
Procedural Learning Modeling Issues

This text will cover some of the issues that can arise when working with utility learning and
production compilation and describe ways that the Environment tools may be used to help. Models
which use the procedural learning mechanisms often do so in conjunction with declarative learning
and also often require running for many trials for the learning effects to show up. Because of that,
such models can be more difficult to analyze and debug since one may need to investigate both
declarative and procedural issues over long runs. To better demonstrate things for this text we will
be using two simple tasks which are focused only on the procedural issues involved. The
mechanisms described here can be used in conjunction with those described previously for
declarative memory, and we will also show some ways of dealing with problems in longer runs.

Utility Learning

First we will look at a model which is using utility learning in a task similar to the choice experiment
from unit 6 found in the “utility-learning-issues.lisp” file. The code for the task can be found in the
ul-issues.lisp and ul_issues.py files. We do not have any experimental data which we will be fitting
with this model, but we do have an expectation that it will learn which choice is better. That
learning should show up as a higher utility for the production which chooses the better response and
we will look for that as the model runs.

The Task

In this task the model must choose one of two options, either A or B, within five seconds. Then after
the five seconds have passed the model will either be presented with the correct response for this
trial or informed that no answer will be provided for the trial. The feedback will be presented for
two seconds and then the next trial will begin. Thus, each trial lasts exactly seven seconds. For this
task, choice A will be reported as correct on 60% of the trials, 20% of the trials will indicate choice
B as correct, and 20% of the trials will provide no feedback. Thus, we will expect the model to learn
to choose option A more frequently than option B.

Because this task only has to run with the model it has been implemented by directly manipulating
the chunks in the model’s goal and imaginal buffers. The task will put a chunk in the goal buffer
indicating that it is time to choose and then put a chunk in the imaginal buffer with the feedback five
seconds later. Two seconds after that it will provide another goal chunk indicating that it needs to
make another choice, and that process will repeat for as long as the model runs. The task operates
by scheduling the actions to occur for the model, and does not require calling a function other than
run. There is no data collected or results reported for the task, but the choice and feedback actions
will be shown in the medium detail trace for reference. Because the imaginal buffer tests a slot that
is set from code outside of the model we have used declare-buffer-usage to avoid the style warnings
about that slot’s usage in the productions.

The Model

Because the task is directly modifying the chunks in the buffers, the model can simply consist of five
productions. Two productions respond to the goal buffer chunk indicating that it is time to choose,
one for each choice, and there are three productions which process the feedback provided in the
imaginal buffer. The feedback handling productions consist of one which fires when the model
chose correctly, one which fires when it chose incorrectly, and one which fires when there is no
feedback for the trial. We will not show the productions here, but there is nothing new or unusual
about them so they should be easy to understand by looking at the model file. The only learning
mechanism enabled in the model is utility learning and the model has been given some noise in
utilities with these parameter settings:

 (sgp :esc t :ul t :egs .5)

The utility learning rate parameter :alpha is not set so it will have the default value of .2. To allow
the model to learn, the productions which fire for matching and mismatching feedback are given the
following rewards:

 (spp response-matches :reward 4)
 (spp response-doesnt-match :reward 0)

The productions are not given any particular starting utilities. Therefore, they will all start with the
default utility of 0.

The last line of the model definition schedules the first choose event to happen at time 0, and that
starts the cycle of scheduling the events to drive the task as the model runs.

Testing the Model

Loading the ul-issues.lisp file or importing the ul_issues.py file will automatically load the model
file, and when we do so there are no warnings or errors reported so we can start running it now. One
thing that we could do would be to just run it for several trials and then see how the utilities have
changed by that point. If the choose-a production has a higher utility than choose-b we might then
consider the model done. However, as has been mentioned in the other testing texts, it is always
better to start small and make sure to understand how the model is working and learning before
moving on to look at the higher level results.

As a first test we should run a couple of trials and make sure the model is operating as we would
expect. Here is the trace from the first trial after running for just under seven seconds:
 0.000 NONE utility-learning-issues-choose
 0.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-A
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 5.000 NONE utility-learning-issues-show-result A
 5.000 PROCEDURAL CONFLICT-RESOLUTION
 5.050 PROCEDURAL PRODUCTION-FIRED RESPONSE-MATCHES
 5.050 PROCEDURAL CLEAR-BUFFER GOAL
 5.050 PROCEDURAL CLEAR-BUFFER IMAGINAL
 5.050 UTILITY PROPAGATE-REWARD 4

 5.050 PROCEDURAL CONFLICT-RESOLUTION
 6.950 ------ Stopped because time limit reached

We see the model choose A, the feedback presented is that A is the correct choice, then the model
fires the response-matches production and a reward of 4 is applied. That looks good, but we should
check a couple more trials to make sure. Here is the trace for the next two:
 7.000 NONE utility-learning-issues-choose
 7.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL NIL
 7.000 PROCEDURAL CONFLICT-RESOLUTION
 7.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-A
 7.050 PROCEDURAL CONFLICT-RESOLUTION
 12.000 NONE utility-learning-issues-show-result NIL
 12.000 PROCEDURAL CONFLICT-RESOLUTION
 12.050 PROCEDURAL PRODUCTION-FIRED UNKNOWN-RESPONSE
 12.050 PROCEDURAL CLEAR-BUFFER GOAL
 12.050 PROCEDURAL CLEAR-BUFFER IMAGINAL
 12.050 PROCEDURAL CONFLICT-RESOLUTION
 14.000 NONE utility-learning-issues-choose
 14.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL NIL
 14.000 PROCEDURAL CONFLICT-RESOLUTION
 14.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-B
 14.050 PROCEDURAL CONFLICT-RESOLUTION
 19.000 NONE utility-learning-issues-show-result A
 19.000 PROCEDURAL CONFLICT-RESOLUTION
 19.050 PROCEDURAL PRODUCTION-FIRED RESPONSE-DOESNT-MATCH
 19.050 PROCEDURAL CLEAR-BUFFER GOAL
 19.050 PROCEDURAL CLEAR-BUFFER IMAGINAL
 19.050 UTILITY PROPAGATE-REWARD 0
 19.050 PROCEDURAL CONFLICT-RESOLUTION
 20.950 ------ Stopped because time limit reached

There we see trials with the model responding to both the lack of feedback and a trial when it
responds incorrectly. Since that all looks good we should now look at how the utility learning is
progressing as it runs.

Because this is a small model it should be easy to follow the learning by simply enabling the utility
learning trace and watching the values change. If it were a larger model however that might not be
as tractable, and we might need to use some of the Environment tools to help as will be discussed
later. For now, we will just enable the utility learning trace by turning it on using sgp in Lisp or
set_parameter_value in Python, after resetting the model:

? (sgp :ult t)

>>> actr.set_parameter_value(':ult',True)

When we run it now we see the update to utility for the first reward:
 0.000 NONE utility-learning-issues-choose
 0.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-A
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 5.000 NONE utility-learning-issues-show-result A
 5.000 PROCEDURAL CONFLICT-RESOLUTION
 5.050 PROCEDURAL PRODUCTION-FIRED RESPONSE-MATCHES
 5.050 PROCEDURAL CLEAR-BUFFER GOAL
 5.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

 5.050 UTILITY PROPAGATE-REWARD 4
 Utility updates with Reward = 4.0 alpha = 0.2
 Updating utility of production CHOOSE-A
 U(n-1) = 0.0 R(n) = -1.0500002 [4.0 - 5.05 seconds since selection]
 U(n) = -0.21000004
 Updating utility of production RESPONSE-MATCHES
 U(n-1) = 0.0 R(n) = 3.95 [4.0 - 0.05 seconds since selection]
 U(n) = 0.79
 5.050 PROCEDURAL CONFLICT-RESOLUTION
 5.050 ------ Stopped because time limit reached

Looking at the change in utility for the production choose-a on this trial indicates that there seems to
be a problem. The model chose A and the feedback provided indicated that A was the correct choice
which lead to a positive reward, but the utility of the choose-a production decreased from 0 to -0.21.
The reason for that is because the effective reward a production receives is discounted by the time
that passed between the production’s selection and when the reward is received. In this task there
are 5.05 seconds between the choice and the reward. Thus, with a reward of 4 being provided on a
correct response we end up penalizing the production.

That means that the model is less likely to choose A after positive feedback. That is not necessarily a
bad thing to have happen. Decreasing the utility for this choice means the model is more likely to
choose a different option next time and explore the space, which can be useful if there are many
options. If the utility increases then the model will be more likely to make the same choice and
exploit the gain, which can be beneficial if the task has few choices or a known payout structure.
Since there are only two choices in this task, we are going to adjust the model so that the reward has
a positive effect for being correct from the start. To do that we need to make sure that the reward is
larger than the amount of time that passes until the reward happens, and since there are 5.05 seconds
between the selection and the reward we will adjust the reward for being correct to 6 instead of 4:

 (spp response-matches :reward 6)

While we are editing the model file we should also add the :ult setting so that we don’t have to keep
setting it each time we reset to start a new run:
 (sgp :esc t :ul t :egs .5 :ult t)

After making that change and saving the model here is the trace of the utility learning now:
 0.000 NONE utility-learning-issues-choose
 0.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-A
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 5.000 NONE utility-learning-issues-show-result A
 5.000 PROCEDURAL CONFLICT-RESOLUTION
 5.050 PROCEDURAL PRODUCTION-FIRED RESPONSE-MATCHES
 5.050 PROCEDURAL CLEAR-BUFFER GOAL
 5.050 PROCEDURAL CLEAR-BUFFER IMAGINAL
 5.050 UTILITY PROPAGATE-REWARD 6
 Utility updates with Reward = 6.0 alpha = 0.2
 Updating utility of production CHOOSE-A
 U(n-1) = 0.0 R(n) = 0.9499998 [6.0 - 5.05 seconds since selection]
 U(n) = 0.18999997
 Updating utility of production RESPONSE-MATCHES
 U(n-1) = 0.0 R(n) = 5.95 [6.0 - 0.05 seconds since selection]

 U(n) = 1.1899999
 5.050 PROCEDURAL CONFLICT-RESOLUTION
 5.050 ------ Stopped because time limit reached

We now see a positive change in the choose-a production’s utility after choosing it correctly on this
trial.

Had we just been looking at the model’s performance over a long run we may not have noticed this
oddity in the model’s learning pattern. For example, had we just run the model for 100 trials from
the initial state and looked at the resulting utilities we would have seen something like this if we use
spp to print out the results:

Parameters for production CHOOSE-A:
 :utility -4.107
 :u -4.405
 :at 0.050
 :reward NIL
 :fixed-utility NIL
Parameters for production CHOOSE-B:
 :utility -5.604
 :u -5.618
 :at 0.050
 :reward NIL
 :fixed-utility NIL

Production choose-a has a higher utility than choose-b which means that the model will be choosing
A more often than B. So, even with a successful choice penalizing the model initially, in the long
term the model still gets to the expected result since presumably the incorrect trials are penalized
even more, but if we are concerned with how it gets there then we should pay attention to the details
along the way. In this case, the negative utilities may have been an indication that there was a
problem, but if instead of looking at the utilities we had been looking at response data like choice
percentages we may not have noticed.

Now that we have the first trial operating in a reasonable manner we will look at the next trial. Here
is the trace for the second trial:
 7.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-A
 7.050 PROCEDURAL CONFLICT-RESOLUTION
 12.000 NONE utility-learning-issues-show-result NIL
 12.000 PROCEDURAL CONFLICT-RESOLUTION
 12.050 PROCEDURAL PRODUCTION-FIRED UNKNOWN-RESPONSE
 12.050 PROCEDURAL CLEAR-BUFFER GOAL
 12.050 PROCEDURAL CLEAR-BUFFER IMAGINAL
 12.050 PROCEDURAL CONFLICT-RESOLUTION
 14.000 NONE utility-learning-issues-choose
 14.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL NIL
 14.000 PROCEDURAL CONFLICT-RESOLUTION
 14.000 ------ Stopped because time limit reached

The model chooses A again but this time there is no feedback. Because the unknown-response
production provides no reward there is no change to the utility of the choose-a production. So we
will now look at the next trial:
 14.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-B
 14.050 PROCEDURAL CONFLICT-RESOLUTION

 19.000 NONE utility-learning-issues-show-result A
 19.000 PROCEDURAL CONFLICT-RESOLUTION
 19.050 PROCEDURAL PRODUCTION-FIRED RESPONSE-DOESNT-MATCH
 19.050 PROCEDURAL CLEAR-BUFFER GOAL
 19.050 PROCEDURAL CLEAR-BUFFER IMAGINAL
 19.050 UTILITY PROPAGATE-REWARD 0
 Utility updates with Reward = 0.0 alpha = 0.2
 Updating utility of production CHOOSE-A
 U(n-1) = 0.18999997 R(n) = -12.05 [0.0 - 12.05 seconds since selection]
 U(n) = -2.258
 Updating utility of production UNKNOWN-RESPONSE
 U(n-1) = 0.0 R(n) = -7.05 [0.0 - 7.05 seconds since selection]
 U(n) = -1.4100001
 Updating utility of production CHOOSE-B
 U(n-1) = 0.0 R(n) = -5.05 [0.0 - 5.05 seconds since selection]
 U(n) = -1.0100001
 Updating utility of production RESPONSE-DOESNT-MATCH
 U(n-1) = 0.0 R(n) = -0.05 [0.0 - 0.05 seconds since selection]
 U(n) = -0.010000001
 19.050 PROCEDURAL CONFLICT-RESOLUTION
 21.000 NONE utility-learning-issues-choose
 21.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL NIL
 21.000 PROCEDURAL CONFLICT-RESOLUTION
 21.000 ------ Stopped because time limit reached

This time the model chooses B, but the feedback indicates that A was the correct choice. The
response-doesnt-match production fires and provides a reward of 0 which gets propagated back.
However, in addition to penalizing the choose-b production as we would expect it also penalizes the
choose-a production. That happens because the reward affects all productions which have fired
since the previous reward, which occurred after response-matches fired on the first trial. Because
there was no reward provided on the second trial when unknown-response fired this reward gets
applied to the productions for that trial as well.

To prevent that from happening we will have to provide a reward on the trials without any feedback
when unknown-response fires. The question becomes how much reward should we provide when
there is no feedback? As always, there is no single answer to such a question and depending on the
task and hypothesis behind the model, values anywhere between the positive and negative feedback
may be appropriate. Alternatively, instead of picking a value, there is a special option available for
the reward which we will describe and use here.

The utility learning mechanism provides the option of specifying a “null reward”. Such a reward
does not adjust the utilities of any productions, but it does cause the marker for when the last reward
was provided to be updated. That allows the modeler to indicate that there was nothing to be learned
since the last reward was provided. As with choosing which reward values to provide, the modeler
will have to decide if a null reward value is appropriate for any particular situation.

Any non-numeric true value provided as a reward results in a null reward for the model. If one is
providing rewards to the model automatically with the firing of productions, as is done in this
example, then setting the reward value for a production to t instead of a number is how one specifies
the null reward. If instead one is using the trigger-reward command to provide rewards to the model
directly then any true non-numeric value can be provided to produce the null reward. The reason for
allowing any value when using trigger-reward is because it will show in the trace and will be passed
to monitoring commands which may be helpful when looking at the trace or developing the task
code.

Here is the setting we will add to the model to provide a null reward when there is no feedback for a
trial:
 (spp unknown-response :reward t)

By providing a null reward when the unknown-response production fires it will stop the reward from
the next trial from propagating back past that point.

After saving that change in the model and reloading it here is what we see now for the utility update
on the second and third trials:

 7.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-A
 7.050 PROCEDURAL CONFLICT-RESOLUTION
 12.000 NONE utility-learning-issues-show-result NIL
 12.000 PROCEDURAL CONFLICT-RESOLUTION
 12.050 PROCEDURAL PRODUCTION-FIRED UNKNOWN-RESPONSE
 12.050 PROCEDURAL CLEAR-BUFFER GOAL
 12.050 PROCEDURAL CLEAR-BUFFER IMAGINAL
 12.050 UTILITY PROPAGATE-REWARD T
 Non-numeric reward clears utility learning history.
 12.050 PROCEDURAL CONFLICT-RESOLUTION
 14.000 NONE utility-learning-issues-choose
 14.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL NIL
 14.000 PROCEDURAL CONFLICT-RESOLUTION
 14.050 PROCEDURAL PRODUCTION-FIRED CHOOSE-B
 14.050 PROCEDURAL CONFLICT-RESOLUTION
 19.000 NONE utility-learning-issues-show-result A
 19.000 PROCEDURAL CONFLICT-RESOLUTION
 19.050 PROCEDURAL PRODUCTION-FIRED RESPONSE-DOESNT-MATCH
 19.050 PROCEDURAL CLEAR-BUFFER GOAL
 19.050 PROCEDURAL CLEAR-BUFFER IMAGINAL
 19.050 UTILITY PROPAGATE-REWARD 0
 Utility updates with Reward = 0.0 alpha = 0.2
 Updating utility of production CHOOSE-B
 U(n-1) = 0.0 R(n) = -5.05 [0.0 - 5.05 seconds since selection]
 U(n) = -1.0100001
 Updating utility of production RESPONSE-DOESNT-MATCH
 U(n-1) = 0.0 R(n) = -0.05 [0.0 - 0.05 seconds since selection]
 U(n) = -0.010000001
 19.050 PROCEDURAL CONFLICT-RESOLUTION
 21.000 NONE utility-learning-issues-choose
 21.000 GOAL SET-BUFFER-CHUNK GOAL INITIAL-GOAL NIL
 21.000 PROCEDURAL CONFLICT-RESOLUTION
 21.000 ------ Stopped because time limit reached

On the second trial it now reports that there is a null reward which clears the history and sets a new
marker for the last reward given. Then on the third trial only the choose-b and response-doesnt-
match productions get an update to their utilities.

After that change the model seems to be working as we would expect now – it gets a positive reward
for guessing correctly, no change to rewards when there is no feedback, and a negative reward when
it guesses incorrectly. If we check the utility values of the choose-a and choose-b productions now
we see that the :u value for choose-a is greater than the :u value for choose-b:

Parameters for production CHOOSE-A:

 :utility 1.111
 :u 0.190
 :at 0.050
 :reward NIL
 :fixed-utility NIL
Parameters for production CHOOSE-B:
 :utility -1.961
 :u -1.010
 :at 0.050
 :reward NIL
 :fixed-utility NIL

As a test, we can run the model for several more trials and look at the results, and we can turn off the
trace using with-parameters, sgp, or the set_parameter_values functions so it runs faster, and then
look at the parameter values. Here is how they look after 15 trials:

Parameters for production CHOOSE-A:
 :utility 1.077
 :u -0.560
 :at 0.050
 :reward NIL
 :fixed-utility NIL
Parameters for production CHOOSE-B:
 :utility -2.348
 :u -2.464
 :at 0.050
 :reward NIL
 :fixed-utility NIL

We see that choose-a still has the greater U(n) value, though both are negative. Before considering
why they are both negative, we will compute the probability that the model will fire choose-a instead
of choose-b at this time using the equation from unit 6 of the tutorial:

0.56

.5* 2

0.56 2.464

.5* 2 .5* 2

Pr () .94
e

obability choose a

e e

−

− −− = ≈
+

That is likely a little higher than we would want if we were trying to fit human performance, but
without any explicit data to fit we will not adjust that in this model.

Now, as for why the values are negative, if we look back at the traces we will see that the penalty for
an incorrect response is -5.05 whereas the benefit for a correct response is only +0.95. That much
larger penalty for being incorrect appears to be what is driving the values negative, but we will look
into that further below to make sure there is not some other issue. Because the utility values are only
meaningful in comparison among competing productions, having negative values is not in and of
itself a bad thing that always needs to be corrected. One situation where that might be an issue
however is if one is using production compilation and has left the default utility value for newly

learned productions at 0. If the original productions have negative utilities then the newly learned
productions with utilities of 0 will be immediately more likely to be selected. That situation is not
recommended and one would likely want to adjust the starting utilities of the original productions,
adjust the initial utility for new productions, or adjust the rewards that are provided so that a more
gradual introduction of the newly learned productions occurs. Since this model is not using
production compilation, as long as we do not find something wrong with how it is operating we will
not attempt to adjust the rewards or other parameters to eliminate the negative utilities.

Using the utility trace to investigate the changes to the utility of the productions works alright when
dealing with a few trials in a small model, but if the task requires lots of trials or has lots of
competing productions then reading through the trace can be difficult and time consuming. The
“Production” tools in the Environment, which were introduced in the unit 3 modeling text, may help
to investigate utility issues for longer runs and we will look at doing so below. Using those tools
may not always explain what has happened, but when they do not they should at least help to find
where problems are occurring so that a more detailed investigation can be done using more fine
grain tools.

With the production grid we can get an overview of which productions are competing and which
one, if any, is selected. As described in the unit 3 text, to use the tool we should open it before
running the model so that it can record the data needed. When working with longer runs it can also
help to have the tool hide the empty columns. That can be done by checking the “Hide empty
columns” box near the bottom of the window. We should add a :v nil to the model parameters to
turn off the trace for now since we will be looking at the information through the Environment. We
will save that change, reload the model, and then open the “Production” grid tool so that it records
the data. We will run it for 40 trials (280 seconds) and then press the “Get history” button to see the
data. That should result in a display which looks something like this:

Each column is a conflict-resolution event. The green and orange productions indicate which ones
matched the current state and the green one is the one that was selected. Above we can see the first
three trials where the model chose A the first two times and then B on the third one. We could scroll

the view horizontally to see all the trials, but looking at the whole sequence at once can often be
more informative. To do that, we need to zoom out the display by pressing the “-” button at the
bottom of the window. After pressing that a few times we can have the entire 40 trial sequence
visible at once and that will look like this:

You may not always want to zoom out that far, but for purposes of this example we will look at the
entire run. One thing that can help when zooming out with this tool is to turn off the display of the
black likes separating the columns. To do that you can press the “Grid” button at the bottom and
then the display will look like this which may be a little easier to look at:

Looking at that display we can see that choose-a gets selected a lot more often than choose-b which
is what we expected from the model. If we are interested in the utility values at particular times we
can also see those by placing the mouse cursor over the green or orange bars in the display. Here is
what it shows for the first green bar in the choose-a row:

It shows the noisy utility value which was used during that conflict-resolution action and the true
U(n) value for the production at that time. In this case the U(n) is 0 since that is before any rewards
have been applied. If we look at the first choose-b occurrence (the orange box) we see that it also
has a U(n) of 0 and its utility was less than the utility of choose-a which is why choose-a was chosen
at that time:

Using this tool we could look at the utility change for each trial to see how things are changing from
trial to trial and you should feel free to investigate that. However, we will not be walking though
that in this text. Instead, we will look at an alternative way to view that information using the
“Production” graph tool.

The “Production” graph tool can display the sequence of production firings broken into segments
based on when the model received rewards and in that view it will also show the utility changes
which occurred. The “Production” graph tool relies on the same recorded data as the “Production”
grid tool so since we have been using that tool the information is already available and we can just
open the “Production” graph tool now and view the data without having to run the model again.

After opening a production graph display, to get the information we are interested in we need to
select the “Utilities” option on the left and then press the “Get History” button. That will result in a
display which looks like this after adjusting the window size to see all of the boxes:

The display is similar to the one shown earlier in the tutorial: it displays the sequence of productions
which fired as a directed graph starting at the production highlighted in green and ending with a
production highlighted in red. The “Utilities” display however differs in a couple of ways from
those seen previously. The first is that now the run is broken up into separate graphs based on when
the model receives rewards. The red highlighted productions will be the last production to fire
before a reward is received (except for the last display where it might be just the final production
which the model has fired whether or not it is followed by a reward). Since we have a reward
provided on each trial in this task there will be one graph for each trial of this run, but the display
shows that there are 41 total graphs to view. That is because the model has already selected a
production at the start of the 41st trail which results in another graph to be displayed. The other
difference from the previous production graph displays is that now in each production’s box we see
two blue lines. The one at the top represents the true utility of the production before the reward was
provided and the one below represents the true utility after the reward has been propagated. The

bars start at the left of the box and increase in length with the utility value. All of the productions
are displayed in boxes of the same width and the utilities are scaled across all of the productions and
graphs. A blue bar of length zero represents the minimum utility value that any production has
across the entire run and a bar the width of the production box will be the maximum utility that
occurs for any production over the entire run.

While this display does not show the actual values of the utilities, the relative changes that it does
show should be sufficient to verify that things are working as desired and should be easier to go
through than reading all the utility trace information. We will only show a couple of the graphs here
for reference, but you may want to step through all of them on your own to make sure you
understand how the model operates.

Looking at the display above we see that the model chose A on the first trail and that the response-
matches production fires indicating a correct choice. When that happens we see that both the
choose-a and response-matches productions had their utilities increased while the others stayed the
same (which we also saw earlier in the utility trace). By using the graphic display it should be easier
to look at the changes that occur on each trial than it would be to read through all of the utility traces.
We will only show a couple more examples from this run below, but you may want to look at the
whole sequence to verify for yourself that it works as expected.

Here is the second trial where choose-a is fired and then no feedback is provided:

On that trail we see that none of the utilities have changed. Then on the third trial we see choose-b
as the first production fired followed by response-doesnt-match:

The utility of choose-b clearly decreases, but response-doesnt-match appears to stay the same. The
reason for that is because the starting utility of the productions is 0 and the reward provided by
response-doesnt-match is also 0. However, it is important to note that there is still a very small
change in the utility of response-doesnt-match which was shown in the utility trace displayed earlier:
 19.050 UTILITY PROPAGATE-REWARD 0
 Utility updates with Reward = 0.0 alpha = 0.2
 Updating utility of production CHOOSE-B
 U(n-1) = 0.0 R(n) = -5.05 [0.0 - 5.05 seconds since selection]
 U(n) = -1.0100001
 Updating utility of production RESPONSE-DOESNT-MATCH
 U(n-1) = 0.0 R(n) = -0.05 [0.0 - 0.05 seconds since selection]
 U(n) = -0.010000001

At this time it has decreased from a utility of 0 to a utility of -0.01. That is because the effective
reward for a production is the reward provided, in this case 0, minus the time since the production’s
selection. Since the reward is provided when that production fires, 50ms have passed since its
selection and thus the effective reward it receives is -0.05 which is multiplied by the learning rate
of .2. That change in utility from 0 to -0.01 is not visible in the graphic display for this task, but
might be in other tasks since the changes shown are relative to the minimum and maximum utility
values in the model data.

After that trial there are several which show choose-a being selected followed by response-matches
and the utilities increasing. On the eighth trial we again find choose-a being selected, but this time it
is followed by response-doesnt-match:

There we see the utility of choose-a being decreased because of the incorrect guess and again, no
noticeable change in response-doesnt-match.

That is the last of the utilities graphs we will describe in the text, and ends our analysis of this test
model. Before going on however you may want to look at some more of the trials in the Utilities
graph and perhaps experiment with the two production tools described to get a feel for how they may
be useful. When you are done, you should then call the finished function to remove the new
commands which were added to implement the task.

Production Compilation

Models which use production compilation will almost always be using utility learning so that the
newly learned productions are introduced gradually, and they will also usually involve declarative
retrievals because compiling away a retrieval is one of the major benefits in compiled productions.
Because of that, one will have to be sensitive to all of the issues related to those mechanisms as
described above and in the unit 5 text. A recommended practice when working with production
compilation is to first make sure the model works as expected without turning on production
compilation. That is because it will be easier to fix the basic operation of the model as well as any
procedural and declarative learning issues without having to deal with newly learned productions as
well. Once the model is working well at that level, then turn on production compilation and address
any new issues which arise. Those new issues may still involve general utility or activation
processes in addition to issues related to the learning of new productions, but having tested the
model without production compilation should make it easier to locate and address the new issues. In
this text we will focus specifically on preparation, testing, and debugging issues related to the
production compilation aspects of an example model, but for other modeling tasks there may be
other issues which will also have to be addressed.

The Task

The task the model will perform is similar to the choice and one hit blackjack tasks from previous
units. Two numbers will be presented on the screen, each from 0-3, and then one of three choices
must be made using the keys s, d, and f. After a key is hit, the result of that choice for the given pair
of numbers will indicate whether the result was a win, loss, or draw. The spacebar must then be
pressed to advance to the next trial. No information about the choices is provided in advance and the
objective is to maximize the score (wins minus losses) based on the feedback provided while
responding as quickly as possible. We do not have any data for the task to fit the model to, but we
do expect the model to improve both its score and response time as it plays more games. We will
look at the performance of the model over the course of 150 trials, averaged into blocks of 10.

To run the model through multiple 150 trial sessions and report the average results call the pcomp-
issues-game function in Lisp or the game function from the pcomp_issues module in Python. It
requires one parameter which is the number of games to run and average together. It also takes an
optional parameter which if specified as true will print out the results of each of the individual
sessions as it runs.

The model can also be run through fewer trials using the pcomp-issues-trials function in Lisp or the
trials function from the pcomp_issues module in Python. It takes three optional parameters: the first
specifies how many trials to run with the default being 150, the second indicates whether the model
should be reset before the trial with the default being that it should, and the third indicates whether
the scores and response times should be displayed for every 10 trials (which also defaults to being
on).

The Starting Model

Before discussing anything related to production compilation, we will first describe a model which
has been written to perform the task without production compilation. That model is found in the
"production-compilation-issues-model.lisp" file. After that we will investigate what changes are
necessary to effectively use that model with production compilation.

To model this task we have created a model which uses partial matching to retrieve a chunk stored in
declarative memory from a previous trial that is similar to the current trial. This model is very
similar to how the one hit blackjack model operated, and that is because this is a typical approach to
use when a model must learn from experiences. For each trial of the task the model will create a
chunk which includes the pair of numbers, the choice it made, and the result for that choice. Then
when presented with a pair of numbers on another trial it will attempt to retrieve a chunk which
indicates the winning move for the current pair and use the retrieved chunk to determine a response
for this trial. The model has partial matching enabled so that it may be able to retrieve a chunk of a
past trial even if this is the first time it experiences a given pair or if it has not yet found the winning
move. The model also has base-level learning enabled so that the chunks which represent the trails
will have their activations increased as it encounters and uses them more often which should result in
a decrease in the response times over the experiment.

Here is a high-level flow chart representation of the steps which the model will be performing.

Many of those steps require multiple productions to perform, and you should be able to read through
the productions in the model and follow how it works at this point. We will not describe the
productions here, but we will provide some details on how the model represents the information it
uses to perform the task.

Here are the chunk-types which the model specifies:

 (chunk-type task state)
 (chunk-type number visual-rep)
 (chunk-type response key (is-response t))
 (chunk-type trial num1 num2 result response)

The task chunk-type is used for the goal buffer to keep an explicit state marker for sequencing
through the task. As has been stated in other units, doing that is not always necessary, but has been
done here to make the model easier to read and follow.

The number chunk-type is needed to encode the numbers which the model will be using in its
representation of the trials. That is necessary so that they can have similarities set between them.
The number chunks include a slot for the visual representation so that the model can retrieve a
number chunk based on the value which it gets when it attends to it on the screen. Here are the
initial number chunks which the model starts with in its declarative memory:
 (add-dm (zero isa number visual-rep "0")
 (one isa number visual-rep "1")
 (two isa number visual-rep "2")
 (three isa number visual-rep "3"))

The base-level of those chunks is set to a high value so that they should always be retrieved quickly.
There are also similarity values set between those items using a simple linear function based on their
differences.

The response chunk-type is used to represent the possible choices which the model can make in the
task. It has a slot which holds the representation of the key needed to make the manual response
and a slot with a default value of t which is there to make it easy to retrieve a random response in the
model by just indicating “isa response” in the request. Here are the chunks which the model starts
with in its declarative memory:
 (add-dm (response-1 isa response key "s")
 (response-2 isa response key "d")
 (response-3 isa response key "f"))

Like the number chunks, those chunks are given a high base-level activation as an assumption that
the model knows the instructions before starting the task.

The trial chunk-type is used to create the representation of a trial as the model performs the task.
The num1 and num2 slots will contain number chunks for the trial presented. The result slot will
contain one of the chunks: win, lose, or draw, and the response slot will contain the response chunk
used on that trial. Here is an example of what such a chunk might look like in the imaginal buffer at
the end of a trial:
IMAGINAL: IMAGINAL-CHUNK0
IMAGINAL-CHUNK0
 RESULT WIN
 NUM1 TWO
 NUM2 ONE
 RESPONSE RESPONSE-1

Like the numbers, the result is encoded as a chunk so that similarities can be set between the choices.
That way when the model attempts to retrieve a win, it may still be able to retrieve a draw or lose
result for the trial. Since the model will not need to retrieve those result values, to keep the model
simpler, they are encoded explicitly by productions instead of providing chunks in declarative
memory and requiring a retrieval for encoding.

If you look at the similarity settings in the model between the result chunks you may find it curious
that win is set to be more similar to lose than it is to draw. The reason for that is because if the
model cannot retrieve a winning move, then retrieving a losing move is strategically better than
retrieving a move which resulted in a draw for improving the score. Thus, the similarities are being
used in this case to represent the usefulness of the information as an abstraction for a more deliberate
strategy process in the model. That simplification is reasonable for this demonstration task since we

are only concerned about showing learning through practice, but a more thorough model of a task
like this may require the model to account for that strategy processing.

Here are the parameter settings from the model:
 (sgp :esc t :lf .5 :bll .5 :mp 18 :rt -3 :ans .25)

Since we do not have data to fit, the parameters for the model were either set to recommended values
(:bll and :ans) or simply adjusted to values which resulted in showing improvements which seemed
reasonable for the demonstration.

Here are the results for the model on the task averaged over 50 runs:

Average Score of 50 trials
2.38 4.94 6.46 7.32 7.78 7.74 7.88 7.84 8.00 8.28 8.72 8.36 8.62 8.66 8.30
Average Response times
7.84 4.71 3.08 2.40 1.95 1.77 1.63 1.55 1.47 1.38 1.32 1.29 1.27 1.23 1.24

It is improving its score and getting faster over trials, which is what we expect. You may want to
step through the model and perhaps explore its operation with the history and graphing tools before
continuing so that you have a good understanding of how it operates.

Considerations for Production Compilation

When using production compilation, there are some things that should be considered with respect to
the model for production compilation to work well. If the model was written with those
considerations in mind, then the next step would be to turn production compilation on and start
testing. However, if the model was not written for use with production compilation, which is the
case for the starting model we described above, then just turning it on “to see what happens” is
usually not going to work very well. For example, here is what happens if we run the starting model
with production compilation enabled and no other changes:

Average Score of 50 trials
0.86 1.68 2.98 2.00 2.30 2.58 2.54 3.00 2.92 2.70 3.30 2.80 2.86 3.22 3.48
Average Response times
8.51 6.53 5.36 5.17 4.80 4.35 4.29 3.97 3.92 3.75 3.45 3.54 3.51 2.95 2.81

Neither the scores nor the response times look very good relative to how it ran previously. That
might suggest that one should then start tracing, testing, and debugging the model, but the
recommendation would be to first consider the following issues before attempting to run it with
production compilation.

What is the task and how is the model run

Production compilation requires repetition to be effective because it will only show a change if the
model has the opportunity to use the newly learned productions. Thus, the task must be one in
which the model will be running repeatedly without being reset. Models which are already using
base-level learning or utility learning will likely have that characteristic already. Other tasks
however may not, for example the fan effect model and the subitizing models from the tutorial do
not. Those models are being reset for each trial, and thus production compilation would not show
any change in the results which they produce. If one wanted to use models like that with production

compilation they would have to be changed so that they run continuously over the trials instead. The
other thing to consider is whether there is enough repetition in the task to be effective. If one is
looking for declarative knowledge to become encapsulated in the productions there will typically
need to be multiple uses of those chunks so that the productions can be strengthened to the point of
competing with the originals. For example, even if the fan experiment model were to be changed to
present the trials continuously, since each test sentence is only presented once to that model, there
would probably not be any use of the productions which proceduralize the declarative information.
If the task is not continuous and/or does not provide any repetition then there is little reason to
enable production compilation since it will not affect the operation of the model.

Utility learning

One of the most important issues with respect to production compilation is utility learning. It is the
learning of utilities for the new productions which leads to their gradual introduction and whether
they will end up being used in place of the original productions. Without utility learning the new
productions will only ever have their initial utility value. If the model has not set the initial utilities
for the existing productions or changed the :nu and :iu parameters then a newly learned production
will have the same utility, 0, as all other productions and immediately compete with them, regardless
of whether that production is actually useful or not. For example, in this task, that might mean that a
production which always makes a losing move may be competing equally with the productions
which attempt to remember a past move.

If the starting model was already using utility learning then one will want to make sure that the
newly learned productions will start out with lower utilities than the original ones. If the original
productions have greater than zero utilities (either because they are explicitly set or because the :iu
parameter was set to greater than zero) then no immediate change would be needed. If the original
productions do start with zero or negative utilities then the :nu parameter, which controls where the
newly learned productions’ utilities start, should be set to a negative value so that they are lower than
the original productions’ utilities. In either case those initial utility values may need to be adjusted
as one starts to test the model, but it helps to have a reasonable starting point.

If the original model did not use utility learning, which is true for the starting model we have here,
then one will first have to add that to it. That means that in addition to enabling the mechanism one
will have to add some rewards to the model so that it has opportunities for learning. The utility
values for the initial productions and starting values for the newly learned productions will also have
to be set so that the new productions start below the originals (as described above).

When enabling utility learning for a model which will be using production compilation one will also
want to make sure that there is some utility noise in the system so that the newly learned productions
will have a chance to be selected. If there is no noise then the new productions will never exceed the
utility of their parents (assuming a recommended utility learning rate of less than 1.0) and thus will
never be selected. The amount of utility noise will affect the rate at which the new productions get
used (how many times they will need to be recreated before they have utilities with a reasonable
probability of being selected) since the noise affects the probability of selecting the productions as
shown in the equation from unit 6. Assuming that one wants the productions to be introduced
gradually, a low value for the noise is recommended, but what exactly constitutes a “low” value will
depend on the relative utilities and the learning rate in the model.

Expected Changes

Another thing to consider for a model is what production compilation may change about the way that
it operates. There are two very general things that production compilation can do: reduce sequences
of production firings into fewer productions and transition knowledge from a declarative
representation into a procedural one. Those can combine to produce interesting results, like the over
generalization that occurs in the past-tense model, but particular effects like that usually require
careful planning in the design of the model. As a first step, particularly for a model which may not
have been specifically designed for production compilation, just considering the potential changes
production compilation may have can be helpful before trying to use it.

If the model is being designed from the start to utilize production compilation, then knowing what
effects are desired will help to shape the initial creation of the model. When looking to get a
decrease in the time the model takes because of a reduction of long production sequences one will
likely want to start the model with productions which perform small steps so that there are
opportunities for productions to be compiled together. One will also want to be careful about
separating perceptual and motor tasks which will block the compilation of productions from those
which are expected to be compiled together. If the proceduralization of declarative knowledge is
desired, obviously one will first have to have a model which makes requests for declarative
information. Then one will have to carefully consider the productions which request and harvest the
retrieval buffer chunks. Those productions will need to be safe for compilation, and thus will need
to avoid other actions like requesting and harvesting perceptual information or performing multiple
motor actions since those cannot be combined through production compilation. In addition to that,
one may want to consider the details of what information is used to make the requests and what is
tested in the harvesting productions. Those details will shape how the compiled production works
and are important when looking for particular results, like generalization.

If the model was not initially designed for production compilation, then one should look over the
model with respect to the issues noted above to determine if compilation is going to be effective at
performing the desired results. If a speed up from creating shorter production sequences is desired,
then one will want to look at the productions and see if they seem amenable to compilation. Things
to look for are whether the productions are already performing multiple actions which might prevent
them being combined any further and whether or not the perceptual and motor actions are isolated or
pervasive throughout the productions. If it does not look like there will be many opportunities for
compilation to combine productions further then one may want to consider making some changes to
provide those opportunities. That might involve breaking up existing productions to make the model
slower initially so that production compilation can provide the speed up. It may also require creating
productions specifically for the perceptual and motor actions so that they are separated from
productions which can be compiled together. If the transition from declarative to procedural
knowledge is desired, then, like above, one will want to look at the productions which request and
harvest the declarative chunks to make sure that they can be composed.

Considering the starting model

With those concepts in mind, we will look at the task and starting model before enabling production
compilation and running it again. Because the original task involved base-level learning the model
already ran continuously over the trials. Also, the 150 trials provided enough repetition to show

learning for the declarative information. So the task and model seem like they are functionally
capable of working with production compilation.

Let us next consider what we expect production compilation to do for this model. Looking over the
productions, this starting model has been written with productions which already combine multiple
actions. In addition, there are only 10 productions fired to perform a trial of the task as it stands, and
since many of those productions are involved with perceptual processes that will always be required,
there appears to be little opportunity for this model to improve performance from reducing long
production sequences. If we were interested in fitting a particular gradual performance increase,
then we may want to reconsider this as a starting model and perhaps simplify those productions or
move to a model which uses a more general instruction following process to do the task, like the
paired associate task from unit 7. For this example we will not make any changes to try to change
that and just see if there are any gains in that respect as is. Transitioning the knowledge from
declarative to procedural however does seem like something which would be desirable in this task.
Instead of always having to retrieve a move from declarative memory we would like to see this
model develop productions which are able to make a move directly. The productions which the
model has for performing the critical retrievals are free of perceptual and motor actions (other than a
final response). Therefore, it seems like it should be possible for this model to do that. We could
look more closely at those productions now to make sure that they can safely be composed, but
instead we will wait and let the production compilation mechanism itself indicate any problems it
finds when we run it.

The last thing to consider is utility learning, and this starting model does not currently use it.
Therefore we will need to add that to it before production compilation will be able to affect the
operation of the model through a gradual introduction of newly learned productions. That will
involve setting some general parameters as well as providing rewards to the model. Because the
model’s results did not depend on utility learning we will have to start by just setting some
reasonable values, and then perhaps adjust them later once we enable production compilation and
see how it performs. We will take a little time to walk through exactly how we will chose those
initial values in the next few paragraphs.

Since the model already has three productions for processing the feedback, that seems like a good
place to add rewards. To determine how much reward to provide, we will make some simple
assumptions and go from there. If we assume that new productions will start at a utility of 0 (the
default), we will want the initial productions to start somewhere above that. Another assumption
that is usually a good one to make is that we do not want the initial productions to drop to a utility
below where a newly created production starts since we do not want the newly learned productions
to immediately be preferred. Since we are assuming that new productions start with a utility of 0,
that means that the initial productions should always have positive utilities. To ensure that, we do
not want productions to get negative effective rewards (the reward minus the time between the
production selection and the reward being provided). Thus, the minimum reward we want to
provide to the model will depend on the longest time we expect the model to take before getting a
reward. That should happen on the first trial it does because that will result in a retrieval failure for a
past game, which represents the maximum time a retrieval can take. To find that we will turn on the
trace with the detail level set to low to see when the feedback production fires and run one trail
(since the :seed parameter is not set in the starting model when you run it your trace will likely differ
slightly from the one shown here):

 0.000 GOAL SET-BUFFER-CHUNK GOAL TASK0 NIL
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0 NIL
 0.050 PROCEDURAL PRODUCTION-FIRED DETECT-TRIAL-START
 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0
 0.185 PROCEDURAL PRODUCTION-FIRED ATTEND-NUM-1
 0.187 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL ONE
 0.250 IMAGINAL SET-BUFFER-CHUNK-FROM-SPEC IMAGINAL
 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-NUM-1
 0.300 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1
 0.350 PROCEDURAL PRODUCTION-FIRED FIND-NUM-2
 0.435 VISION SET-BUFFER-CHUNK VISUAL TEXT1
 0.485 PROCEDURAL PRODUCTION-FIRED ATTEND-NUM-2
 0.487 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL ONE
 0.537 PROCEDURAL PRODUCTION-FIRED ENCODE-NUM-2
 0.587 PROCEDURAL PRODUCTION-FIRED RETRIEVE-PAST-TRIAL
 10.630 DECLARATIVE RETRIEVAL-FAILURE
 10.680 PROCEDURAL PRODUCTION-FIRED NO-PAST-TRIAL
 10.682 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL RESPONSE-3
 10.732 PROCEDURAL PRODUCTION-FIRED RESPOND
 10.732 MOTOR PRESS-KEY KEY f
 10.942 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2 NIL
 11.077 PROCEDURAL PRODUCTION-FIRED DETECT-FEEDBACK
 11.162 VISION SET-BUFFER-CHUNK VISUAL TEXT2
 11.212 PROCEDURAL PRODUCTION-FIRED ENCODE-FEEDBACK-DRAW
 11.212 MOTOR PRESS-KEY KEY SPACE
 11.212 GOAL SET-BUFFER-CHUNK-FROM-SPEC GOAL
 11.412 ------ Stopped because no events left to process

It takes the model a little under 11 seconds to respond, and the feedback production fires at time
11.212 seconds. Therefore if we want all of the productions to receive positive rewards on all of the
trials we will need to provide a reward greater than 11.212 in each case. Then, as long as the model
responds, all of the productions will receive a positive reward and should not drop to a utility below
0.

We now need to decide exactly how much reward to provide for each result, and we will also need to
consider the starting utility of the initial productions. What values to use can depend on many
factors in a complex model, but in this case we will use the minimum reward value for a positive
reward found above to provide some guidance. Thinking about the expected result, learning
productions which respond without retrieving a past game, presumably we only really want to learn
such productions for the responses which lead to wins, and not losses or draws. To achieve that we
will want to have multiple reward values so that wins are favored over the others. Whether or not to
favor a draw over a loss might matter for fitting real performance, but for this task we will assume
that a draw is better than a loss. Thus, we will have three reward values provided to the model.
Since we want all of the productions to receive positive rewards for completing the task, we will
start by giving a loss a reward of 12. From there we will choose some larger values for a draw and a
win. One could perform some analysis to determine values based on probability of being selected as
a function of rewards, but since we do not exactly know how production compilation will affect this
specific model we will just choose values of 15 and 18 for a draw and win respectively so that there
is some distance between them and see how that works. Thus, here are the settings which we will
add to the model:
 (spp encode-feedback-win :reward 18)
 (spp encode-feedback-lose :reward 12)
 (spp encode-feedback-draw :reward 15)

Now we need to choose the starting utility for the initial productions. Given the nature of the task
and the rewards chosen already, starting with the initial productions having a utility equal to the
reward given for a draw seems like a good place to start them. Then a win should result in
increasing utilities while a loss will cause them to decrease.

The last thing we need to add is the noise. As with the rewards, we could try to determine a value
analytically, but instead we will just pick a starting noise value of 1.0 and adjust it later if we notice
any issues. We will leave the learning rate, alpha, at its default of .2. So, here are the settings which
we need to add to the model now to enable utility learning and set those parameters:
 (sgp :ul t :egs 1.0 :iu 15)

Those changes should not affect the operation of the current model since it does not have any
productions which are currently competing for selection based on utility. If we run a few trials to
check it still seems to be performing as before:

Average Score of 50 trials
1.90 4.64 6.22 6.90 7.46 7.96 8.14 8.18 8.78 8.40 8.26 8.86 8.42 8.42 8.46
Average Response times
8.27 4.63 3.22 2.40 2.12 1.85 1.64 1.51 1.42 1.34 1.33 1.27 1.26 1.25 1.23

You may want to inspect that in more detail using the Environment tools as described for the first
model above to verify that it is always receiving a reward and to see how the utilities are changing,
even though they are not affecting the operation of this model.

Now that we have inspected the model and made the changes that were necessary for production
compilation to work well it is time to enable production compilation and start testing. To enable
production compilation all we need to do is set the parameter :epl to t, but we are also going to turn
on the additional trace output it provides so that we can see what it does as the model runs. Adding
these additional parameter settings to the model will turn on those mechanisms:

 (sgp :epl t :pct t)

Testing the Model

Testing a model which uses production compilation typically involves four phases. The first is
making sure the model performs as expected without production compilation enabled. After that,
production compilation is turned on and one runs the model watching the productions which are
generated by production compilation. The objective here is to verify that things are working well at
the symbolic level. You want to make sure that production compilation is able to compose the
starting productions into new productions, and that those new productions appear to be doing the
things you expect. Once it looks like production compilation is producing reasonable new
productions you want to make sure that those new productions are not going to cause problems for
the model’s operation. If the model is small and does not require a long time to run, then it may be
sufficient to just run it for multiple trials and monitor its operation, but for a large or very long
running model it may be easier to temporarily adjust some of the model parameters so that the new
productions are used right away so that their effects are easier to see. Finally, once you are

comfortable with the productions generated through compilation and how they affect the model’s
basic operation you can then start to run the model for comparison to data and determining whether
or not you get the overall results you were looking for and attempt to adjust the parameters as needed
to fit your data. As with all testing and debugging, that is not always going to be a simple sequential
process since one may have to go back and perform earlier tests again because of changes or
problems which are encountered in a later step.

Since we have already tested the model without production compilation we will now turn on
compilation and look at the productions it generates and the places where it cannot generate
productions. To see that we will need to turn the model trace on, the :v parameter, in addition to the
production compilation trace value we just added. Since we may also want to be able to repeat the
same trials again it is a good idea to have the model print out the current seed when it gets reset so
we can set that value again later if we want to run a trial again after making changes. To do that one
should add this setting to the top of the model definition as described in the unit 3 modeling text:

(sgp :seed)

However, to generate consistent results for this text we will be setting explicit seed values in the
model for testing purposes. The first seed we will use is:

 (sgp :seed (1 3))

Now we will run the model one trial at a time to look at the results of production compilation. It will
require multiple trials before we are going to see the primary result we are expecting because the
model will have to first learn a chunk which represents a trial and then be able to successfully
retrieve it. We could adjust the parameters and add additional chunks to the model to artificially
create the situations we are interested in seeing production compilation applied to, but since this is a
fairly simple model that is not really necessary because we can easily investigate the situations
occurring under the model’s normal operation.

Here is what we get with the production compilation trace enabled for the first trial with the :trace-
detail set to low:
 0.000 GOAL SET-BUFFER-CHUNK GOAL TASK0 NIL
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0 NIL
 0.050 PROCEDURAL PRODUCTION-FIRED DETECT-TRIAL-START
Production Compilation process started for DETECT-TRIAL-START
 No previous production to compose with.
 Setting previous production to DETECT-TRIAL-START.
 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0
 0.185 PROCEDURAL PRODUCTION-FIRED ATTEND-NUM-1
Production Compilation process started for ATTEND-NUM-1
 Buffer VISUAL prevents composition of these productions
 because the first production makes a request and the second production harvests the
chunk.
 Production DETECT-TRIAL-START and ATTEND-NUM-1 cannot be composed.
 Setting previous production to ATTEND-NUM-1.
 0.187 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL THREE
 0.250 IMAGINAL SET-BUFFER-CHUNK-FROM-SPEC IMAGINAL
 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-NUM-1
Production Compilation process started for ENCODE-NUM-1
 Production ATTEND-NUM-1 and ENCODE-NUM-1 are being composed.
 New production:

(P PRODUCTION0
 "ATTEND-NUM-1 & ENCODE-NUM-1 - THREE"
 =GOAL>
 STATE ATTEND-NUM-1
 =IMAGINAL>
 =VISUAL>
 VALUE "3"
 ==>
 =IMAGINAL>
 NUM1 THREE-0
 =GOAL>
 STATE FIND-NUM-2
 +VISUAL-LOCATION>
 :ATTENDED NIL
 > SCREEN-X CURRENT
)
Parameters for production PRODUCTION0:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to ENCODE-NUM-1.
 0.300 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1
 0.350 PROCEDURAL PRODUCTION-FIRED FIND-NUM-2
Production Compilation process started for FIND-NUM-2
 Buffer VISUAL-LOCATION prevents composition of these productions
 because the first production makes a request and the second production harvests the
chunk.
 Production ENCODE-NUM-1 and FIND-NUM-2 cannot be composed.
 Setting previous production to FIND-NUM-2.
 0.435 VISION SET-BUFFER-CHUNK VISUAL TEXT1
 0.485 PROCEDURAL PRODUCTION-FIRED ATTEND-NUM-2
Production Compilation process started for ATTEND-NUM-2
 Buffer VISUAL prevents composition of these productions
 because the first production makes a request and the second production harvests the
chunk.
 Production FIND-NUM-2 and ATTEND-NUM-2 cannot be composed.
 Setting previous production to ATTEND-NUM-2.
 0.487 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL ZERO
 0.537 PROCEDURAL PRODUCTION-FIRED ENCODE-NUM-2
Production Compilation process started for ENCODE-NUM-2
 Production ATTEND-NUM-2 and ENCODE-NUM-2 are being composed.
 New production:

(P PRODUCTION1
 "ATTEND-NUM-2 & ENCODE-NUM-2 - ZERO"
 =GOAL>
 STATE ATTEND-NUM-2
 =IMAGINAL>
 =VISUAL>
 VALUE "0"
 ==>
 =IMAGINAL>
 NUM2 ZERO-0
 =GOAL>
 STATE RETRIEVE-PAST-TRIAL
)
Parameters for production PRODUCTION1:
 :utility NIL
 :u 0.000
 :at 0.050

 :reward NIL
 :fixed-utility NIL
 Setting previous production to ENCODE-NUM-2.
 0.587 PROCEDURAL PRODUCTION-FIRED RETRIEVE-PAST-TRIAL
Production Compilation process started for RETRIEVE-PAST-TRIAL
 Production ENCODE-NUM-2 and RETRIEVE-PAST-TRIAL are being composed.
 New production:

(P PRODUCTION2
 "ENCODE-NUM-2 & RETRIEVE-PAST-TRIAL"
 =GOAL>
 STATE ENCODE-NUM-2
 =IMAGINAL>
 NUM1 =N1
 =RETRIEVAL>
 ==>
 =IMAGINAL>
 NUM2 =RETRIEVAL
 =GOAL>
 STATE PROCESS-PAST-TRIAL
 +RETRIEVAL>
 NUM1 =N1
 NUM2 =RETRIEVAL
 RESULT WIN
)
Parameters for production PRODUCTION2:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to RETRIEVE-PAST-TRIAL.
 10.630 DECLARATIVE RETRIEVAL-FAILURE
 10.680 PROCEDURAL PRODUCTION-FIRED NO-PAST-TRIAL
Production Compilation process started for NO-PAST-TRIAL
 Cannot compile RETRIEVE-PAST-TRIAL and NO-PAST-TRIAL because the time between them
exceeds the threshold time.
 Setting previous production to NO-PAST-TRIAL.
 10.682 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL RESPONSE-2
 10.732 PROCEDURAL PRODUCTION-FIRED RESPOND
Production Compilation process started for RESPOND
 Production NO-PAST-TRIAL and RESPOND are being composed.
 New production:

(P PRODUCTION3
 "NO-PAST-TRIAL & RESPOND - RESPONSE-2"
 =GOAL>
 STATE PROCESS-PAST-TRIAL
 =IMAGINAL>
 ?MANUAL>
 STATE FREE
 ?RETRIEVAL>
 BUFFER FAILURE
 ==>
 =IMAGINAL>
 RESPONSE RESPONSE-2-0
 =GOAL>
 STATE DETECT-FEEDBACK
 +MANUAL>
 CMD PRESS-KEY
 KEY "d"
)
Parameters for production PRODUCTION3:

 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to RESPOND.
 10.732 MOTOR PRESS-KEY KEY d
 10.942 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2 NIL
 11.077 PROCEDURAL PRODUCTION-FIRED DETECT-FEEDBACK
Production Compilation process started for DETECT-FEEDBACK
 Production RESPOND and DETECT-FEEDBACK are being composed.
 New production:

(P PRODUCTION4
 "RESPOND & DETECT-FEEDBACK"
 =GOAL>
 STATE RESPOND
 =IMAGINAL>
 =RETRIEVAL>
 IS-RESPONSE T
 KEY =KEY
 =VISUAL-LOCATION>
 ?MANUAL>
 STATE FREE
 ?VISUAL>
 STATE FREE
 ==>
 =IMAGINAL>
 RESPONSE =RETRIEVAL
 =GOAL>
 STATE ENCODE-FEEDBACK
 +VISUAL>
 CMD MOVE-ATTENTION
 SCREEN-POS =VISUAL-LOCATION
 +MANUAL>
 CMD PRESS-KEY
 KEY =KEY
)
Parameters for production PRODUCTION4:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to DETECT-FEEDBACK.
 11.162 VISION SET-BUFFER-CHUNK VISUAL TEXT2
 11.212 PROCEDURAL PRODUCTION-FIRED ENCODE-FEEDBACK-LOSE
Production Compilation process started for ENCODE-FEEDBACK-LOSE
 Buffer VISUAL prevents composition of these productions
 because the first production makes a request and the second production harvests the
chunk.
 Production DETECT-FEEDBACK and ENCODE-FEEDBACK-LOSE cannot be composed.
 Setting previous production to ENCODE-FEEDBACK-LOSE.
 11.212 MOTOR PRESS-KEY KEY SPACE
 11.212 GOAL SET-BUFFER-CHUNK-FROM-SPEC GOAL
 11.412 ------ Stopped because no events left to process

After every production fires production compilation attempts to create a new production, and for
each attempt the production compilation trace provides the details of what the resulting new
production looks like or a description of an issue which prevented it from compiling the productions.
We will look at each one that occurred in this trace to make sure things are working as expected.

Here is the first production compilation trace message:
 0.050 PROCEDURAL PRODUCTION-FIRED DETECT-TRIAL-START
Production Compilation process started for DETECT-TRIAL-START
 No previous production to compose with.
 Setting previous production to DETECT-TRIAL-START.

Since that is the first production there is nothing to compose it with and thus all it can do is record
that that production is now the previous one for use when the next one fires. The next result is this:
 0.185 PROCEDURAL PRODUCTION-FIRED ATTEND-NUM-1
Production Compilation process started for ATTEND-NUM-1
 Buffer VISUAL prevents composition of these productions
 because the first production makes a request and the second production harvests the
chunk.
 Production DETECT-TRIAL-START and ATTEND-NUM-1 cannot be composed.
 Setting previous production to ATTEND-NUM-1.

It indicates that the productions cannot be composed because the visual buffer blocks it due to the
request and harvesting of a chunk. Since perceptual information cannot be compiled into new
productions that is what we would expect and there is not anything we need to do to try to fix that.

The next result is somewhat unexpected:
 0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-NUM-1
Production Compilation process started for ENCODE-NUM-1
 Production ATTEND-NUM-1 and ENCODE-NUM-1 are being composed.
 New production:

(P PRODUCTION0
 "ATTEND-NUM-1 & ENCODE-NUM-1 - THREE"
 =GOAL>
 STATE ATTEND-NUM-1
 =IMAGINAL>
 =VISUAL>
 VALUE "3"
 ==>
 =IMAGINAL>
 NUM1 THREE-0
 =GOAL>
 STATE FIND-NUM-2
 +VISUAL-LOCATION>
 :ATTENDED NIL
 > SCREEN-X CURRENT
)
Parameters for production PRODUCTION0:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to ENCODE-NUM-1.

Since the encoding step which the model performs requires retrieving the number chunk from
declarative memory, production compilation is able to compose those two into a new production
which does not require the retrieval. We did not really consider that in what we expected from the
model, but it appears to be another opportunity for the model to get faster over time which is in line
with what we want so having such a production does not seem to be a problem.

The next two production compilation attempts are unsuccessful because the productions involved are
performing perceptual actions:
 0.350 PROCEDURAL PRODUCTION-FIRED FIND-NUM-2
Production Compilation process started for FIND-NUM-2
 Buffer VISUAL-LOCATION prevents composition of these productions
 because the first production makes a request and the second production harvests the
chunk.
 Production ENCODE-NUM-1 and FIND-NUM-2 cannot be composed.
 Setting previous production to FIND-NUM-2.

 0.485 PROCEDURAL PRODUCTION-FIRED ATTEND-NUM-2
Production Compilation process started for ATTEND-NUM-2
 Buffer VISUAL prevents composition of these productions
 because the first production makes a request and the second production harvests the
chunk.
 Production FIND-NUM-2 and ATTEND-NUM-2 cannot be composed.
 Setting previous production to ATTEND-NUM-2.

After that is a production very similar to production0 this time encoding the second number into the
imaginal buffer’s chunk without having to perform the retrieval:
 0.537 PROCEDURAL PRODUCTION-FIRED ENCODE-NUM-2
Production Compilation process started for ENCODE-NUM-2
 Production ATTEND-NUM-2 and ENCODE-NUM-2 are being composed.
 New production:

(P PRODUCTION1
 "ATTEND-NUM-2 & ENCODE-NUM-2 - ZERO"
 =GOAL>
 STATE ATTEND-NUM-2
 =IMAGINAL>
 =VISUAL>
 VALUE "0"
 ==>
 =IMAGINAL>
 NUM2 ZERO-0
 =GOAL>
 STATE RETRIEVE-PAST-TRIAL
)
Parameters for production PRODUCTION1:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to ENCODE-NUM-2.

Again, this was not expected, but seems to be in line with the general expectations.

The next composition results in a production which is just the composition of two productions
without removing an intervening retrieval:
 0.587 PROCEDURAL PRODUCTION-FIRED RETRIEVE-PAST-TRIAL
Production Compilation process started for RETRIEVE-PAST-TRIAL
 Production ENCODE-NUM-2 and RETRIEVE-PAST-TRIAL are being composed.
 New production:

(P PRODUCTION2
 "ENCODE-NUM-2 & RETRIEVE-PAST-TRIAL"
 =GOAL>

 STATE ENCODE-NUM-2
 =IMAGINAL>
 NUM1 =N1
 =RETRIEVAL>
 ==>
 =IMAGINAL>
 NUM2 =RETRIEVAL
 =GOAL>
 STATE PROCESS-PAST-TRIAL
 +RETRIEVAL>
 NUM1 =N1
 NUM2 =RETRIEVAL
 RESULT WIN
)
Parameters for production PRODUCTION2:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to RETRIEVE-PAST-TRIAL.

This is another opportunity for the model to speed up over time, and also in line with the general
expectation for the model.

Next, we see a failure to compose productions because of the amount of time that passed:
 10.680 PROCEDURAL PRODUCTION-FIRED NO-PAST-TRIAL
Production Compilation process started for NO-PAST-TRIAL
 Cannot compile RETRIEVE-PAST-TRIAL and NO-PAST-TRIAL because the time between them
exceeds the threshold time.
 Setting previous production to NO-PAST-TRIAL.

The threshold time is a settable parameter in the model which we might what to consider adjusting,
but since there was also a failure to retrieve a chunk those productions would not have been
composable anyway. So, we will hold off on adjusting the parameter until we see whether or not
successful retrievals are taking too long.

The next opportunity for composition results in a production which eliminates another retrieval:
 10.732 PROCEDURAL PRODUCTION-FIRED RESPOND
Production Compilation process started for RESPOND
 Production NO-PAST-TRIAL and RESPOND are being composed.
 New production:

(P PRODUCTION3
 "NO-PAST-TRIAL & RESPOND - RESPONSE-2"
 =GOAL>
 STATE PROCESS-PAST-TRIAL
 =IMAGINAL>
 ?MANUAL>
 STATE FREE
 ?RETRIEVAL>
 BUFFER FAILURE
 ==>
 =IMAGINAL>
 RESPONSE RESPONSE-2-0
 =GOAL>
 STATE DETECT-FEEDBACK
 +MANUAL>
 CMD PRESS-KEY

 KEY "d"
)
Parameters for production PRODUCTION3:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to RESPOND.

This production effectively results in guessing “d” when it cannot remember a past move. While
that does save time by eliminating a production and a retrieval, it probably will not be a very useful
production overall and we may never see it actually being used.

Despite the number of different conditions involved across various cognitive, perceptual, and motor
modules the respond and detect-feedback productions are able to be composed:
 11.077 PROCEDURAL PRODUCTION-FIRED DETECT-FEEDBACK
Production Compilation process started for DETECT-FEEDBACK
 Production RESPOND and DETECT-FEEDBACK are being composed.
 New production:

(P PRODUCTION4
 "RESPOND & DETECT-FEEDBACK"
 =GOAL>
 STATE RESPOND
 =IMAGINAL>
 =RETRIEVAL>
 IS-RESPONSE T
 KEY =KEY
 =VISUAL-LOCATION>
 ?MANUAL>
 STATE FREE
 ?VISUAL>
 STATE FREE
 ==>
 =IMAGINAL>
 RESPONSE =RETRIEVAL
 =GOAL>
 STATE ENCODE-FEEDBACK
 +VISUAL>
 CMD MOVE-ATTENTION
 SCREEN-POS =VISUAL-LOCATION
 +MANUAL>
 CMD PRESS-KEY
 KEY =KEY
)
Parameters for production PRODUCTION4:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to DETECT-FEEDBACK.

This seems like it might be yet another helpful production to save time doing the task, but a careful
look at the conditions and actions with respect to what happens in the task will expose an issue with
this production. This production gets a visual-location buffer test from detect-feedback and the
manual buffer request from respond. However, a chunk only enters the visual-location buffer

because of buffer stuffing after the model makes a response which causes the feedback to appear.
Thus, while there is nothing syntactically wrong with production4 it will never be able to match
during this task since it has a condition which only happens because of an action it performs. That
happens because production compilation has no way to detect dependencies which occur outside of
the productions, in this case that the screen changes as a result of the key press, and thus it creates a
production which will never be able to fire. Typically, that will not be problematic since a
production which does not match has no effect on the model’s performance, but in some rare
situations it may be necessary to explicitly indicate dependencies of that nature somehow in the
production conditions to avoid the composition of productions which violate implicit task
dependencies.

Here is the final opportunity for composition in this trial:
 11.212 PROCEDURAL PRODUCTION-FIRED ENCODE-FEEDBACK-LOSE
Production Compilation process started for ENCODE-FEEDBACK-LOSE
 Buffer VISUAL prevents composition of these productions
 because the first production makes a request and the second production harvests the
chunk.
 Production DETECT-FEEDBACK and ENCODE-FEEDBACK-LOSE cannot be composed.
 Setting previous production to ENCODE-FEEDBACK-LOSE.

which fails because of the perceptual action involved.

Looking at the first trial produced a couple of unexpected compositions, but nothing which seems to
violate what we want the model to do overall. Now we will run a couple more trials looking for
compositions we have not seen yet, and in particular we want to see what happens when there is a
successful retrieval of a past trial. We need to make sure to run those additional trials without
resetting the model, thus we will need to specify the optional reset value as nil/False so as to not
reset the model before the next run.

The second trail still does not result in a successful retrieval, but there are a few new production
compilation attempts to look at. The first occurs immediately when the feedback encoding
production of the previous trial gets composed with the detect-trial-start production:
 11.457 PROCEDURAL PRODUCTION-FIRED DETECT-TRIAL-START
Production Compilation process started for DETECT-TRIAL-START
 Production ENCODE-FEEDBACK-LOSE and DETECT-TRIAL-START are being composed.
 New production:

(P PRODUCTION5
 "ENCODE-FEEDBACK-LOSE & DETECT-TRIAL-START"
 =GOAL>
 STATE ENCODE-FEEDBACK
 =IMAGINAL>
 =VISUAL-LOCATION>
 =VISUAL>
 VALUE "lose"
 ?IMAGINAL>
 STATE FREE
 ?MANUAL>
 STATE FREE
 ?VISUAL>
 STATE FREE
 ==>
 =IMAGINAL>
 RESULT LOSE
 +VISUAL>

 CMD MOVE-ATTENTION
 SCREEN-POS =VISUAL-LOCATION
 +MANUAL>
 CMD PRESS-KEY
 KEY SPACE
 +IMAGINAL>
 +GOAL>
 STATE ATTEND-NUM-1
)
Parameters for production PRODUCTION5:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward 12.000
 :fixed-utility NIL
 Setting previous production to DETECT-TRIAL-START.

Like production4 from the first trial this production has a visual-location buffer condition which
will not be satisfied while doing this task because it comes about from the action which this
production would make. Thus, this is another production which will never match and fire.

A couple of other new productions are also composed and they appear similar to those created on the
first trial to compose the declarative information in the encoding phase into productions, which again
seems reasonable.

Later in the run we see two occasions where production compilation recreates the same productions
which it did in the first trial:
 11.995 PROCEDURAL PRODUCTION-FIRED RETRIEVE-PAST-TRIAL
Production Compilation process started for RETRIEVE-PAST-TRIAL
 Production ENCODE-NUM-2 and RETRIEVE-PAST-TRIAL are being composed.
 Recreating production PRODUCTION2
Parameters for production PRODUCTION2:
 :utility -1.959
 :u 2.451
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to RETRIEVE-PAST-TRIAL.

 22.384 PROCEDURAL PRODUCTION-FIRED DETECT-FEEDBACK
Production Compilation process started for DETECT-FEEDBACK
 Production RESPOND and DETECT-FEEDBACK are being composed.
 Recreating production PRODUCTION4
Parameters for production PRODUCTION4:
 :utility NIL
 :u 2.859
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to DETECT-FEEDBACK.

In both those cases we see that the true utility (:u value) of those productions has now increased from
0, their initial value when first composed, since they get rewards based on the parent productions’
utilities with each recreation.

There is however one curious composition given what we saw with the first trial:
 22.139 PROCEDURAL PRODUCTION-FIRED RESPOND
Production Compilation process started for RESPOND

 Production NO-PAST-TRIAL and RESPOND are being composed.
 New production:

(P PRODUCTION9
 "NO-PAST-TRIAL & RESPOND - RESPONSE-2"
 =GOAL>
 STATE PROCESS-PAST-TRIAL
 =IMAGINAL>
 ?MANUAL>
 STATE FREE
 ?RETRIEVAL>
 BUFFER FAILURE
 ==>
 =IMAGINAL>
 RESPONSE RESPONSE-2-1
 =GOAL>
 STATE DETECT-FEEDBACK
 +MANUAL>
 CMD PRESS-KEY
 KEY "d"
)
Parameters for production PRODUCTION9:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to RESPOND.

On the first trial we also saw the composition of a production which collapsed no-past-trial with
respond removing the retrieval of the chunk response-2:
 10.732 PROCEDURAL PRODUCTION-FIRED RESPOND
Production Compilation process started for RESPOND
 Production NO-PAST-TRIAL and RESPOND are being composed.
 New production:

(P PRODUCTION3
 "NO-PAST-TRIAL & RESPOND - RESPONSE-2"
 =GOAL>
 STATE PROCESS-PAST-TRIAL
 =IMAGINAL>
 ?MANUAL>
 STATE FREE
 ?RETRIEVAL>
 BUFFER FAILURE
 ==>
 =IMAGINAL>
 RESPONSE RESPONSE-2-0
 =GOAL>
 STATE DETECT-FEEDBACK
 +MANUAL>
 CMD PRESS-KEY
 KEY "d"
)
Parameters for production PRODUCTION3:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to RESPOND.

So the question is why on this trial is production9 created instead of just strengthening production3?
If we look closely at those productions we can see that they differ slightly in the modifications that
they perform to the chunk in the imaginal buffer:
 =IMAGINAL>
 RESPONSE RESPONSE-2-1

and
 =IMAGINAL>
 RESPONSE RESPONSE-2-0

So, now the question is why do they differ like that? If we look at declarative memory we do not
find either of those chunks. That probably means that they have been merged with other chunks.
We can find that out using the pprint-chunks/pprint_chunks command to display them:

RESPONSE-2-0 (RESPONSE-2)
 KEY "d"
 IS-RESPONSE T

RESPONSE-2-1 (RESPONSE-2)
 KEY "d"
 IS-RESPONSE T

Both have been merged with the original chunk response-2, which does not seem to help explain
why those are different productions. To answer that, we will have to look at where that action comes
from in the original productions.

The modification to the imaginal buffer chunk is an action from the respond production:
 (p respond
 =goal>
 isa task
 state respond
 =retrieval>
 isa response
 key =key
 ?manual>
 state free
 =imaginal>
 isa trial
 ==>
 =imaginal>
 response =retrieval
 +manual>
 cmd press-key
 key =key
 =goal>
 state detect-feedback)

In that production the slot is set to the chunk which is currently in the retrieval buffer. Recall that
buffers hold copies of chunks. Thus, when the respond production fires the chunk in the retrieval
buffer is not the chunk response-2 but a copy of it and since the buffer has not yet been cleared (that

happens after respond fires) that copy in the buffer has not yet been merged with response-2.
Production compilation does not know anything about what will happen to chunks in the future
when it uses them in composing a production. Therefore, every time production compilation
combines those two productions the chunk in the retrieval buffer will always be a new chunk and
since that chunk is used to set the response slot of the imaginal buffer it must create a new
production each time.

That may seem like a flaw with production compilation, but since it is not plausible for the
mechanism to know the future that is all it can do. Therefore the flaw is really in the model design –
specifically the representation of the knowledge it is using. It is the content of chunks which should
be meaningful to the model, not their particular identity. While it is often convenient to refer to
chunks by name like that in a model, there are situations where such shortcuts are inappropriate and
should be avoided. There are a lot of ways that this model could be changed to not use the identity
of the retrieved chunk directly, but since having those separate productions from this composition
should not affect what we expect from the model we are not going to make any of those changes
right now. However, if we encounter any other similar issues we will reconsider changing the
model.

Since we still have not seen a successful retrieval we will run the model for a few more trials until
we get one. On the fifth trial the model successfully retrieves a past trial chunk:
 48.062 PROCEDURAL PRODUCTION-FIRED RETRIEVED-A-WIN
Production Compilation process started for RETRIEVED-A-WIN
 Production RETRIEVED-A-WIN is not valid for compilation
 because it has an indirect action with the RETRIEVAL buffer

Unfortunately, production compilation tells us that the retrieved-a-win production is invalid for
compilation purposes because it makes an indirect retrieval action. Here is that production:
 (p retrieved-a-win
 =goal>
 isa task
 state process-past-trial
 =retrieval>
 isa trial
 result win
 response =response
 ==>
 +retrieval> =response
 =goal>
 state respond)

The value from the response slot of the trial chunk is being used to specify the retrieval, which is
done as a consequence of a specific chunk reference being stored in that slot as was discussed for the
respond production above. Since composing retrieve-past-trial and retrieved-a-win is something that
we want the model to do we are going to have to change the representation stored in the response
slot of the trial chunks and the productions which use them.

There are many ways which we could change the model, but because the model has such a simple
representation for the response chunks we will start by making a small change and see how that
affects things. The change that we will make is that instead of storing a response chunk itself in the
response slot of the trial chunk we will store the value from the key slot of a response chunk in the
response slot of the trial chunk. If the response chunks had contained more slots, then this simple

change may not have been possible and a more thorough analysis of the model and its
representations would have been required to determine how to request and harvest the chunks
needed so that they would be compatible with production compilation.

Making that change requires changing three productions. The respond production needs to be
changed to save the key slot’s value instead of the response chunk itself:
 (p respond
 =goal>
 isa task
 state respond
 =retrieval>
 isa response
 key =key
 ?manual>
 state free
 =imaginal>
 isa trial
 ==>
 =imaginal>
 response =key
 +manual>
 cmd press-key
 key =key
 =goal>
 state detect-feedback)

Then the retrieved-a-win and retrieved-a-non-win productions need to be changed so that they
retrieve a response chunk based on the key value instead of indirectly retrieving the chunk:
 (p retrieved-a-win
 =goal>
 isa task
 state process-past-trial
 =retrieval>
 isa trial
 result win
 response =response
 ==>
 +retrieval>
 isa response
 key =response
 =goal>
 state respond)
 (p retrieved-a-non-win
 =goal>
 isa task
 state process-past-trial
 =retrieval>
 isa trial
 - result win
 response =response
 ==>
 +retrieval>
 isa response
 key =response
 =goal>
 state guess-other)

After making those changes, we should look at the model to make sure that there are not any other
changes that should be made while we are adjusting it since we are going to have to retest it without
production compilation before continuing to make sure it still works and making other changes now
may save us from having to come back and test it without compilation yet again later.

One thing to notice is that since we now have the key to press in the trial chunks the model does not
have to retrieve the response chunk in retrieved-a-win to be able to perform the key press. Similarly,
retrieved-a-non-win does not need to retrieve the current response either since it could just retrieve a
different response the way that guess-other does now and guess-other could be eliminated from the
model. If we were not using production compilation those might be useful changes to make to the
model, but production compilation should eliminate those retrievals from the model over time
anyway so for now we will not make those changes to the model.

Looking at the encoding productions, encode-num-1 and encode-num-2, we see that the number
chunks are also referenced by name for the trial encoding. If we go back and look at our first run
with compilation turned on we can see that production0 and production1 which the model learned
also have references to specific chunks, three-0 and zero-0 respectively, and as we saw with
production3 that means it is not going to be able to recreate and strengthen those productions. If we
want to see the model response times decrease through eliminating the retrievals in that portion of
the task we are also going to have to change how the model encodes the number chunks. In this case
we need to have chunks in the num1 and num2 slots of the trial so that the similarities between those
slot contents and the requested values will allow the model to retrieve a “close” trial chunk through
partial matching when it does not have a perfectly matching trial chunk to retrieve. Thus, we cannot
use the same change we did with the response chunks and just use the value of the visual-rep slot
from the numbers in the trial chunks. Unlike the response chunks however the model will not need
to retrieve the number chunks using the value from the slots of the trial chunk. Therefore we will
not have the problem of a direct retrieval being necessary and all we need to do is provide a way for
the model to reference the number chunks during the initial encoding without using the name of the
chunk currently in the retrieval buffer.

That means that we will need to add an additional slot to the number chunk-type to hold the
reference we want to use. We will call that slot representation and make this change to the chunk-
type specification in the model:

 (chunk-type number visual-rep representation)

That will then require making the following changes to the encoding productions to use that slot’s
value instead of the chunk in the retrieval buffer:
 (p encode-num-1
 =goal>
 isa task
 state encode-num-1
 =retrieval>
 isa number
 representation =number
 =imaginal>
 isa trial
 ==>
 =imaginal>
 num1 =number
 =goal>

 state find-num-2
 +visual-location>
 isa visual-location
 > screen-x current
 :attended nil)
 (p encode-num-2
 =goal>
 isa task
 state encode-num-2
 =retrieval>
 isa number
 representation =number
 =imaginal>
 isa trial
 ==>
 =imaginal>
 num2 =number
 =goal>
 state retrieve-past-trial)

Now we have to determine what value to store in that slot. It has to be a chunk so that similarities
can be set, and there are basically two ways to handle that. One is to simply store the name of the
number chunk itself in the representation slot when it is created. That would look like this in the
current model:
 (add-dm (zero isa number visual-rep "0" representation zero)
 (one isa number visual-rep "1" representation one)
 (two isa number visual-rep "2" representation two)
 (three isa number visual-rep "3" representation three))

The other option would be to create a more distributed representation which involves separate
chunks for the visual mapping and the number itself. That might look something like this in the
current model (though there are many ways to accomplish that):
(chunk-type number value)
(chunk-type number-visual visual-rep representation)

(add-dm (zero isa number value 0)
 (one isa number value 1)
 (two isa number value 2)
 (three isa number value 3)
 (isa number-visual visual-rep "0" representation zero)
 (isa number-visual visual-rep "1" representation one)
 (isa number-visual visual-rep "2" representation two)
 (isa number-visual visual-rep "3" representation three))

Note that for the number-visual chunks that perform the mapping from the visual representation to a
number above there are no chunk names specified. The chunk name is optional when creating
chunks and if one is not provided the system will generate a new name automatically. That
reinforces the notion that the name of those chunks does not matter and only the content is
important, but the downside to doing that is that it may make debugging the model more difficult
since there will not be easily recognizable names in the trace or when using the inspection tools and
debugging commands.

Which mechanism one chooses to use will depend on exactly what is required in the model and how
one believes people encode that information. For this task we will go with the simpler single chunk

representation, but you are welcome to try other alternatives and investigate the results as an
additional exercise.

After making those changes, but before trying production compilation again, we should run the
model without it to make sure that it still performs the task correctly. We need to remove the
parameter setting which enables production compilation and also remove the seed value so that we
can test it over multiple trials. Here are the results from the updated model:

Average Score of 10 trials
3.30 6.40 7.40 7.50 7.50 8.00 8.30 8.10 7.50 7.70 7.90 8.10 9.20 7.90 9.40
Average Response times
8.13 3.80 2.86 2.80 2.12 1.73 1.53 1.45 1.44 1.38 1.34 1.30 1.23 1.25 1.19

It still appears to be learning both with respect to increasing scores and decreasing response times.
So we will re-enable production compilation, set the seed parameter again (so that we can recreate
any issues which occur), and run it to see what happens with production compilation now. We will
not include all of the trace here, but will include the details for important sections related both to the
issues discussed above and any new issues which arise.

Looking at the productions learned during the initial encoding steps, like production0 and
production1, we now see that they contain references to the number chunks themselves instead of the
copy in the retrieval buffer when modifying the imaginal buffer:
 0.537 PROCEDURAL PRODUCTION-FIRED ENCODE-NUM-2
Production Compilation process started for ENCODE-NUM-2
 Production ATTEND-NUM-2 and ENCODE-NUM-2 are being composed.
 New production:

(P PRODUCTION1
 "ATTEND-NUM-2 & ENCODE-NUM-2 - ZERO"
 =GOAL>
 STATE ATTEND-NUM-2
 =IMAGINAL>
 =VISUAL>
 VALUE "0"
 ==>
 =IMAGINAL>
 NUM2 ZERO
 =GOAL>
 STATE RETRIEVE-PAST-TRIAL
)
Parameters for production PRODUCTION1:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to ENCODE-NUM-2.

In addition to that, on a later trial we see a production combining attend-num-2 and encode-num-2
that has been recreated and strengthened:
 34.560 PROCEDURAL PRODUCTION-FIRED ENCODE-NUM-2
Production Compilation process started for ENCODE-NUM-2
 Production ATTEND-NUM-2 and ENCODE-NUM-2 are being composed.
 Recreating production PRODUCTION7
Parameters for production PRODUCTION7:

 :utility 1.315
 :u 1.999
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to ENCODE-NUM-2.

Thus, those changes to the model seem to have achieved their desired effects. Similarly, we now see
production3 looking like this:
 10.732 PROCEDURAL PRODUCTION-FIRED RESPOND
Production Compilation process started for RESPOND
 Production NO-PAST-TRIAL and RESPOND are being composed.
 New production:

(P PRODUCTION3
 "NO-PAST-TRIAL & RESPOND - RESPONSE-2"
 =GOAL>
 STATE PROCESS-PAST-TRIAL
 =IMAGINAL>
 ?MANUAL>
 STATE FREE
 ?RETRIEVAL>
 BUFFER FAILURE
 ==>
 =IMAGINAL>
 RESPONSE "d"
 =GOAL>
 STATE DETECT-FEEDBACK
 +MANUAL>
 CMD PRESS-KEY
 KEY "d"
)
Parameters for production PRODUCTION3:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to RESPOND.

and on the second trial we see that it is now also recreated:
 22.139 PROCEDURAL PRODUCTION-FIRED RESPOND
Production Compilation process started for RESPOND
 Production NO-PAST-TRIAL and RESPOND are being composed.
 Recreating production PRODUCTION3
Parameters for production PRODUCTION3:
 :utility 2.376
 :u 2.857
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to RESPOND.

Running the model until we see it successfully retrieve a past trial shows the following in the trace:
 38.982 PROCEDURAL PRODUCTION-FIRED RETRIEVED-A-WIN
Production Compilation process started for RETRIEVED-A-WIN
 Cannot compile RETRIEVE-PAST-TRIAL and RETRIEVED-A-WIN because the time between them
exceeds the threshold time.

 Setting previous production to RETRIEVED-A-WIN.

Previously we saw that retrieved-a-win was not valid for compilation, but now it is saying that the
threshold time has been exceeded. That means the production is valid for composition, but too much
time passed between the previous production’s firing and the firing of this production. Here we see
the time for the retrieval to complete:
 34.610 PROCEDURAL PRODUCTION-FIRED RETRIEVE-PAST-TRIAL
Production Compilation process started for RETRIEVE-PAST-TRIAL
 Production ENCODE-NUM-2 and RETRIEVE-PAST-TRIAL are being composed.
 Recreating production PRODUCTION2
Parameters for production PRODUCTION2:
 :utility 6.972
 :u 5.281
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to RETRIEVE-PAST-TRIAL.
 38.932 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL IMAGINAL-CHUNK0-2

The retrieval took around 4.3 seconds to complete. Whether or not this is a problem, like many such
issues, depends on one’s hypothesis for what is happening when people learn in such tasks, and there
are potentially multiple issues involved here. The first is whether or not one considers a 4 second
retrieval to be reasonable for this task. If not, then one may want to adjust the declarative memory
parameters to change that. Without data for comparison we are going to just assume that that
retrieval is acceptable. Then, if one assumes that the retrieval time is acceptable, the next issue is
whether one believes that the declarative knowledge must be strengthened prior to its being
composed into procedural knowledge (have an activation value sufficient for it to be retrieved within
the compilation threshold time) or whether production compilation should start compiling the
knowledge immediately. The default setting for the production compilation threshold time is three
seconds, but that value is just a conservative starting point for the system and not a strongly
recommended value. For the purpose of this exercise we are going to adjust the threshold time
parameter so that compilation can occur right away. To do that we must change the value of the :tt
parameter to something larger than 4.322 (since that is how long the retrieval takes), and as a first
pass we will choose 10 so that this pair of productions will fire. Thus, we will add this additional
parameter setting to the model:
 (sgp :epl t :pct t :tt 10)

After saving and reloading the model now when it gets to that point we see that it creates this
production:
 38.982 PROCEDURAL PRODUCTION-FIRED RETRIEVED-A-WIN
Production Compilation process started for RETRIEVED-A-WIN
 Production RETRIEVE-PAST-TRIAL and RETRIEVED-A-WIN are being composed.
 New production:

(P PRODUCTION21
 "RETRIEVE-PAST-TRIAL & RETRIEVED-A-WIN - IMAGINAL-CHUNK0-2"
 =GOAL>
 STATE RETRIEVE-PAST-TRIAL
 =IMAGINAL>
 NUM1 ONE
 NUM2 THREE
 ==>
 =IMAGINAL>
 =GOAL>

 STATE RESPOND
 +RETRIEVAL>
 IS-RESPONSE T
 KEY "s"
)
Parameters for production PRODUCTION21:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to RETRIEVED-A-WIN.

That production makes the request for a particular response, "s", based on testing the specific values
encoded in the trial chunk without needing to retrieve a similar trial. That is what we want to see the
model do. So, now all we need to do for verifying what happens symbolically in the model is see
what happens when the model retrieves a non-winning past trial. However, after running many more
trials that production still does not show up in the trace as being selected and fired.

One option would be to just ignore it since it did not fire and move on to testing the model over the
whole task, but perhaps it did not fire because of the particular seed value we have set for the
pseudo-random number generator. We want the model to work without requiring any particular seed
value being set, and that production seems like it should fire sometimes. So, before moving on we
will do some more tests to see if that production ever does fire, and if so what the results from
production compilation are.

One way to test this would be to just remove the seed setting and then run the model repeatedly
looking at the trace each time until we find one where it fires (we would probably also want to
display the starting seed each time as was shown in the unit 3 modeling text so that we can recreate
the trial once we find it). In some situations doing things that way might be acceptable, but it can be
a very tedious process and might not be feasible in all situations. Something that can be useful to
take advantage of is that we can use the !eval! operator in the productions to actually set a flag for us
so that we can write some code that will run it until that flag is set.

There are many ways one could do that, and if one is running things from the ACT-R prompt it can
be a little easier since you could put Lisp code directly into that !eval!, but for consistency with what
we saw earlier in the tutorial and to keep the approaches similar between the Lisp and Python
implementations we will add a new ACT-R command to set the flag.

To find a game in which that production fires we will add a !eval! action like this to the production
to call a command called set-flag (which we will add before running it):
 (p retrieved-a-non-win
 =goal>
 isa task
 state process-past-trial
 =retrieval>
 isa trial
 - result win
 response =response
 ==>
 !eval! ("set-flag")
 +retrieval>
 isa response
 key =response
 =goal>

 state guess-other)

We also need to remove the :seed parameter setting from the model and just add a check of the
parameter at the top of the model.

We also want to make sure that the :v parameter is set to nil to disable the trace. Then we need to
add the set-flag command and write some code to actually run the model and test that result to find a
game when it happens. Here is some Lisp code evaluated at the prompt to do so:
? (defvar *used* nil)
USED
? (defun set-flag () (setf *used* t))
SET-FLAG
? (add-act-r-command "set-flag" 'set-flag "Command for testing the pcomp-issues
retrieved-a-non-win production.")
T
"set-flag"
? (while (null *used*)
 (pcomp-issues-game 1))

Here is some similar Python code to do the same thing:

>>> used = False
>>> def set_flag ():
... global used
... used = True
...
>>> actr.add_command("set-flag",set_flag,"Command for testing the pcomp-issues retrieved-
a-non-win production.")
True
>>> while used == False:
... pcomp_issues.game(1)
...

When you use either of those you will see some output like this that prints the seed value and then
the model results repeatedly until a game is found where it gets used:

:SEED (79246602791 0) (default NO-DEFAULT) : Current seed of the random number generator

Average Score of 1 trials
0.00 4.00 3.00 10.00 10.00 7.00 10.00 9.00 9.00 10.00 9.00 10.00 10.00 10.00 10.00
Average Response times
9.64 5.97 7.57 2.28 1.97 2.21 2.27 1.32 1.19 1.14 1.19 1.21 1.20 1.13 1.16
:SEED (79246602791 7739) (default NO-DEFAULT) : Current seed of the random number
generator

Average Score of 1 trials
3.00 8.00 7.00 9.00 9.00 9.00 8.00 10.00 10.00 8.00 10.00 8.00 10.00 9.00 8.00
Average Response times
8.70 5.74 3.03 1.73 1.97 1.47 1.64 1.25 1.24 1.58 1.26 1.11 1.17 1.12 1.37
:SEED (79246602791 15065) (default NO-DEFAULT) : Current seed of the random number
generator

Average Score of 1 trials
2.00 4.00 2.00 5.00 7.00 4.00 5.00 10.00 10.00 10.00 8.00 10.00 10.00 10.00 10.00
Average Response times

6.23 5.90 4.59 5.03 3.03 4.50 3.46 1.47 1.51 1.30 1.65 1.26 1.35 1.14 1.12

If you try that you will see different seed values displayed, but eventually it should stop and the last
seed value shown will result in a game where that production fires. Before looking at the trace of
that trail we will first remove that !eval! from the production because that will cause problems for
production compilation with a warning like this:

 36.267 PROCEDURAL PRODUCTION-FIRED RETRIEVED-A-NON-WIN
Production Compilation process started for RETRIEVED-A-NON-WIN
 Production RETRIEVED-A-NON-WIN is not valid for compilation
 because it contains one or more !eval! operators

Since the procedural system does not know what happens because of that external call through !eval!
it considers it unsafe to compose that production.

We then need to set the seed to (79246602791 15065) since that is the value we found above and
turn the trace back on. Then we will run it a trial at a time to find where that production fires.
 36.267 PROCEDURAL PRODUCTION-FIRED RETRIEVED-A-NON-WIN
Production Compilation process started for RETRIEVED-A-NON-WIN
 Production RETRIEVED-A-NON-WIN is not valid for compilation
 because it has conditions with modifiers on slot tests

It indicates that the production is not valid for compilation because it has modifiers on the slot tests.
Here is the production again for reference:
 (p retrieved-a-non-win
 =goal>
 isa task
 state process-past-trial
 =retrieval>
 isa trial
 - result win
 response =response
 ==>
 +retrieval>
 isa response
 key =response
 =goal>
 state guess-other)

The result slot test in the retrieval buffer's condition is the only one that has a modifier so that must
be what is stopping compilation.

That is an important issue to keep in mind when working with production compilation. It cannot
compile productions which have tests for inequalities for reasons similar to not composing across a
retrieval failure – one does not generally want to encode that something was not true and assume that
will always be the case. However it is often convenient to have such tests in the productions which
one wants to be compiled. There are a couple of ways to handle that. The first is to replace the
production with one or more productions that perform the same calculation using a positive test. In
this case that would mean adding retrieved-a-lose and retrieved-a-draw productions which test for
those values explicitly as retrieved-a-win does. Since there are only three possible options that

would not be a difficult change to make for the model, but in other situations that might not be
feasible because there may be too many choices or not all the possibilities may be known in advance.
An alternative, which we will use here, is to just bind the value from the slot to a variable in the
buffer test and then perform the inequality test in code. Although we noted above that a !eval!
blocks the composition, there is a special version which allows one to tell the procedural system that
you are guaranteeing the external code to be “safe” with respect to production compilation. To do
that you can use the !safe-eval! operator instead. That could go out through an external command,
as we used above, but for simplicity we are just going to perform the check directly in Lisp code in
the production:
 (p retrieved-a-non-win
 =goal>
 isa task
 state process-past-trial
 =retrieval>
 isa trial
 result =result
 response =response
 !safe-eval! (not (equal =result 'win))
 ==>
 +retrieval>
 isa response
 key =response
 =goal>
 state guess-other)

If we save that change and run the model to that point again we will now see the following
production compilation trace result:
 36.267 PROCEDURAL PRODUCTION-FIRED RETRIEVED-A-NON-WIN
Production Compilation process started for RETRIEVED-A-NON-WIN
 Production RETRIEVE-PAST-TRIAL and RETRIEVED-A-NON-WIN are being composed.
 New production:

(P PRODUCTION21
 "RETRIEVE-PAST-TRIAL & RETRIEVED-A-NON-WIN - IMAGINAL-CHUNK0-2"
 !SAFE-EVAL! (NOT (EQUAL (QUOTE LOSE) (QUOTE WIN)))
 =GOAL>
 STATE RETRIEVE-PAST-TRIAL
 =IMAGINAL>
 NUM1 TWO
 NUM2 TWO
 ==>
 =IMAGINAL>
 =GOAL>
 STATE GUESS-OTHER
 +RETRIEVAL>
 IS-RESPONSE T
 KEY "s"
)
Parameters for production PRODUCTION21:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to RETRIEVED-A-NON-WIN.

This time it created a production which will retrieve the response for "s" whenever it has encoded a
trial of the numbers two and two. The !safe-eval! from the retrieved-a-non-win production has been
included in the conditions of this production, but because the retrieval chunk's contents were
compiled into the production the test is now explicitly testing that the symbol lose is not equal to the
symbol win which will always be true. Unlike the compilation of retrieve-past-trial and retrieved-a-
win however this production is not actually mapping a specific trial to a particular result because the
production which fires after retrieved-a-non-win, guess-other, will retrieve a different response to
make since the model does not want to make the response that did not lead to a win:
 (p guess-other
 =goal>
 isa task
 state guess-other
 =retrieval>
 isa response
 key =key
 ==>
 +retrieval>
 isa response
 - key =key
 =goal>
 state respond)

Therefore when it retrieves a non-winning trial it is not going to immediately create a new
production which performs a specific move. Since retrieved-a-non-win does not seem to fire very
often (we had to search to find a game in which it did) that is not likely to be an issue in the model,
but it is worth keeping in mind for any analysis we do later.

Before moving on to looking at the performance there is one last detail to mention. The guess-other
production shown above includes a negative modifier in its request to the retrieval buffer so that it
will retrieve a response which does not match the current one. Unlike inequality tests in the
conditions however modifiers in a request are allowed for production compilation and we see this
production as the result of production compilation for retrieved-a-non-win and guess-other in the
trace and it keeps the modifier in the request:
 36.319 PROCEDURAL PRODUCTION-FIRED GUESS-OTHER
Production Compilation process started for GUESS-OTHER
 Production RETRIEVED-A-NON-WIN and GUESS-OTHER are being composed.
 New production:

(P PRODUCTION22
 "RETRIEVED-A-NON-WIN & GUESS-OTHER - RESPONSE-1"
 !SAFE-EVAL! (NOT (EQUAL =RESULT (QUOTE WIN)))
 =GOAL>
 STATE PROCESS-PAST-TRIAL
 =RETRIEVAL>
 RESPONSE "s"
 RESULT =RESULT
 ==>
 =GOAL>
 STATE RESPOND
 +RETRIEVAL>
 IS-RESPONSE T
 - KEY "s"
)
Parameters for production PRODUCTION22:
 :utility NIL

 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL
 Setting previous production to GUESS-OTHER.

The reason it can keep a modifier in a request is because that request is not a constraint of the
procedural system – all the information which is contained in a request is either constant values or
was truthfully bound in the condition of the production. Therefore, it is not encoding any
assumption that something is false or not available when composing that request into the production.

Now we have verified that production compilation is able to compose the starting productions from
the task into productions that seem reasonable. The next thing to investigate is whether or not the
compiled productions are being used by the model, and if so, whether they are having an effect on
how it performs the task.

There are many ways one can look for that, but here we will show how the “Production” grid tool in
the Environment can be useful with production compilation. As we did above, we need to open the
tool before running the model and then press the “Get History” button once the model is done. We
will leave the seed value set to (79246602791 15065) so that we can recreate this run if we want to
look at it again in detail, but turn the :v parameter off again since we don’t need to see the trace
information. Here is the result from one game with that seed:

Average Score of 1 trials
2.00 4.00 2.00 5.00 7.00 4.00 5.00 10.00 10.00 10.00 8.00 10.00 10.00 10.00 10.00
Average Response times
6.23 5.90 4.59 5.03 3.03 4.50 3.46 1.47 1.51 1.30 1.65 1.26 1.35 1.14 1.12

Looking at the results displayed the model still seems to be performing the task correctly and is still
getting faster and more accurate as it performs the task. So there do not appear to be any problems
introduced because of the productions that are being composed. In the production grid it is going to
take a little while for the display to update after hitting “Get History” because of the amount of data
to display, but once it does there should be a lot of new productions listed and many columns of
data. It may help to check the "Hide empty columns" box at the bottom to remove the output for
conflict resolution events that did not result in selecting a production. The results will look
something like this:

We discussed how to read the results of this display previously, but there is something new about
this display because of production compilation. The newly compiled productions have white boxes
in some columns which do not report any details when the cursor is placed over them. Those boxes
indicate that the production did not exist at that time. Thus the first non-white box in a row indicates
approximately when the production was created because that was the first time it was attempted to
be selected.

The composed productions are also displayed in the order in which they were created. This provides
us with a fairly easy way to determine if the model is continuing to learn new productions
throughout the task, or if there appears to be a point at which it has learned all the new productions
that it can. If we zoom out on the display by hitting the "-" button, turn off the vertical lines by
hitting the "Grid" button, scroll down to the last new production, and then scroll right to see the end
of the task we will see something like this:

That shows that even near the end of the task this model was still composing new productions. That
may or may not be a good thing depending on what one was expecting for the task. Given the
overall length of our task, approximately 10 minutes, it does not seem unreasonable that there are
still opportunities for further learning at the end, but in other models one might expect compilation
to slow down or stop before the end of the task.

Now we will start looking at the productions which the model has generated in more detail. If there
were not as many then it might be worthwhile to use the "Procedural” viewer to look at all of them
to see what they look like and what their utilities are at the end. However, since there are more than
100 composed productions and there did not appear to be any problems as it performed the task we
are going to just look for productions that have particular histories to investigate. In particular, the
things that will be looking for are productions which never match because those might indicate a
problem which we did not notice previously and new productions which are actually used by the
model because those should be the ones that we are expecting it to learn and use.

There are a few ways to find productions which are never matched based on the details recorded
automatically by ACT-R. One way is by using the Grid tool in the Environment and looking for
rows with no orange or green boxes in them. If we zoom out they should be fairly easy to locate,
and some of the first few productions learned, production0, production4, and production5 all seem to
have that property, as do several others. Another way to find them would be to use the "Procedural”
viewer to look for productions which have a :utility parameter value of nil. That parameter records
the utility the production had the last time it matched, and if it is nil it means that it has never
matched. We can also test that parameter value in code because we can get the production

parameters using the spp command. That allows us to do something like this in Lisp to create a list
of all the productions which have a nil :utility parameter setting:
? (mapcar 'car (remove-if (lambda (x) x) (no-output (spp :name :utility)) :key 'second))
(RESPOND-WHEN-RESPONSE-FAILURE PRODUCTION0 PRODUCTION4 PRODUCTION5 PRODUCTION11
PRODUCTION12 PRODUCTION21 PRODUCTION22 PRODUCTION23 PRODUCTION25 PRODUCTION32
PRODUCTION35 PRODUCTION42 PRODUCTION60 PRODUCTION80 PRODUCTION116 PRODUCTION529
PRODUCTION530 PRODUCTION589 PRODUCTION600 PRODUCTION646 PRODUCTION671 PRODUCTION745
PRODUCTION775 PRODUCTION785)

or something very crudely like this in Python (I’m sure there are much nicer ways to do so):
>>> actr.hide_output()
>>> all = actr.spp(':name',':utility')
>>> actr.unhide_output()
>>> for i in all:
... if i[1] == None:
... print(i[0])
...

However we go about finding them, there are 25 such productions in this model. We will not look at
each individually here, but what you will find if you do is that they basically fall into four general
categories which we will discuss. Before continuing, you might want to look them over and see if
you can find the similarities among them yourself.

Before looking at the general categories, there is one of the productions which never matches that is
actually a starting production in the model: respond-when-response-failure. The respond-when-
response-failure production is only needed if the model ever fails to retrieve a response, and since
that should not happen we would not expect to see that production selected and fired. It could
probably be removed from the starting model without affecting things, but it is often safest to
include productions like that in a model so that it can deal with unexpected situation. It is possible,
no matter how unlikely, for the noise in the activations to push all chunks below the retrieval
threshold and if the model does not have any productions to deal with failures to retrieve it will be
stuck and unable to perform the task.

The first category are those that we already knew would not be used – productions which are
composed from a production which makes a response and one which detects the result of that
response. Those involve either detect-feedback or detect-trial-start as the second production in the
pair. Since we expected these to occur we do not need to investigate them further.

The next category are productions for rare situations, particularly those dealing with the retrieved-a-
non-win production. We know that is not a common occurrence in the model since we had to search
to find a game in which it occurred. Because of that the productions composed from it are also not
likely to have an opportunity to match either. That does not seem to be a problem we need to
investigate any further.

Another category of productions which does not match are those created late in the run which have
very specific constraints. Presumably those productions are not matching because that specific pair
of numbers is not presented again before the end of the experiment. Here are some examples of that:

(P PRODUCTION775
 "PRODUCTION2 & PRODUCTION29 - IMAGINAL-CHUNK0-5"
 =GOAL>
 STATE ENCODE-NUM-2
 =IMAGINAL>
 NUM1 ONE
 =RETRIEVAL>
 REPRESENTATION TWO
 ?MANUAL>
 STATE FREE
 ==>
 =IMAGINAL>
 NUM2 TWO
 RESPONSE "f"
 =GOAL>
 STATE DETECT-FEEDBACK
 +MANUAL>
 CMD PRESS-KEY
 KEY "f"
)
(P PRODUCTION785
 "PRODUCTION2 & PRODUCTION401 - IMAGINAL-CHUNK0-25"
 =GOAL>
 STATE ENCODE-NUM-2
 =IMAGINAL>
 NUM1 ONE
 =RETRIEVAL>
 REPRESENTATION ZERO
 ?MANUAL>
 STATE FREE
 ==>
 =IMAGINAL>
 NUM2 ZERO
 RESPONSE "s"
 =GOAL>
 STATE DETECT-FEEDBACK
 +MANUAL>
 CMD PRESS-KEY
 KEY "s"
)

Those productions seem to be close to what we wanted the model to be learning – mapping specific
problems to an action. They are also composed from previously composed productions so that
means the model is actually using some of the composed productions which we will look into further
shortly.

The final category of productions which are not being matched are productions composed from
attend-num-1 and encode-num-1. There are four such productions, one for each of the numbers
retrieved (zero, one, two, and three). They all have the same structure and here is one of them for
reference:
(P PRODUCTION0
 "ATTEND-NUM-1 & ENCODE-NUM-1 - THREE"
 =GOAL>
 STATE ATTEND-NUM-1
 =IMAGINAL>
 =VISUAL>
 VALUE "3"
 ==>

 =IMAGINAL>
 NUM1 THREE
 =GOAL>
 STATE FIND-NUM-2
 +VISUAL-LOCATION>
 :ATTENDED NIL
 > SCREEN-X CURRENT
)

We discussed this production before and expected it to help the model speed up over time, so the
question is why isn't it being selected? If we look for the similar productions which compose attend-
num-2 and encode-num-2, like production1:
(P PRODUCTION1
 "ATTEND-NUM-2 & ENCODE-NUM-2 - THREE"
 =GOAL>
 STATE ATTEND-NUM-2
 =IMAGINAL>
 =VISUAL>
 VALUE "3"
 ==>
 =IMAGINAL>
 NUM2 THREE
 =GOAL>
 STATE RETRIEVE-PAST-TRIAL
)

we find that it is matched multiple times over the course of the experiment so it seems odd that
production0 is not also matched. To figure out why production0 is not matched we can use the Grid
tool to look at the why-not information for production0 when we would expect it to be matched,
which is when attend-num-1 matches since that is the parent production with which it should be
competing. To find that it is probably easiest to zoom in again and restore the grid lines. The first
column that we find which has attend-num-1 selected while production0 exists is at time 11.542 and
this is what we find when we place the cursor over the red box in the production0 row:

It is not matching because the imaginal buffer is empty. The question then becomes why is the
imaginal buffer empty at that time? If you look at the model's productions you may be able to
ascertain why that is happening, but if not there are multiple ways to look into that further. One
would of course be to run it again with the trace on and look at the trace to see if you can determine
why. Another option would be to step through the operation with the Stepper tool so that you can
inspect things more closely as they occur. Something else which can be done, and which we will use
here, is to use a “Graphic trace” tool for recorded data from the Environment instead of the text trace
to try to determine what is happening.

To do that we need enable the saving of the “Graphic trace” information by opening the tool before
we run the model (either the horizontal or vertical version can be used and we’ll show the horizontal
one here). Since we know this happens on the second trail we can just run the model for two trials
instead of waiting for it to run the entire experiment.

Once that’s done we can press the “Get History” button and then go to the appropriate time of that
happening:

There we see that the imaginal module is busy creating a chunk at time 11.542 as requested by the
detect-trial-start production, and attend-num-1 is selected while that request is ongoing.
Production0, like encode-num-1 which it is composed from, requires that there be a chunk in the
imaginal buffer to match. Since attend-num-1 does not have that requirement it can be selected
while the imaginal module is still busy and the buffer is empty. That is another important thing to
remember about production compilation – a composed production will have to meet the constraints
imposed by both parents. If, as is the case here, the constraints for the second production take time
to occur then that composed production may not compete with its first parent and may never match.
While it seems like this is a lost opportunity for speedup in the model, looking at the other
information in the graphic trace actually shows that it does not really matter. That is because the
retrieval of the number chunk also completes before the imaginal chunk is created. Thus, the time
spent creating that imaginal chunk determines when encode-num-1 (or our composed production0)
will be able to be selected and fired. Eliminating attend-num-1 and the number retrieval through
composition would not change that timing. If we wanted to see a speedup from composing these
productions we would have to adjust when the model makes the request to create the imaginal
chunk so that it does not dominate the timing at this point or change the time it takes for imaginal
actions to occur. That does not seem like something worth changing in the model since we are
primarily expecting the speedup to occur because of composing the specific response information in
this model, but you are welcome to try those options as an additional exercise if you like.

Now that we have looked at the composed productions which are not matching we will look at those
which are being selected and fired to make sure that the model is learning to use the new productions
that we expected. Like finding those that were not matched there are multiple options available for
finding those which do match. However, there is not a simple parameter or other automatically
recorded information which we can test to do so. Thus, getting this information will require either
using the production grid tool or setting additional parameters in the model before running it.
Probably the easiest way is to again use the Production grid, and this time instead of looking for
empty rows we are looking for rows with lots of green and orange in them. If we want to see which
productions are selected we can get that from the model trace if we enable it, but to see those that
match but which are not selected we will also have to enable either the :cst or :crt parameter to
include the additional conflict resolution information. If we want to collect that information in a list
or process it in code then we would have to explicitly collect the information while the model runs
using the :conflict-set-hook parameter or ask the module to record the history internally and then get
the data when it is done. How to use the conflict-set-hook and the history recording tools are beyond
the scope of this document, but details can be found in the reference manual.

Looking at the grid there appear to be many new productions which are matching frequently, but
there are only a few which are getting selected and fired frequently. Those productions are
production2, production7, production29, production67, production91, production119,
production125, and production401. Those productions seem to fall into two categories: productions
which are collapsing the steps needed for encoding the second item (production2, production7,
production67, production91, production119, and production125) and productions which are making
a response based on a retrieved response chunk (production29 and production401). We expected
items of the first type to be created and used, but the second type, like production29, are not quite
what we were looking for:

(P PRODUCTION29
 "RETRIEVED-A-WIN & RESPOND - RESPONSE-3"
 =GOAL>
 STATE PROCESS-PAST-TRIAL
 =IMAGINAL>
 =RETRIEVAL>
 RESPONSE "f"
 RESULT WIN
 ?MANUAL>
 STATE FREE
 ==>
 =IMAGINAL>
 RESPONSE "f"
 =GOAL>
 STATE DETECT-FEEDBACK
 +MANUAL>
 CMD PRESS-KEY
 KEY "f"
)

That production has removed a retrieval which should reduce the time it takes to respond, but it is
not the main type of production we were looking to create. That production does not map the trial
information to a particular response. It just eliminates the retrieval of the response chunk that
occurred before it made the response. The productions we really want the model to start using will
be a combination of retrieve-past-trial and retrieved-a-win or another production which has been

composed from retrieved-a-win. So, now we will look for some of those and see why they are not
being selected.

Looking through the generated productions we do find instances of the productions we want, like
production21:
(P PRODUCTION21
 "RETRIEVE-PAST-TRIAL & RETRIEVED-A-NON-WIN - IMAGINAL-CHUNK0-2"
 !SAFE-EVAL! (NOT (EQUAL (QUOTE LOSE) (QUOTE WIN)))
 =GOAL>
 STATE RETRIEVE-PAST-TRIAL
 =IMAGINAL>
 NUM1 TWO
 NUM2 TWO
 ==>
 =IMAGINAL>
 =GOAL>
 STATE GUESS-OTHER
 +RETRIEVAL>
 IS-RESPONSE T
 KEY "s"
)

Looking at the history shows productions like that do match a few times, but they are not being
recreated enough to raise their utilities to a point where they are able to be selected over the original
productions. Since it is creating them and they do match, that is all we are concerned with for now.

Now that we have looked at the productions the model learns and seen that they do not cause any
problems for the model's ability to do the task we can start looking at the effect they have on the
model's performance on the task. To do that we will want to remove the seed setting from the model
and run it over multiple trials to see the average results. When doing that it will also be a good idea
to look at the individual game outcomes as well to make sure there are not any problems along the
way, and printing the seed for each will allow us to recreate a bad run if we see one.

To help with that we can use the optional parameter of the pcomp-issues-game function in Lisp and
the game function in the pcomp_issues module for Python to have it output the results for each game
run before displaying the average at the end. Here are some results from running 10 games with the
individual game results and each game's starting seed shown:
:SEED (149997927060 0) (default NO-DEFAULT) : Current seed of the random number generator
Score
 -1 6 8 8 5 7 8 6 8 7 10 10 6 8 5
Average response times
9.38 4.21 2.74 2.17 1.83 2.55 1.64 1.47 1.45 1.48 1.20 1.04 1.54 1.09 1.28
:SEED (149997927060 7259) (default NO-DEFAULT) : Current seed of the random number
generator
Score
 -1 8 8 8 8 8 8 10 10 10 7 10 10 9 8
Average response times
9.94 6.34 2.30 2.08 2.33 1.47 1.56 1.29 1.15 1.45 1.17 1.26 1.12 1.19 1.15
:SEED (149997927060 14787) (default NO-DEFAULT) : Current seed of the random number
generator
Score
 10 4 -6 2 6 6 2 4 6 10 8 8 10 6 10
Average response times
4.22 1.86 4.15 2.87 2.27 2.04 2.38 3.05 1.91 1.29 1.17 1.24 1.17 1.30 1.29
:SEED (149997927060 21463) (default NO-DEFAULT) : Current seed of the random number
generator
Score

 0 4 2 4 10 8 10 6 10 6 8 8 10 10 10
Average response times
7.41 1.91 1.83 2.94 1.58 1.19 1.68 1.26 1.19 1.13 1.33 1.22 1.08 1.00 1.00
:SEED (149997927060 28244) (default NO-DEFAULT) : Current seed of the random number
generator
Score
 3 7 10 8 9 8 9 7 7 6 10 8 10 8 10
Average response times
8.03 4.66 2.53 2.27 1.46 1.60 1.34 1.34 1.24 1.37 1.08 1.22 1.03 1.24 1.05
:SEED (149997927060 35409) (default NO-DEFAULT) : Current seed of the random number
generator
Score
 -3 8 7 8 6 8 7 7 7 7 7 7 8 8 9
Average response times
9.68 6.35 1.97 1.76 2.40 1.55 1.72 1.36 1.85 1.13 1.42 1.55 1.69 1.39 1.14
:SEED (149997927060 42684) (default NO-DEFAULT) : Current seed of the random number
generator
Score
 6 9 10 8 6 8 8 5 10 9 10 7 9 10 9
Average response times
6.09 3.99 2.21 1.67 1.45 1.66 1.46 1.36 1.50 1.33 1.11 1.30 1.27 1.02 1.14
:SEED (149997927060 49703) (default NO-DEFAULT) : Current seed of the random number
generator
Score
 3 8 8 9 9 10 9 9 9 9 8 4 9 8 8
Average response times
7.47 3.46 1.86 1.83 1.46 1.31 1.23 1.06 1.43 1.22 1.05 1.25 1.05 1.19 1.13
:SEED (149997927060 56620) (default NO-DEFAULT) : Current seed of the random number
generator
Score
 6 4 10 2 8 4 8 6 2 4 4 6 8 8 6
Average response times
5.81 4.06 1.97 2.05 1.75 1.78 1.28 1.33 1.49 1.34 1.18 1.21 1.25 1.17 1.18
:SEED (149997927060 63500) (default NO-DEFAULT) : Current seed of the random number
generator
Score
 -1 3 8 8 8 7 6 9 8 8 9 9 9 10 8
Average response times
10.16 8.02 4.85 1.86 2.50 2.02 1.82 1.41 1.57 1.30 1.45 1.22 1.10 1.11 1.18

Average Score of 10 trials
2.20 6.10 6.50 6.50 7.50 7.40 7.50 6.90 7.70 7.60 8.10 7.70 8.90 8.50 8.30
Average Response times
7.82 4.49 2.64 2.15 1.90 1.72 1.61 1.49 1.48 1.30 1.22 1.25 1.23 1.17 1.15

The average results still show the same learning patterns we expect, the scores go up and response
time goes down, and the individual games do not seem to show any particularly unusual situations
occurring. We could run some more tests, but since we have inspected the productions the model
learns fairly thoroughly and this small test looks good we are going to assume that it is working well
and move on to looking at the average data.

Here are the results of the model without production compilation averaged over 50 runs again:

Average Score of 50 trials
2.38 4.94 6.46 7.32 7.78 7.74 7.88 7.84 8.00 8.28 8.72 8.36 8.62 8.66 8.30
Average Response times
7.84 4.71 3.08 2.40 1.95 1.77 1.63 1.55 1.47 1.38 1.32 1.29 1.27 1.23 1.24

and here are the results of the model with production compilation averaged over 50 runs:

Average Score of 50 trials
1.34 6.10 6.74 7.24 7.96 7.60 7.40 7.74 7.80 8.16 7.98 8.42 8.84 8.50 8.44
Average Response times
8.54 4.70 2.97 2.35 1.88 1.70 1.62 1.52 1.42 1.34 1.24 1.24 1.21 1.17 1.16

The average scores look fairly similar between the two as do the response times, and about the only
difference seems to be that the model is slightly faster at the end with production compilation. So,
unfortunately, setting up production compilation to work with that starting model has had little effect
on the results. The most likely reason for the response times not being much different is because the
initial model was already fairly compact in terms of the number of productions which it needed to
perform the task and its use of base-level learning quickly sped up the retrievals that are necessary.
Thus there was not a lot that compilation could remove to improve the speed. As for the scores, the
effect we wanted (compiling specific response productions for the winning move on each potential
trial) does not happen because as we saw above there are not enough trials for those productions to
learn a utility strong enough to dominate the initial productions. Without any actual data to fit the
model to there are no specific adjustments that we need to make now to adjust the model's
performance, but we will describe some adjustments that could be made and you are welcome to
investigate those changes or others to see what effects they have on the model's results.

If we wanted the model to show a more gradual speedup in response time through production
compilation then we would have to make significant changes to the starting model so that it required
more productions and more retrievals to perform the task initially. One way to do that would be to
convert the model so that it has to retrieve task instructions like the unit 7 paired associate task
instead of starting out with an already optimized set of task specific productions. Alternatively, we
could change the declarative memory parameters that it uses so that it is not as fast to begin with, but
that could also be done without the need for production compilation. Just changing the parameters
for production compilation, like slowing the learning rate or adjusting the initial utilities, would not
allow us to make the model perform any slower than the starting model because utility learning will
favor the faster productions as long as they lead to the same rewards which they will in this task as
long as the model is responding correctly.

If we want the model to speed up even more through production compilation then we could increase
the utility learning rate so that the new productions get higher utilities sooner. We could also
increase the noise parameter or the starting utilities of composed productions so that they are more
likely to be selected and gain their own rewards sooner. That might help the model to use the
productions we wanted it to learn sooner. However a change like that might also make the scores go
down because it could allow composed productions which make bad responses to get selected more
often as well as the good ones. As an example, here are the results from running the model with
an :alpha value of .9 (a very fast learning rate):

Average Score of 50 trials
3.04 4.38 5.58 5.60 6.26 6.48 6.96 6.68 7.10 7.68 8.02 7.56 7.44 7.78 7.82
Average Response times
7.58 4.96 3.58 2.71 2.33 2.25 1.79 1.71 1.48 1.36 1.26 1.22 1.19 1.12 1.08

The response times have gotten a little faster, but the scores have also dropped as well. To see why
that is happening you would have to look at the history of production usage and utilities that are
learned, which we will not do here.

That brings up the final issue that we will discuss. Adjusting the parameters for a model which uses
production compilation can be a more difficult process than for other models. That is because of the
potential for indirect effects to occur because of the automatic composition of new productions.
Thus, unlike other models where the parameters often map fairly directly onto behavior, now one
also has to consider what new productions can be learned and how the parameters affect those as
well. Those effects may not always be in the same direction as one would expect (for example a
faster production compilation learning rate leading to fewer correct responses). So, just like the
extra work that was required to test the model to make sure it operated correctly, adjusting the
parameters can also require looking at the new productions which are created and how their utilities
are changing as a result of parameter adjustments when trying to achieve a particular fit to data or
other explicit result from the model.

	Procedural Learning Modeling Issues
	Utility Learning
	The Task
	The Model
	Testing the Model

	Production Compilation
	The Task
	The Starting Model
	Considerations for Production Compilation
	What is the task and how is the model run
	Utility learning
	Expected Changes

	Considering the starting model
	Testing the Model

