
Unit 2 Code Description

From this point on in the tutorial most of the models will have accompanying files that
implement the experiment for the model to perform. The experiments are implemented
in both Lisp and Python, and either version can be used with the model – the operation of
the model does not depend on which language is used to create the experiment. The files
with the code for the experiments contain comments describing how they work. In the
code text for the units we will provide additional details about using ACT-R, the ACT-R
commands used in creating the experiments, and information about how the models
interact with the experiments.

More ACT-R Parameters

Before describing the experiments, we will first provide some information about the new
parameters which were used in the models for this unit. All of the new parameters were
used in the demo2 model and were set like this:

(sgp :seed (123456 0))
(sgp :v t :show-focus t :trace-detail high)

The first sgp command is used to set the :seed parameter. This parameter controls the
starting point for the pseudo-random number generator used by ACT-R. Typically you
do not need to use this parameter; however by setting it to a fixed value the model will
always produce the same behavior (assuming that all the variation is attributable to
randomness generated using the ACT-R mechanisms). That is why the randomly chosen
letter for the demo2 task was always “V”. If you remove this parameter setting from the
model, save it, and then reload, you will see different letters chosen when the experiment
is run. For the tutorial models, we will often set the :seed parameter in the demonstration
model of a unit so that the model always produces exactly the same trace as presented in
the unit text, but you should feel free to remove that to further investigate the models.

The second sgp call sets three parameters. The :v (verbose) parameter controls whether
the trace of the model is output. If :v is t (which is the default value) then the trace is
displayed and if :v is set to nil the trace is not printed. It is also possible to direct the
trace to an external file instead of the having it printed in the interface, and you should
consult the reference manual for information on how to do that. When the trace is not
printed the model can run significantly faster, and that will be important in later units
when we are running the models through the experiments multiple times to collect data.
The :show-focus parameter controls whether or not the visual attention ring is displayed
in the experiment window when the model is performing the task. It is a useful
debugging tool, but for some displays you may not want it because it could obscure other
things you want to see. If it is set to the value t then the red ring will be displayed. If it is
set to nil then it will not be shown. It can also be set to the name of a color e.g. green,
blue, yellow, etc. to change how it is displayed which can be helpful when there are
multiple models simultaneously interacting with the same task. The :trace-detail

parameter, which was described in the unit 1 code description document, is set to control
how much information is shown in the model’s trace, and with a value of high all of the
actions of the modules are shown.

ACT-R GUI Interface

All of the experiments which are built for the models in the tutorial will be created using
a set of interface tools provided with the ACT-R software which we call the AGI (ACT-R
GUI Interface). The AGI allows for the creation of simple tasks which can be composed
of text, buttons, and lines and interacted with using the keyboard and mouse. When the
ACT-R Environment is running, the AGI tasks can be displayed in real windows which
can be interacted with by either a person or an ACT-R model (as we saw in the
experiments of this unit). Whether the ACT-R Environment is running or not, the AGI
can also create a virtual interface which does not display a real window but which can
still be interacted with by an ACT-R model exactly the same way as it does with the real
window – there is no difference between the real and virtual interface from a model’s
perspective. The advantage of using a virtual interface for the model is that it is much
faster to run the task with a virtual interface than it is a real one, but the downside is that
you cannot see the task to monitor what the model is doing which can be important while
developing the model and working out any problems in its operation. That is why the
AGI provides the model the exact same interface regardless of whether it is a real or
virtual window – you can create the task using a real window while developing the model
and then change it to a virtual window once the model is working correctly to be able to
run it through the task faster for collecting data over multiple trials.

It is not required that one create tasks for an ACT-R model using the AGI. It is also
possible to provide custom visual feature information to the vision module, and have the
model use the virtual keyboard and mouse without an AGI window as well as create new
motor interface devices. However, that level of interaction will not be shown in the
tutorial.

One final note on the AGI is that it was designed for creating tasks for ACT-R models.
The tasks it creates can be interacted with by real participants, but it was not designed
with that use in mind. In particular, when running with a real participant it does not make
any claims as to the accuracy of the timing information it can collect or the latency of the
visual presentations and input responses. For interaction with the model those are not an
issue since the model runs in a simulated time frame where the exact time is always
available instantly and that simulated clock can pause arbitrarily long before advancing to
allow for instantaneous presentations in that simulated time space, and similarly, it has no
latency on detecting the model’s input responses. Therefore, we do not recommend using
the AGI to create experiments for real participants if any timing information is to be
collected.

Additional Python interface information

Now that we have introduced the use of Python with ACT-R in the tutorial, we will show
how some of the ACT-R commands which the unit 1 code document showed being used
at the ACT-R (Lisp) prompt can also be used from the Python prompt as well.

The actual interface between Python and the ACT-R software is provided by another
Python module called actr which is also located in the python directory of the software.
That module provides an implementation of the remote interface described later in this
text, and also defines Python functions which correspond to many of the ACT-R
commands available through the remote interface to make them easier to use1. That
module gets imported by all of the modules for the experiments to enable the interface,
and it could also be imported directly if you want easier access to the functions for
interacting with ACT-R from the prompt. Once you have done that you can then use the
available functions from that module. In general, the Python functions will have the
same name as the corresponding command in ACT-R, but with all of the “-” characters
replaced with “_” characters to make them valid Python function names. We will
describe many of the available functions as we progress through the tutorial, and we will
start here with the ones that correspond to the commands used at the ACT-R prompt that
where shown in the unit 1 code document: reset, reload, run, load-act-r-model, buffer-
chunk, dm, sdm, and whynot.

The first four of those work the same as the commands described for the ACT-R prompt,
and here is an example showing the addition model from unit 1 being loaded, run for 1
second, reset, run for 0.1 seconds, and then reloaded.

>>> import actr
ACT-R connection has been started.
>>> actr.load_act_r_model("ACT-R:tutorial;unit1;addition.lisp")
True
>>> actr.run(1)
 0.000 GOAL SET-BUFFER-CHUNK GOAL SECOND-GOAL NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED INITIALIZE-ADDITION
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE start-retrieval
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK FIVE
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FIVE
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT-SUM
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE start-retrieval
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK ZERO
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL ZERO
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.250 PROCEDURAL PRODUCTION-FIRED INCREMENT-COUNT
 0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.250 DECLARATIVE start-retrieval
 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.300 DECLARATIVE RETRIEVED-CHUNK SIX
 0.300 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL SIX
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.350 PROCEDURAL PRODUCTION-FIRED INCREMENT-SUM
 0.350 PROCEDURAL CLEAR-BUFFER RETRIEVAL

1 The Python module included with the tutorial is sufficient for running the tasks included with the
tutorial. It does not contain functions for accessing all of the commands available through the ACT-R
remote interface, and it has some assumptions about how it will be used based on the needs of the
tutorial. For more complex tasks or where performance is of primary importance, one might be better
served by creating a custom interface instead of using the one that is built for the tutorial.

 0.350 DECLARATIVE start-retrieval
 0.350 PROCEDURAL CONFLICT-RESOLUTION
 0.400 DECLARATIVE RETRIEVED-CHUNK ONE
 0.400 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL ONE
 0.400 PROCEDURAL CONFLICT-RESOLUTION
 0.450 PROCEDURAL PRODUCTION-FIRED INCREMENT-COUNT
 0.450 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.450 DECLARATIVE start-retrieval
 0.450 PROCEDURAL CONFLICT-RESOLUTION
 0.500 DECLARATIVE RETRIEVED-CHUNK SEVEN
 0.500 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL SEVEN
 0.500 PROCEDURAL CONFLICT-RESOLUTION
 0.550 PROCEDURAL PRODUCTION-FIRED TERMINATE-ADDITION
SEVEN
 0.550 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.550 PROCEDURAL CONFLICT-RESOLUTION
 0.550 ------ Stopped because no events left to process
[0.55, 77, None]
>>> actr.reset()
True
>>> actr.run(.1)
 0.000 GOAL SET-BUFFER-CHUNK GOAL SECOND-GOAL NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED INITIALIZE-ADDITION
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE start-retrieval
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK FIVE
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FIVE
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.100 ------ Stopped because time limit reached
[0.1, 20, None]
>>> actr.reload()
True

The other ACT-R commands from unit 1, dm, sdm, buffer-chunk, and whynot, require
a slightly different syntax when called from Python compared to the version called from
the ACT-R prompt. In the ACT-R version we could just specify the arguments for the
commands without any additional syntactic markers, for example, here is the buffer-
chunk command being used to get the chunks from the goal and visual buffers at the end
of running the addition model from unit 1:
? (buffer-chunk goal visual)
GOAL: GOAL-CHUNK0
GOAL-CHUNK0
 ARG1 FIVE
 ARG2 TWO
 SUM SEVEN

VISUAL: NIL
(GOAL-CHUNK0 NIL)

From Python however we must specify the arguments that are names (goal and visual in
this case) as strings. Here is the corresponding use of actr.buffer_chunk:

>>> actr.buffer_chunk('goal','visual')
GOAL: GOAL-CHUNK0
GOAL-CHUNK0
 ARG1 FIVE

 ARG2 TWO
 SUM SEVEN

VISUAL: NIL
['GOAL-CHUNK0', None]

The other things to notice are that the name returned in the list is also a string and that an
empty buffer is reported as None in the list returned.

The dm function can be used to print all of the chunks in declarative memory and return
a list of their names, or to print only those chunks specified (again using strings to
provide the names). Here are examples of getting all of the chunks in DM and of only
printing specific ones using the addition model from unit 1:
>>> actr.dm()
SECOND-GOAL
 ARG1 FIVE
 ARG2 TWO

TEN
 NUMBER TEN

NINE
 NUMBER NINE
 NEXT TEN

EIGHT
 NUMBER EIGHT
 NEXT NINE

SEVEN
 NUMBER SEVEN
 NEXT EIGHT

SIX
 NUMBER SIX
 NEXT SEVEN

FIVE
 NUMBER FIVE
 NEXT SIX

FOUR
 NUMBER FOUR
 NEXT FIVE

THREE
 NUMBER THREE
 NEXT FOUR

TWO
 NUMBER TWO
 NEXT THREE

ONE
 NUMBER ONE
 NEXT TWO

ZERO
 NUMBER ZERO
 NEXT ONE

['SECOND-GOAL', 'TEN', 'NINE', 'EIGHT', 'SEVEN', 'SIX', 'FIVE', 'FOUR',
'THREE', 'TWO', 'ONE', 'ZERO']
>>> actr.dm('one','three')
ONE
 NUMBER ONE
 NEXT TWO

THREE
 NUMBER THREE
 NEXT FOUR

['ONE', 'THREE']

For the sdm function to search declarative memory we again need to specify the
constraints using strings. Here is a search for all of the items which do not have the value
of 1 in their addend1 slot using the tutor-model-solution model from unit 1:
>>> actr.sdm('-','addend1','1')
GOAL
 ONE1 6
 TEN1 3
 ONE2 7
 TEN2 4

FACT34
 ADDEND1 3
 ADDEND2 4
 SUM 7

FACT67
 ADDEND1 6
 ADDEND2 7
 SUM 13

FACT103
 ADDEND1 10
 ADDEND2 3
 SUM 13

['GOAL', 'FACT34', 'FACT67', 'FACT103']

The whynot function also requires that you specify the production names to test using
strings and it returns a list of strings which name the productions which do match the
current state (regardless of whether they were in the list being tested). Here is an
example after running the addition model from unit 1 for 0.3 seconds:
>>> actr.whynot('initialize-addition','increment-count')

Production INITIALIZE-ADDITION does NOT match.
(P INITIALIZE-ADDITION
 =GOAL>
 ARG1 =NUM1
 ARG2 =NUM2
 SUM NIL
 ==>
 =GOAL>
 SUM =NUM1
 COUNT ZERO
 +RETRIEVAL>

 NUMBER =NUM1
)
It fails because:
The chunk in the GOAL buffer has the slot SUM.

Production INCREMENT-COUNT does NOT match.
(P INCREMENT-COUNT
 =GOAL>
 SUM =SUM
 COUNT =COUNT
 =RETRIEVAL>
 NUMBER =COUNT
 NEXT =NEWCOUNT
 ==>
 =GOAL>
 COUNT =NEWCOUNT
 +RETRIEVAL>
 NUMBER =SUM
)
It fails because:
The value in the NUMBER slot of the chunk in the RETRIEVAL buffer does not
satisfy the constraints.
['INCREMENT-SUM']

One thing which you may have noticed is that when you call those functions from Python
the output from ACT-R is shown in both the ACT-R window and in your Python session.
The same is true if you call the corresponding function from the ACT-R prompt – both
interfaces will display the output regardless of how it was generated. If you find that
distracting or confusing when working from the Python prompt you can disable the
output in the ACT-R window by calling the turn-off-act-r-output command at the ACT-R
prompt:

? (turn-off-act-r-output)

Another inspection command

Like the buffer-chunk function which was shown in the previous unit to access the
contents of a buffer, there are also buffer-status and buffer_status functions which will
provide the status of the queryable information from the buffer (which is also shown in
the “Buffers” tool of the Environment using the “Status” button described in the main
unit 2 text). It can be called with the names of any number of buffers and will print out
the current status information for the queries of those buffers. Here are examples of
calling it at the ACT-R prompt and in Python.

? (buffer-status goal visual)
GOAL:
 buffer empty : T
 buffer full : NIL
 buffer failure : NIL
 buffer requested : NIL
 buffer unrequested : NIL
 state free : T
 state busy : NIL
 state error : NIL
VISUAL:

 buffer empty : T
 buffer full : NIL
 buffer failure : NIL
 buffer requested : NIL
 buffer unrequested : NIL
 state free : T
 state busy : NIL
 state error : NIL
 preparation free : T
 preparation busy : NIL
 processor free : T
 processor busy : NIL
 execution free : T
 execution busy : NIL
 last-command : NONE
 scene-change : NIL
 scene-change-value : NIL
(GOAL VISUAL)

>>> actr.buffer_status('goal','visual')
GOAL:
 buffer empty : T
 buffer full : NIL
 buffer failure : NIL
 buffer requested : NIL
 buffer unrequested : NIL
 state free : T
 state busy : NIL
 state error : NIL
VISUAL:
 buffer empty : T
 buffer full : NIL
 buffer failure : NIL
 buffer requested : NIL
 buffer unrequested : NIL
 state free : T
 state busy : NIL
 state error : NIL
 preparation free : T
 preparation busy : NIL
 processor free : T
 processor busy : NIL
 execution free : T
 execution busy : NIL
 last-command : NONE
 scene-change : NIL
 scene-change-value : NIL
['GOAL', 'VISUAL']

ACT-R Software Interface

Before describing how the model interacts with the experiment, we will first describe at a
very high level how the ACT-R software provides an interface for connecting to external
systems like Python and the ACT-R Environment. [The underlying details, which would
be necessary if one wanted to create an interface to a different language, are well beyond
the scope of the tutorial, but are available in a manual called remote in the docs directory
of the distribution and there are simple examples for several languages in the
examples/connections directory.] The key feature of the current ACT-R software which
allows for the communication between ACT-R and arbitrary ‘other’ code is that it has

been built around a central RPC (remote procedure call) system. The central RPC system
(which we will refer to as the dispatcher) is responsible for accepting connections from
clients (which also includes the ACT-R code in Lisp), maintaining the set of commands
which those clients have made available, and coordinating the communication between a
client that wants to execute a command and the client which has provided that command.
The clients can be connected to the dispatcher directly through Lisp (as is the case for the
core ACT-R code and any code loaded directly into the Lisp running ACT-R) or through
a TCP/IP socket connection to the dispatcher (which is how the Python and ACT-R
Environment connections are made), and the dispatcher allows for an unlimited number
of clients to be connected at any time (theoretically at least since there are of course
computational constraints). Any of the connected clients can add a command to the set
available from the dispatcher, and that command can then be used by any of the
connected clients with the dispatcher responsible for handling the communication
between them.

In addition to supporting the communication between clients, the dispatcher also provides
a ‘monitoring’ mechanism through which any command which has been added can get
called automatically when another command is used. This monitoring mechanism allows
a client to provide commands which other clients can then detect and respond to without
that original client needing to know about every other client that wants to be notified.
For example, this is why the output of the model trace is shown in both an interactive
Python session and the ACT-R window – both of those clients are monitoring the
commands responsible for printing the information and then displaying the results.

Both the Lisp and Python interfaces to ACT-R provide the modeler with access to that
central dispatcher. That allows the modeler to add new commands which can be called
by anything connected to the dispatcher and which can be used to monitor other
commands (which will be done in this unit to detect when a key has been pressed).

Adding commands

To add a new command one uses the add-act-r-command or add_command function.
It requires one parameter and has five optional parameters (only two of which will be
described here). The first parameter must be a string which is the name of the new
command to add. That name is case sensitive and it must not match the name of a
command which already exists. The second parameter is optional, and specifies the local
function which should be called when that command is evaluated (if no command is
indicated then there is no activity associated with that command but it can still be called
and monitored). The third parameter is also optional, but if given should be a string
which provides some documentation about the command being added. If the command is
added successfully then the function returns a true result (t or True) and if not, a warning
is displayed and a null result (nil or False) is returned.

Removing commands

Once a command has been added it can be removed using the remove-act-r-command
or remove_command function. That requires a single parameter which is the string that
names a command. If it is successfully removed a true result is returned and if not a null
result is returned.

Monitoring commands

To monitor a command the monitor-act-r-command or monitor_command function is
used. It requires two parameters. The first parameter should be a string that names a
command available from the dispatcher. That is the command which is being monitored.
The second parameter should be a string which names another command available from
the dispatcher. That is the command which is monitoring the first one. The monitoring
command will be called after every call to the monitored command. It will be passed the
same parameters which the monitored command was given. If the monitoring is set up
successfully then a true result will be returned and if not a null result will be returned.

To stop monitoring a command the remove-act-r-command-monitor or
remove_command_monitor function is used. It requires two parameters which are the
same as were specified when monitoring was initiated. The first is a string which names
the command to monitor and the second is a string naming the command which is
currently monitoring it but should stop monitoring now. If the monitoring is successfully
removed then a true result is returned and if not a null result is returned.

Experiment Code

When writing the experiments for the tutorial we have tried to keep the implementations
of the tasks fairly straight forward to make it easy to follow how they work. We have
also tried to keep the two provided implementations as similar as possible for comparison
purposes. That might not always lead to the most efficient or best looking code, but
should help to facilitate the objective of this tutorial – to demonstrate how to use the
ACT-R software for creating models and experiments for those models. For many of the
experiments in the tutorial there will typically be one function that runs the experiment
for either a model or a person, and that function will take an optional parameter which if
specified as true (t in Lisp and True in Python) will run a person instead of the model.
Most of the code to perform the task will be the same regardless of whether it is a person
or model doing the task, but the code necessary to actually “run” the model and person
are different. The code could have been written using separate functions for a model and
a human participant, but by using one function it should be easier to see the similarities
and differences between the human and model versions of the tasks.

Most of the experiments for the tutorial have a simple structure: some initialization is
performed for the task (and possibly the model), a stimulus is presented, and then a
response is recorded from the participant. That process may be repeated multiple time
with the collected responses then being aggregated in some way to produce the data for
the task. Given that basic task description, we will now describe the ACT-R commands
used to implement those processes in the simple tasks for this unit.

Initial setup

Loading a model

The first thing that almost all of the tutorial experiment programs do is load the
corresponding model for the task from the tutorial. That way one does not need to load
two different files, and it makes sure that the appropriate model gets loaded. That

typically happens with a call like this using the load-act-r-model/load_act_r_model
function (these are from the demo2 experiment):

(load-act-r-model "ACT-R:tutorial;unit2;demo2-model.lisp")

actr.load_act_r_model("ACT-R:tutorial;unit2;demo2-model.lisp")

Note that this does assume that the ACT-R tutorial files are located in their original
directory with the ACT-R software. If you have moved the tutorial materials, or you
want to load a different model file you can still do so using either that function at the
prompt or by using the “Load ACT-R code” button in the Environment.

Creating the stimuli

Often one will want to randomize stimuli for a task in some way, and there are some
ACT-R functions which can be used to help with that.

The permute-list/permute_list function can be used to permute the items in a list using
the ACT-R random number generator to do so. They require one parameter which must
be a list of items and it returns a randomly ordered copy of that list.

The act-r-random/actr.random function can be used to return a pseudo-random
number2. It requires one parameter which must be a positive number. If the number
provided is an integer then the return value will be an integer chosen uniformly from 0 to
that number minus 1. If it is a non-integer real number, N, then a real number uniformly
chosen from the range of [0,N) will be returned.

While similar functions are typically already available in most languages, using the
randomizing functions provided by ACT-R when creating tasks allows one to have the
model and task using the same generator for the “random” sequence of events which
means that setting a single initial random seed value can be used to repeat the exact same
sequence of events. That can can be very useful when trying to determine why a model is
not working because the same situation can be run over again if one knows the starting
seed, and it is also useful when creating demonstrations or examples (like in the tutorial)
because it guarantees that a model will produce the same trace every time they are run in
a task as long as the :seed parameter is set.

Stimuli Presentation

For presenting the tasks in the tutorial we will be using the AGI (described above). That
will involve creating a window to display the task, and then displaying the stimuli in that
window. In this unit that will only involve text items and these are the commands
necessary.

creating a window

The open-exp-window/open_exp_window function is used to open an AGI window to
display a task which can be interacted with by either an ACT-R model or a real person.
The function requires one parameter which is a string containing the title for that

2 The specific algorithm used for the ACT-R random numbers is currently the MT19937 generator.

window, and that title should be unique i.e. only one window with a given title may be
open at a time. If the name specified is the name of a window which was created
previously then that existing window will be closed first, and then a new window created.
The return value of that function is a window description which can be passed to other
AGI functions for indicating which window to operate on (since multiple windows can be
open at once) and it is also a valid device list that can be installed for the model to
interact with (shown below). There are also several other parameters which may be
provided when creating a window and those will be described in later units.

displaying text in a window

The add-text-to-exp-window/add_text_to_exp_window function will display text in an
AGI window. It has two required parameters. The first is a window description to
indicate which window, and the second is a string of the text to display. It has multiple
additional parameters which are accessed using keyword parameters in Lisp and keyword
arguments in Python. Two of them are used in this unit’s tasks: x and y. Those are the x
and y coordinate within the window at which the upper-left corner of the text to be
displayed will be positioned and should be integers (the upper-left corner of the window
is 0,0 with x increasing to the right and y increasing toward the bottom). It returns a
descriptor for the text item which can be used to remove or change that item, but the
details of that descriptor are not part of the specification and it should not be used for any
other purpose.

clearing a window

The clear-exp-window/clear_exp_window function is used to clear all items from an
AGI window. It has one optional parameter which if provided should be a window
description. If only one window has been opened then the optional parameter is not
needed and that open window will be the one cleared. It removes all of the items that
have been added to that window.

checking for a visible window

As a safety check in the tutorial tasks, an additional AGI function is used to make sure
that there is a visible window available for a person to perform the task. The visible-
virtual-available?/visible_virtual_available function is used to test whether the AGI
was able to open a visible window. If so, then the functions return a true value otherwise
they return a false value. If the ACT-R Environment application is running then visible
windows can be opened. There is another visible virtual window tool available which
works in a browser that can be used (instead of or in addition to the Environment), and it
is also possible to create your own window handler for the AGI, but those are not
described in the tutorial.

Model interaction with tasks

devices

To have a model interact with a task it must be told which ‘devices’ to use by using the
install-device/install_device function. That function requires one parameter which must

be a specification of a device for the model. A device is the term used for an interface
that has been created for one of ACT-R's perceptual or motor modules to interact with
(like a keyboard, mouse, microphone, etc). The device (or possibly multiple devices)
which are installed for a model indicate where its percepts come from and/or where its
output actions will go. The windows of the AGI provide visual percepts and they also
automatically install virtual keyboard and mouse devices which the model can use as well
as a virtual microphone for recording the model’s speech. Creating new devices for a
model is one way to interface a model to new environments, but that is beyond the scope
of the tutorial.

key presses

When a key is pressed in an AGI window by a person or on the corresponding virtual
keyboard device which is installed for models interacting with those windows, the ACT-
R command output-key is called. That command is called with two parameters. The
first is the name of a model which made the key press if it was made by a model or a
value of nil (Lisp) or None (Python) if it was by a person interacting with the window.
The second will be a string indicating the key which was pressed. When the model
makes a key press the event is also shown in the trace as seen in the last line of this
segment of the trace for performing the press-key action during the demo2 task:

 0.485 PROCEDURAL PRODUCTION-FIRED RESPOND
 0.485 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.485 PROCEDURAL MODULE-REQUEST MANUAL
 0.485 PROCEDURAL CLEAR-BUFFER IMAGINAL
 0.485 PROCEDURAL CLEAR-BUFFER MANUAL
 0.485 MOTOR PRESS-KEY KEY V
 0.485 PROCEDURAL CONFLICT-RESOLUTION
 0.735 MOTOR PREPARATION-COMPLETE 0.485
 0.735 PROCEDURAL CONFLICT-RESOLUTION
 0.785 MOTOR INITIATION-COMPLETE 0.485
 0.785 PROCEDURAL CONFLICT-RESOLUTION
 0.885 KEYBOARD output-key DEMO2 v

To detect and record key presses in an AGI window one will need to monitor the output-
key command to be notified when the output-key action happens.

running a model

The run function was described in unit 1 as requiring one parameter which specifies a
time limit for how long to run the model. It also takes an optional second parameter. The
run function causes the simulated clock for the ACT-R system to advance which allows
model(s) to perform actions. The first parameter to run indicates the maximum amount
of time that the system will be allowed to run, specified in seconds. The second
parameter is optional, but if provided as true (t in Lisp or True in Python) then the
simulated clock for ACT-R will advance in step with the real passage of time instead of
as fast as possible. The optional parameter can also be specified as a number to indicate a
desired scaling of model time to real time (a value of 1 is the same as specifying true),
but there are no guarantees on the ability to achieve a desired scaling – you can request a

million to one scaling but it is unlikely to actually be able to achieve that. When the
model is interacting with a real window it should always be run in step with real time to
ensure that the display is updated appropriately as the model performs the task, but if it is
using a virtual window it does not need to run in real time.

running a person

When a waiting loop is needed to collect a real response from a person in an AGI
window the process-events/process_events function should be called in that loop to
allow the system a chance to handle the user interactions. It takes no parameters. It
ensures that ACT-R provides an opportunity for other threads/processes to run which
may be necessary for the system to be able to handle the interaction and it also allows
ACT-R the opportunity to call any monitoring function(s) in response to a user’s input.

A while Lisp macro provided with ACT-R

For the Lisp interface to ACT-R we have provided a while macro as a looping construct.
It takes an arbitrary number of parameters. The first parameter specifies the test
condition, and the rest specify the body of the loop. The test is evaluated and if it returns
anything other than nil all of the forms in the body are executed in order. This is
repeated until the test returns nil. Thus, while the test is true (non-nil) the body is
executed. This is not really necessary because there are several other looping constructs
available in Lisp, but a simple while can be easier to understand for novice Lisp
programmers and it makes it easier to create a nearly line-to-line correspondence between
the Lisp and Python versions of the tasks.

Final technical programming safety note

One important thing to note about the code for these experiments is that the functions that
are monitoring key presses are being called during the execution of other functions
(process-events when a person does the task and run when the model does the task). That
happens because the monitoring functions get called in a separate thread from the one
which is running the main task. Since both threads are accessing the same global
variable(s) in these experiment implementations the safe thing to do would be to include
the appropriate protection on that to avoid problems (a lock, semaphore, or some other
construct available in the language used). However, since all we are typically looking for
in the tutorial tasks is a simple change to the value, and only one of the threads sets the
variable, there should not be any problems with the operation of these tasks, and that
protection has been ignored for the purpose of keeping the tutorial tasks easier to read. If
you are creating more complicated tasks which are using monitors for things like key
presses and mouse clicks, or any other multi-threaded actions, then you may need to put
in the necessary protection for access to shared resources (like global variables) to avoid
problems (which is a programming issue well beyond the scope of this tutorial).

	Unit 2 Code Description
	More ACT-R Parameters
	ACT-R GUI Interface
	Additional Python interface information
	Another inspection command
	ACT-R Software Interface
	Adding commands
	Removing commands
	Monitoring commands

	Experiment Code
	Initial setup
	Loading a model
	Creating the stimuli

	Stimuli Presentation
	creating a window
	displaying text in a window
	clearing a window
	checking for a visible window

	Model interaction with tasks
	devices
	key presses
	running a model
	running a person

	A while Lisp macro provided with ACT-R

	Final technical programming safety note

