

schedule-event-relative delta-time action {:module module-value} {:destination destination-value}
{:priority priority-value} {:params params-value} {:time-in-ms time-units}
{:details details-value} {:-maintenance maintenance-value}
{:precondition precondition-value} {:output output-value} -> [event-id | nil]

schedule-event-now action {:-module module-value} {:destination destination-value} {:priority priority-value}
{:params params-value} {:details details-value}
{:maintenance maintenance-value} {:precondition precondition-value}
{:output output-value} -> [event-id | nil]

Remote command name:

schedule-event time action { < module module-value, destination destination-value, priority priority-value,

161

params params-value, time-in-ms time-units, details details-value,
maintenance maintenance-value, precondition precondition-value,
output output-value >}

schedule-event-relative delta-time action { < module module-value, destination destination-value,
priority priority-value, params params-value, time-in-ms time-units,
details details-value, maintenance maintenance-value,
precondition precondition-value, output output-value >}

schedule-event-now action { < module module-value, destination destination-value, priority priority-value,
params params-value, details details-value,
maintenance maintenance-value, precondition precondition-value,
output output-value >}

Arguments and Values:

time ::= a number representing an absolute time for the event in seconds or milliseconds

delta-time ::= a number in seconds or milliseconds indicating the delay before executing the event
action ::= a command identifier of the action to perform or nil

module-value ::= the module’s name which is scheduling the event (default :none)

destination-value ::= the name of a module

priority-value ::= [:max | :min | a number] (default 0)

params-value ::= a list of values to pass to the action (default nil)

time-units ::= a generalized boolean indicating whether the time is set in milliseconds (default is nil)
maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)
precondition-value ::= [nil | precondition] (default nil)

precondition ::= a command identifier specifying a pretest to try before the action

details-value ::= a string to output in the trace or nil (default nil)

output-value ::= [t | high | medium | low | nil] (default t)

event-id ::= an integer which can be used to reference the event created

Description:

These functions schedule events to occur at particular times in the current model using the attributes
provided, and an id which can be used to access the event will be returned. Schedule-event creates
the event at the specific time provided, schedule-event-relative creates the event to occur at the

indicated time from the current time, and schedule-event-now creates the event at the current time.

If the action is nil then no command is executed when the event occurs. This can be useful if one
wants to use an event’s details to provide information in the trace without having to create a

command to do so.

If any of the parameters are invalid or there is no current model then a warning is printed, no event is

scheduled, and nil is returned.

Examples:

Note: the use of a lambda function as the event is only valid in the single-threaded mode.

162

1> (mp-time)
3.0

2> (mp-show-queue)
Events in the queue:

0]

3> (schedule-event 3.5 'goal-focus-fct :priority :min :params '(new-goal) :output nil)

5

4> (schedule-event 3.5 'define-chunks-fct :priority @ :params '((new-goal)))

6

5> (schedule-event-relative 1.0 (lambda()) :details "Dummy function"

7

6> (schedule-event-now (lambda()))

8

7> (mp-show-queue)
Events in the queue:

.000
.000
.500
.500
.000

AWWWW

5

NONE
PROCEDURAL
NONE
NONE
NONE

#<Interpreted Function (unnamed)>
CONFLICT-RESOLUTION
DEFINE-CHUNKS-FCT (NEW-GOAL)
GOAL-FOCUS-FCT

Dummy function

E> (schedule-event 'bad-time (lambda ()))
#|Warning: Time must be non-negative number. |#

NIL

E> (schedule-event 0 'bad-function-name)
#|Warning: Can't schedule BAD-FUNCTION-NAME not a function or function name. |#

NIL

E> (schedule-event 10 'goal-focus :priority :min :params '(new-goal-chunk)

:maintenance t)

#|Warning: Can't schedule GOAL-FOCUS because it is a macro and not a function. |#

NIL

E> (schedule-event 0 (lambda ()) :priority 'value)
#|Warning: Priority must be a number or :min or :max. |#

NIL

E> (schedule-event 0 (lambda (x)) :params 10)
#|Warning: params must be a list. |#

NIL

E> (schedule-event 0 'pprint)
#|Warning: schedule-event called with no current model. |#

NIL

schedule-event-after-module

Syntax:

routput nil)

schedule-event-after-module after-module action {:module module-value} {:destination destination-value}
{:params params-value} {:details details-value} {:delay delay-value}
{:maintenance maintenance-value} {:dynamic dynamic-value}
{:precondition precondition-value} {:output output-value}

{zinclude-maintenance include-maintenance-value}
->[event-id | nil] {[t| nil | :abort]}

163

Remote command name:

schedule-event-after-module after-module action { < module module-value, destination destination-value,
params params-value, details details-value,
delay delay-value, maintenance maintenance-value,
dynamic dynamic-value, output output-value,
precondition precondition-value,
include-maintenance include-maintenance-value >}

Arguments and Values:

after-module ::= the name of a module

action ::= a command identifier of the action to perform or nil

module-value ::= the name of the module scheduling the event (default :none)

destination-value ::= the name of a module

params-value ::= a list of values to pass to the action (default nil)

maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)

precondition-value ::= [nil | precondition] (default nil)

precondition ::= a command identifier specifying a pretest to try before the action

details-value ::= a string to output in the trace or nil (default nil)

output-value ::= [t | high | medium | low | nil] (default t)

delay-value ::= [t | nil | :abort] (default t)

include-maintenance-value ::= a generalized boolean indicating whether to consider maintenance events
when determining when to schedule this event (default nil)

dynamic-value ::= generalized boolean indicating whether to allow rescheduling (default nil)

event-id ::= an integer which can be used to reference the event created

Description:

Schedule-event-after-module creates a new event using the supplied parameters for its corresponding

attributes and the current model for its model.

If there is an event currently in the event queue with the module name of after-module and the same
model as the current model and either include-maintenance-value is true or the event is not a
maintenance event, then this new event is placed into the event queue at the time of the next such

matching event (lowest time) with a priority of :min.

If there is no event in the event queue that matches on model and module of the appropriate event
type (model or maintenance), then the value of delay-value determines what happens to the new

event.

If delay-value is t then the new event is placed into the set of waiting events to be scheduled after an

event which matches the conditions necessary to schedule this new event.

164

If delay-value is nil then the new event is added to the event queue for immediate execution. Its time

will be set to the current time and its priority will be :max.

If delay-value is :abort then the new event is discarded without being scheduled or placed into the

waiting queue.

If the action is nil then no command is executed when the event occurs. This can be useful if one
wants to use an event’s details to provide information in the trace without having to create a

command to do so.

A successful schedule-event-after-module returns two values. The first value will be the event id and
the second value will be t if the event is in the waiting queue, nil if it is in the event queue, and
:abort if it was not scheduled. If there is no current model or any of the parameters are invalid, then

no event is scheduled and a single value of nil is returned.

Examples:

Note: the use of a lambda function as the event is only valid in the single-threaded mode.

1> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION
1

2> (schedule-event-after-module 'procedural (lambda ()) :details "Matches event")
3
NIL

3> (mp-show-queue)

Events in the queue:
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 NONE Matches event

2

4> (schedule-event-after-module :vision (lambda()) :details "no event and wait" :delay t)
4
T

5> (mp-show-queue)

Events in the queue:
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 NONE Matches event

2

6> (mp-show-waiting)
Events waiting to be scheduled:

NONE no event and wait Waiting for: (:MODULE :VISION NIL)
1
7> (schedule-event-after-module :motor (lambda()) :details "go now" :delay nil)

5
NIL

165

8> (mp-show-queue)
Events in the queue:

0.000 NONE go now
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 NONE Matches event

3

9> (schedule-event-after-module :motor (lambda()) :details "aborted" :delay :abort)
NIL
:ABORT

E> (schedule-event-after-module 'bad-name (lambda()))
#|Warning: after-module must name a module. |#
NIL

schedule-event-after-change

Syntax:

schedule-event-after-change action {:module module-value} {:destination destination-value}
{:params params-value} {:details details-value} {:delay delay-value}
{:maintenance maintenance-value} {:dynamic dynamic-value}
{:precondition precondition-value} {:output output-value}
{zinclude-maintenance include-maintenance-value}
-> [event-id | nil] {[t| nil | :abort]}

Remote command name:

schedule-event-after-change action { < module module-value, destination destination-value,
params params-value, details details-value,
delay delay-value, maintenance maintenance-value,
dynamic dynamic-value, output output-value,
precondition precondition-value,
include-maintenance include-maintenance-value >}

Arguments and Values:

action ::= a command identifier of the action to perform or nil

module-value ::= the name of the module scheduling the event (default :none)

destination-value ::= the name of a module

params-value ::= a list of values to pass to the action (default nil)

maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)

precondition-value ::= [nil | precondition] (default nil)

precondition ::= a command identifier specifying a pretest to try before the action

details-value ::= a string to output in the trace or nil (default nil)

output-value ::= [t | high | medium | low | nil] (default t)

delay-value ::= [t | nil | :abort] (default t)

include-maintenance-value ::= a generalized boolean indicating whether to consider maintenance events
when determining when to schedule this event (default nil)

dynamic-value ::= generalized boolean indicating whether to allow rescheduling (default nil)

event-id ::= an integer which can be used to reference the event created

Description:

166

Schedule-event-after-change creates a new event using the supplied parameters for its corresponding
attributes and the current model for its model. If there is any event currently in the event queue with
the same model as the current model and either include-maintenance-value is true or the event is not a
maintenance event, then this new event is placed into the event queue at the time of the next such

matching event (lowest time) with a priority of :min.

If there is no event in the event queue that matches on model and is of the appropriate event type

(model or maintenance), then the value of delay-value determines what happens to the new event.

If delay-value is t then the new event is placed into the set of waiting events to be scheduled after an

event which matches the conditions necessary to schedule this new event.

If delay-value is nil then the new event is added to the event queue for immediate execution. Its time

will be set to the current time and its priority will be :max.

If delay-value is :abort then the new event is discarded without being scheduled or placed onto the

waiting queue.

If the action is nil then no command is executed when the event occurs. This can be useful if one
wants to use an event’s details to provide information in the trace without having to create a

command to do so.

A successful schedule-event-after-change returns two values. The first value will be the event id and
the second value will be t if the event is in the waiting queue, nil if it is in the event queue, and
:abort if it was not scheduled. If there is no current model or any of the parameters are invalid, then

no event is scheduled and a single value of nil is returned.

Examples:

see schedule-even-after-module for similar examples

schedule-periodic-event

Syntax:

schedule-periodic-event period action {:module module-value} {:destination destination-value}
{:params params-value} {:details details-value}
{:initial-delay initial-delay-value} {:priority priority-value}
{:maintenance maintenance-value} {:output output-value}

167

{:time-in-ms time-units}
-> [event-id | nil] {[t| nil | :abort]}

Remote command name:

schedule-periodic-event period action { < module module-value, destination destination-value,
params params-value, details details-value,
initial-delay initial-delay-value, maintenance maintenance-value,
priority priority-value, output output-value,
time-in-ms time-units >}

Arguments and Values:

period ::= a number indicating the time after which this action should be evaluated again

action ::= a command identifier of the action to perform or nil

module-value ::= the name of the module which is scheduling the event (default :none)
destination-value ::= the name of a module

priority-value ::= [:max | :min | a number] (default 0)

params-value ::= a list of values to pass to the action (default nil)

time-units ::= a generalized boolean indicating whether the time is set in milliseconds (default nil)
maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)
details-value ::= a string to output in the trace or nil (default nil)

output-value ::= [t | high | medium | low | nil] (default t)

initial-delay-value ::= a number indicating time before the first such event (default 0)

event-id ::= an integer which can be used to reference the event created

Description:

Schedule-periodic-event creates a new event with a time that is equal to the current time plus initial-
delay and using the other supplied parameters for its corresponding attributes and the current model
for its model. After that event occurs a new event will automatically be scheduled to occur period
seconds (or milliseconds if :time-in-ms is specified as true) after that time with the same parameters
as the initial one. That rescheduling will continue every period seconds (or milliseconds) until the

event id this function returned is deleted.

If any of the parameters are invalid or there is no current model or current meta-process then a

warning is printed, no event is scheduled, and nil is returned.

Note that there are actually two events generated for each occurrence of the event described. The
first is a maintenance event with the priority provided. It schedules the actual event described with
the parameters specified with a priority of :max (so that it should be the next event to execute) and

also schedules the next periodic event at the appropriate delay.

168

If the action is nil then no command is executed when the event occurs. This can be useful if one

wants to use an event’s details to provide information in the trace without having to create a

command to do so.

Examples:

Note: the use of a lambda function as the event is only valid in the single-threaded mode.

1> (schedule-periodic-event 1 (lambda () (model-output "now")) :initial-delay .5)

3

2> (mp-show-queue)
Events in the queue:

0.000

0.000

0.500
3

3> (run 3)
0.000
now
0.500
now
1.500
now
2.500
3.000
3.0
11
NIL

NONE
PROCEDURAL
NONE

PROCEDURAL

PROCEDURAL

PROCEDURAL

PROCEDURAL

CHECK-FOR-ESC-NIL
CONFLICT-RESOLUTION
Periodic-Action Unnamed function 1

CONFLICT-RESOLUTION
CONFLICT-RESOLUTION
CONFLICT-RESOLUTION

CONFLICT-RESOLUTION
Stopped because time limit reached

E> (schedule-periodic-event nil (lambda ()))
#|Warning: period must be greater than 0. |#

NIL

schedule-break, schedule-break-relative

Syntax:

schedule-break time {:details details-value}{:priority priority-value}{:time-in-ms time-units} -> [event-id | nil]

schedule-break-relative delta-time {:details details-value}{:priority priority-value}{:time-in-ms time-units}

Remote command name:

-> [event-id | nil]

schedule-break time {< details details-value, priority priority-value, time-in-ms time-units >}
schedule-break-relative delta-time {< details details-value, priority priority-value, time-in-ms time-units >}

Arguments and Values:

time ::= a number representing an absolute time for the event
delta-time ::= a number representing a time delay before executing the event
details-value ::= a string to output in the trace or nil (defaults to nil)

169

priority-value ::= [:max | :min | a number] (defaults to :max)

time-units ::= a generalized boolean indicating whether the time is in milliseconds (default nil)

event-id ::= an integer which can be used to reference the event created

Description:

Schedule-break creates a new break event at the specified time with the priority-value and details-

value provided. Schedule-break-relative creates a new break event at the specified amount of time

from the current time with the priority-value and details-value provided. The model of those events

will be nil (a break event does not exist within a specific model), the module is set to :none, and the

output for that event is set to low. A break event does not have an action and is only used to stop the

scheduler. That new event is then added to the event queue and its id is returned.

If any of the parameters are invalid then a warning is printed, no event is scheduled, and nil is

returned.

Examples:

1> (schedule-break 5.5 :details "Stop by this break")
3

2> (mp-show-queue)
Events in the queue:

0.000 NONE CHECK-FOR-ESC-NIL

0.000 PROCEDURAL CONFLICT-RESOLUTION

5.500 ------ BREAK-EVENT Stop by this break
3
3> (run-full-time 10)

0.000 PROCEDURAL CONFLICT-RESOLUTION

5.500 ------ BREAK-EVENT Stop by this break
5.5
3
T

E> (schedule-break 'bad)

#|Warning: Time must be non-negative number. |#
NIL

E> (schedule-break 10 :priority 'bad)

#|Warning: Priority must be a number or :min or :max. |#
NIL

schedule-break-after-module

Syntax:

schedule-break-after-module after-module {:details details-value} {:delay delay-value}

{zdynamic dynamic-value} ->[event-id | nil J{[t| nil | :abort]}

Remote command name:

170

schedule-break-after-module after-module {< details details-value, delay delay-value,
dynamic dynamic-value >}
Arguments and Values:

after-module ::= the name of a module

details-value ::= a string to output in the trace or nil (defaults to nil)

delay-value ::= [t | nil | :abort] (defaults to t)

dynamic-value ::= generalized boolean indicating whether to allow rescheduling (defaults to nil)
event-id ::= an integer which can be used to reference the event created

Description:

Schedule-break-after-module creates a new event using the supplied parameters for its corresponding
attributes and the current model as its model. That event will be scheduled to occur after the next

event of the specified module in the same model as the current one.

If there is an event currently in the event queue with the module name of after-module for the current
model then this new break event is placed into the event queue at the time of the next such matching

event (lowest time) with a priority of :min.

If there is no event in the event queue that matches the model and module, then the delay value

determines what happens to the new break event.

If delay-value is t then the new break event is placed into the set of waiting events to be scheduled

after an event which matches the conditions necessary to schedule this new event.

If delay-value is nil then the new break event is added to the event queue for immediate execution.

Its time will be set to the current time and its priority will be :max.

If delay-value is :abort then the new break event is discarded without being scheduled or placed onto

the waiting queue.

A successful schedule-break-after-module returns two values. The first value will be the event id and
the second value will be t if the event is in the waiting queue or nil if it is in the event queue. If the
event is aborted, the first value will be nil and the second value will be :abort. If there is an invalid
parameter provided then no event is scheduled, a warning is output, and a single value of nil is

returned.

Examples:

1> (mp-show-queue)
Events in the queue:

171

0.000 NONE
0.000 PROCEDURAL
2

2> (schedule-break-after-module 'procedural :details "after procedural")

3
NIL

3> (mp-show-queue)

Events in the queue:
0.000 NONE
0.000 PROCEDURAL
0.000 ------

3

4> (schedule-break-after-module :vision :details "waiting for vision")

4
T

5> (mp-show-queue)

Events in the queue:
0.000 NONE
0.000 PROCEDURAL
0.000 ------

3

6> (mp-show-waiting)
Events waiting to be scheduled:

CHECK-FOR-ESC-NIL
CONFLICT-RESOLUTION

CHECK-FOR-ESC-NIL
CONFLICT-RESOLUTION
BREAK-EVENT after procedural

CHECK-FOR-ESC-NIL
CONFLICT-RESOLUTION
BREAK-EVENT after procedural

------ BREAK-EVENT waiting for vision Waiting for:

7> (schedule-break-after-module :vision :details '"not waiting on vision"

5
NIL

8> (mp-show-queue)
Events in the queue:

CHECK-FOR-ESC-NIL

BREAK-EVENT not waiting on vision
CONFLICT-RESOLUTION

BREAK-EVENT after procedural

9> (schedule-break-after-module :vision :delay :abort)

0.000 NONE
0.000 ------
0.000 PROCEDURAL
0.000 ------

4

NIL

: ABORT

10> (mp-show-queue)
Events in the queue:

0.000 NONE
0.000 ------
0.000 PROCEDURAL
0.000 ------

4

11> (mp-show-waiting)
Events waiting to be scheduled:

CHECK-FOR-ESC-NIL

BREAK-EVENT not waiting on vision
CONFLICT-RESOLUTION

BREAK-EVENT after procedural

------ BREAK-EVENT waiting for vision Waiting for:

E> (schedule-break-after-module :bad)
#|Warning: after-module must name a module. |#

NIL

(:MODULE :VISION T)

:delay nil)

(:MODULE :VISION T)

schedule-break-after-all

Syntax:

schedule-break-after-all {details} -> event-id
Remote command name:
schedule-break-after-all

Arguments and Values:

details ::= a string to output in the trace or nil (defaults to nil)

event-id ::= an integer which can be used to reference the event created

Description:

Schedule-break-after-all creates a new break event with the provided details. The time for this new

event is the greatest time of any event currently in the event queue and its priority is :min. It will be

inserted into the event queue such that it will occur after all of the events currently scheduled. The id

of the event created is returned.

Examples:

1> (mp-show-queue)
Events in the queue:

0.000 NONE CHECK-FOR-ESC-NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
9.000 NONE future event

3

2> (schedule-break-after-all "at the end")
4

3> (mp-show-queue)
Events in the queue:

0.000 NONE CHECK-FOR-ESC-NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
9.000 NONE future event

9.000 ------ BREAK-EVENT at the end

delete-event

Syntax:
delete-event event-id -> [t | nil]

Remote command name:

173

delete-event

Arguments and Values:

event-id ::= an integer which was returned by one of the scheduling functions to represent an event
Description:

If event-id represents an event which is currently in either the event queue or the waiting queue then

delete-event removes that event from the queue it is in and returns t.

If the item is not in either event queue no action is taken and nil is returned. If an invalid value is

provided a warning is printed and nil is returned.

Examples:

1> (schedule-event 4 (lambda ()) :details "the event")
3

2> (mp-show-queue)
Events in the queue:

0.000 NONE CHECK-FOR-ESC-NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
4,000 NONE the event

3

3> (delete-event 3)
T

4> (mp-show-queue)
Events in the queue:
0.000 NONE CHECK-FOR-ESC-NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
2

5> (delete-event 3)
NIL

E> (delete-event -1)
NIL

E> (delete-event 'bad)

#|Warning: BAD is not a valid event identifier. |#
NIL

Event Hooks

In addition to being able to schedule events it is possible to add commands which can monitor the
events as they are executed. One can add what is called an “event hook” command which will be
passed the event id of each event in the queue either before or after it is executed. The event hook
can be used for recording information about what has happened in the model (for instance if one

wanted to add an alternate tracing mechanism) or for checking for particular events to occur for data

174

collection or other purposes. When created, a hook command is added to the meta-process and
persists across a reset. They are only removed if they are explicitly deleted with the delete-event-

hook command or when a call to clear-all happens.

add-pre-event-hook, add-post-event-hook

Syntax:

add-pre-event-hook hook-fn {warn-for-duplicate} -> [hook-id | nil]
add-post-event-hook hook-fn {warn-for-duplicate} -> [hook-id | nil]

Remote command name:

add-pre-event-hook
add-post-event-hook

Arguments and Values:

hook-fn ::= a command identifier of the action to perform

hook-id ::= a number which is the reference for the hook function that was added

warn-for-duplicate ::= a generalized boolean which indicates whether or not to show a warning if
the same function is attempted to be put on the event hook again (default is t)

Description:

If hook-fn is a valid command which is not already in the set of event hooks indicated (either pre or
post) for the meta-process then it will be added to the appropriate set of event hooks. The commands
for the pre-event hooks will be called before each event on the queue is evaluated and the post-hook
commands will be called after each event is evaluated. The hook command will be passed the event

id of that event as its only parameter.

If the hook command is added to one of the meta-process event hook sets, then a unique hook-id is

returned which can be used to explicitly remove that command from the set of event hooks.

If hook-fn is invalid then a warning is printed and nil is returned. If hook-fn is already in the
indicated set of event hooks then nil is also returned and a warning is printed unless warn-for-

duplicate is provided as nil.

The return value of the hook-fn set as a post-event is ignored. The return value of the hook-fn set as
a pre-event it tested by the scheduler and if it is the string “break” then that will force the schedule to
stop running as if a break event had been scheduled before the event that triggered the calling of the

pre-event hook-fn.

175

Examples:

This example assumes that the count model from unit 1 of the tutorial is loaded.

1> (defun show-event (id)
(model-output "Hook sees event from module: ~s" (evt-module id)))

SHOW-EVENT
2> (add-pre-event-hook 'show-event)
c]
3> (run .05)
Hook sees event from module: :NONE
Hook sees event from module: GOAL

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
Hook sees event from module: PROCEDURAL

0.000 PROCEDURAL CONFLICT-RESOLUTION
Hook sees event from module: PROCEDURAL

0.000 PROCEDURAL PRODUCTION-SELECTED START
Hook sees event from module: PROCEDURAL
Hook sees event from module: PROCEDURAL

0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
Hook sees event from module: GOAL
Hook sees event from module: PROCEDURAL

0.050 PROCEDURAL PRODUCTION-FIRED START
Hook sees event from module: PROCEDURAL

0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
Hook sees event from module: PROCEDURAL

0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
Hook sees event from module: PROCEDURAL

0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
Hook sees event from module: DECLARATIVE

0.050 DECLARATIVE start-retrieval
Hook sees event from module: PROCEDURAL

0.05
13
NIL

0.050 PROCEDURAL
0.050 ------

CONFLICT-RESOLUTION
Stopped because time limit reached

4E> (add-pre-event-hook 'show-event)

#|Warning: SHOW-EVENT is already on the pre-event-hook list not added again |#

NIL

5> (add-pre-event-hook 'show-event nil)
NIL

1> (defvar *e-count* 0)
0

2> (defun pre-event-break (e)
(declare (ignore e))
(when (> (incf *e-count*) 6)

"break"))

PRE-EVENT -BREAK

3> (add-pre-event-hook 'pre-event-break)

0]

4> (run 1)

0.000 GOAL

0.000 PROCEDURAL
0.000 PROCEDURAL
0.000 PROCEDURAL

SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
CONFLICT-RESOLUTION
PRODUCTION-SELECTED START
BUFFER-READ-ACTION GOAL

176

0.000 ------ BREAK-EVENT forced by a pre-event hook

E> (add-pre-event-hook 'bad)
#|Warning: parameter BAD to add-pre-event-hook is not a function |#
NIL

delete-event-hook

Syntax:
delete-event-hook hook-id -> [hook-fn | nil]

Remote command name:

delete-event-hook
Arguments and Values:

hook-id ::= a hook function id returned by one of the add event hook functions
hook-fn ::= the command identifier that was removed from the event hook

Description:

If the event hook command associated with hook-id is still a member of the set of event hooks in the

current meta-process then it is removed from the set of hook commands and the command identifier

that was used to create the event hook is returned.

If hook-id does not correspond to the id of an event hook or the command has already been removed

from the set of event hooks then nil is returned.

Examples:

This example assumes that the count model from unit 1 of the tutorial is loaded.

1> (defun show-event (id)

(model-output "Hook sees event from module: ~s" (evt-module id)))

SHOW-EVENT

2> (add-post-event-hook 'show-event)
(0]

3> (run .01)
Hook sees event from module: :NONE

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
Hook sees event from module: GOAL

0.000 PROCEDURAL CONFLICT-RESOLUTION
Hook sees event from module: PROCEDURAL

0.000 PROCEDURAL PRODUCTION-SELECTED START

Hook sees event from module: PROCEDURAL

177

Hook sees event from module:

0.000 PROCEDURAL

Hook sees event from module:
Hook sees event from module:
Hook sees event from module:

0.010 ------
0.01

;

NIL

4> (delete-event-hook 0)
SHOW-EVENT

5> (run .05)

0.050 PROCEDURAL
0.050 PROCEDURAL
0.050 PROCEDURAL
0.050 PROCEDURAL
0.050 DECLARATIVE
0.050 PROCEDURAL
0.060 ------

0.05

6

NIL

6> (delete-event-hook 0)
NIL

E> (delete-event-hook 'bad)
NIL

PROCEDURAL

BUFFER-READ-ACTION GOAL

PROCEDURAL

GOAL
:NONE

Stopped because time limit reached

PRODUCTION-FIRED START
MOD-BUFFER-CHUNK GOAL
MODULE-REQUEST RETRIEVAL
CLEAR-BUFFER RETRIEVAL
start-retrieval
CONFLICT-RESOLUTION

Stopped because time limit reached

178

About the Included Modules and Components

The modules that are included with ACT-R fall into three general categories. The first is system or
control modules and components which are not based on the theory and only serve to provide
functionality in the software. The second and third categories are the cognitive modules which
represent the theory of ACT-R. Those are subdivided into modules which provide the perceptual and
motor actions which allow models to interact with an environment and modules which represent
cognitive capabilities completely within the model. The only reason for distinguishing between the
two types of cognitive modules is that the perceptual and motor modules include an interface for

interacting with the world whereas the purely cognitive modules do not.

In addition to the modules there are also components which provide important functionality for the
software. The components operate independently of models (unlike modules where each model has
its own instance of a module) and are not based on the ACT-R theory — they are all purely a construct

of the software system.

Most of the remaining sections of this manual will be describing the modules and components of the
system. When describing those items the general operation will be provided along with any
parameters and commands that it makes available. For the modules, it will also indicate the buffers

which the module has (if any) and the requests and queries which are available through those buffers.

179

Printing module

The printing module provides the modeler with some control over the level of output which the
system provides as well as some options for redirecting output instead of using the standard trace
signals. That control is provided through several parameters to configure the output. The commands

available for outputting information are described in the Printing and Output section. This is a

software module and thus does not have a buffer or affect the results of a model’s operation.

This module is named printing-module and will always be available.

Parameters

:cbct

The copy buffer chunk trace parameter. This parameter controls whether or not an event will be

shown in the trace indicating that a buffer has made a copy of a chunk. It can take a value of t or nil.
The default is nil.

If it is set to t then an event like this will be shown in the trace each time a buffer makes a copy of a
chunk:

0.000 BUFFER Buffer GOAL copied chunk FIRST-GOAL to GOAL-CHUNKO

It is always attributed to a module named “buffer” and indicates which buffer made the copy along
with the name of the original chunk and the name of the copy. Those events will be shown with the
high and medium trace detail settings. Note that the chunk copied to is not always a new chunk as

shown here from the count model in unit 1 of the tutorial:

0.160 BUFFER Buffer RETRIEVAL copied chunk TWO to RETRIEVAL-CHUNKO
0.200 BUFFER Buffer RETRIEVAL copied chunk THREE to RETRIEVAL-CHUNKO
See the buffers section for more information about copying.

:cmdt

The command trace parameter controls where the command output is displayed.

The possible values for :cmdt are:

180

* nil - this turns off the command output for this model

* t-send the command output to the command trace

* astring — it attempts to open a file using that string as the name and if successful appends all
command output to that file

* aLisp stream — the command output is sent to that stream

* a Lisp pathname — it attempts to open the specified file and if successful it appends all

command output to that file
The default value is t.

If a file is used, it will be opened when the parameter is set and closed when either the parameter is
changed again or the model is deleted. Note that for file output the actual output to the file may be
buffered in Lisp before being written. Thus, that output file should not be opened or read by anything
else until the model is done with its output. Resetting or deleting the model will signal that it is done
as will setting the :cmdt parameter to some other value, and setting it to nil is a safe way to signal that

the output is done and have the file closed safely.

:model-warnings

The model-warnings parameter controls wheth