2008

O
Q.
>
v =2
- &
© o
< %
)
(S
o O
V) ._ﬂ
x 35
5 ¥
@

<L

Overview

 Notable changes since the Summer release (r617)
— Fall release in October r696

— Current (Winter) release is r723

e All updates are available

— Text log
http://act-r.psy.cmu.edu/~webcron/actrélog.txt

— RSS feed

http://act-r.psy.cmu.edu/~webcron/actr6feed.xml

utiine

O

 Changes available in the Fall release [r696]

ghlights

elease Hi

Fall R

e Environment tools

odules

om
5 i

Aatec tNn avicti
WAULNUL WD UL /NI N\NI

Up
rl

* New module

e Performance

e Miscellaneous

Environment Changes

 Graphic trace tools no longer require setting the
:save-buffer-trace parameter to t

— Just have to open the window prior to the model run, but
after any reset

— Setting the parameter still works and is safe across resets

 Chunks and productions in the graphic traces can be
clicked on to open the declarative and procedural
viewers with the item selected

Environment Additions
e Graphic run histories
— Productions

— Retrievals
— Buffers

 Not available by default

— In extras/history-tools
— Move the files as indicated in the readme.txt

start-trial
find-next-line
attend-line
encode-line-a
encode-line-hb
encode-line—o
encode-line-goal
encode-under
encode—over
encode-line-current
calculate-difference
check-for—-done
find-done
read-done
consider-c
choose-e
consider-a
choose-a

reset
decide-over
force-over
decide-under
force-under
MovVE-moOusSe
click-mouse
look-for-current

pick-ancther-strategy

dl

Gethistory | Grid | wWhynot: the visual buffer is empty.

Done + 1 -

=10l x|

|AalEN

Production history (cont)

One row per production

Column for every conflict-resolution labeled with the
time it occurred

Color indicates if the production was in the conflict set
— Green chosen production

— Orange in the set and not chosen

— Red not in the set

Putting the cursor over a block shows

— Utility for productions in the set

— Whynot info for those not in the set

00 T 0 T AT e T L T e
emiagresnceut S| 1 11110 1 R VT OO0 O RO W

retrieve-success

retrieve-fail | | | ||

apply-analogy || | | | |

|
=pply-analogy-no-pattern 1 11 1 N LI

find-past-tense-no-suffix

find-past-tense-regular

find-past-trnar-erual

productiond 1 11 A MIIHHIHH L HHHHIHHHI IHIHIINHHIIIIIN HINWH mulnmnnunmnmn|nnmnnm
productionl I 1 11 Y Il

productionZ LT T | LI TR L I THEr HEE H IIH | || H H | || ||||| | |||
IR R TR [RIRR TR |
productioné | | | || | | | | |
production? A AR T e A T AR A (— FOOHIE 0 FRTE A e 1|
producticni’ | | T O | | | |1 | I | [|

productiond?
production?3

nrodurtinnA kR

productiond?

productionll0

productionlle

productionlis
productionlid | | | | || | | ” |
productionl?7E

productionl??

productionld

productionz03

productionZ 14

productionZlg

productioniil

productionZ 53

production8?

productiond0l

productiondds

1]

Get histary | Grid

Dune +| -

Retrieval hist

retrieval_history4 ;IEIEI

Get History | Matching Chunks Details
Times el =0 § =
0235 «|p3 ISA COMPREHEND-SENTENCE

p2 RELATION IN
0.485 ARGl HIPFPIE

Posss | ARGZ PARK

Declarative parameters for chunk P1l:
tActivation 0.214

:Permanent-Noize 0,000

:Baze-Level 0.000

tSource-Spread 0.214

:39i= ((P1 . 1.6) (IN . -1.0390574) (HIFPPIE
0.21370566) (PARK . 0.21370566))
:Last-Fetrieval-Activation 0.214
:Lazt-Retrieval-Time 0,383

< |

Request

[»

I3A COMPREHEND-SENTENCE
ARGl HIPPIE

Retrieval history (cont)

Left column is times when a retrieval request
occurred

Right column is all chunks which matched the
request at the time selected in the left column

Windows on the right show details

— Top window
 The chunk selected in the middle column with parameters at
the time of the request
— Bottom window
* The retrieval request which was made

buffer_history1l

Get History |

Thnes

Buffers

Dietails

=lo| x|

0.0 - i
0.05
0.1
0.185
0,235
0.25
.35
0.435
0.485
0.535
0.585
i 004
1 144
1444
=

aoal

aural-location

wisual

UAL-LOCATIONS-0]

VISUAL-LOCATIONS-0-0
I3A VISTUAL-LOCATION
SCREEN-X 415

SCREEN-Y 160
pIsTaNCE 15.0
EIND TEXT
COLOR BLACEK
VALUE TEXT
HEIGHT 10
WIDTH 28

SIZE 0.7299999%

WVISUAL-LOCATION:

buffer empty

buffer full

buffer requested
buffer unrecuested
state free

state busy

state error

attended new

attended nil :
attended t :

VISUAL-LOCATION: VISUAL-LOCATIONS-0-0 [VIS &

NIL

NIL

NIL

NIL

NIL

Buffer history (cont)

e Left column shows all the times when some
scheduled buffer change occurred

e Right column shows all the buffer names

 Window on the right shows details of the
selected buffer at the selected time

— Chunk in the buffer at that time
— Buffer status information at that time

™

Fall Release Highlights

Environment tools

lIndatec to evictine modiilec
vrluut\-a GO wINIJI G lb B R AYAY A § A SYe
New module
Performance

Miscellaneous

Declarative module

New parameter :w-hook

— Allows one to adjust the W, val ues in the
spreading activation equatlon

— Set to a function like other hooks
— Passed two parameters:

e buffer name and slot name

— If it returns a number that overrides the default
W,; value

Vision Module

* New queries for visual buffer
— Scene-change
— Scene-change-value
e Alternate mechanism for detecting screen
changes
— More reliable than visual-location buffer stuffing

— Has a settable change threshold
e :scene-change-threshold

Scene-change

 The query:
?visual>
scene-change t
will be true when all of these are true

— there has been a proc-display call within :visual-
onset-span seconds

— The change in the visicon at that time was at or
above the threshold (.25 default value)

— The notice has not been explicitly cleared

Scene-change (cont)

e Change is defined as:
d+n
O+n

o: The number of features in the visicon prior to the update

Change =

d : The number of features which have been deleted from the original visicon
n: The number of features which are newly added to the visicon by the update

 Can be explicitly cleared with a clear-scene-change
request or the existing clear request
+visual> isa clear-scene-change
+visual> isa clear

Scene-change-value

Primarily for buffer-status use:

VISUAL:

scene-change : T

scene-change-value : 1.0

Shows the last change value

Can be queried with a number:
?visual>

Scene-change-value x

Will be true if last scene-change-value >= x

ghlights

elease Hi

Fall R

e Environment tools

odules

om
5 i

Aatec tNn avicti
WAULNUL WD UL /NI N\NI

Up
rl

* New module

e Performance

e Miscellaneous

Blending module

e New module to perform blended retrievals
e N

o

t installed bv default
111 [| y NWALITITUINAILLG

— In extras/blending

— See the blending-read-me.txt for installation info
and module details

e Also Included

— Christian’s slides describing the original
mechanism in detail

— Some example models using the module

Blending module overview

Assumes the default declarative module exists

Has one buffer called blending
O

1 1A 11 11 1 11 1

Takes requests like the retrieval buffer does

— Results in a chunk being placed into the blending
buffer if successful

Responds to queries for state busy, free and
error the same way the retrieval buffer does

— State is independent of the declarative module’s

Blending request basics

e Create a resulting chunk with
— The chunk-type of the requested chunk
— All the explicit values given in the request
— Blended slot values for all other slots

Blending request details

Start with the set of chunks which match the request

Compute the activation, A, of each chunk in that set
using the normal declarative mechanisms

Use those activations and the temperature setting of
the blending module (:tmp) to compute the
probability of each chunk in the set being retrieved
using the Boltzmann equation

Now we have a p, value for each chunkiin the
matching set

Blending request details (cont)

For each blended slot

Consider the values
of every chunk i in the matching set
— Call that v,

Three cases
— All v;are numbers

10
-

¢

— All v are chunks

— Something else
* Not going to cover this case

All v.are numbers

e The value for the slot is:

ZPNW

All v,are chunks

e Consider all chunks of that chunk-type as
potential values (or all chunks if there is no
common chunk-type among the v, chunks)

* For each potential value j compute:
B =) p+sim(i,j)’
[

 The value for the slot is the chunk j with the
minimum B, value

Blending time and success
* Compute a match score for the blended chunk

M= legz g4

e |f M >=the retrieval threshold the chunk is
placed in the blending buffer after a time

BT = Fe~U*M)

e Other wise it fails after a time based on the
retrieval threshold

Blending Example (matching set, A. and p))

blending-test-1.lisp:

(sgp :vt:bltt:esct:ans.25:rt4)

(chunk-type target key value size)

(chunk-type size)

(add-dm
(tiny isa size) (small isa size) (medium isa size)
(large isa size)(x-large isa size)

(a isa target key key-1 value 1 size large)
(b isa target key key-1 value 2 size x-large)
(c isa target key key-1 value 3 size tiny)

(d isa target key key-2 value 1 size nil)

(e isa target key key-2 value 3 size small))

(set-similarities (tiny small -.1) (small medium -.1)
(medium large -.1)(large x-large -.1)(tiny medium -.3)
(small large -.3)(medium x-large -.3)(tiny large -.6)
(small x-large -.6)(tiny x-large -.9))

(ppl..==>
+blending>
isa target
key key-1)

0.050 BLENDING START-BLENDING
Blending request for chunks of type TARGET
Blending temperature defaults to (* (sqrt 2) :ans): 0.35355338

Chiinlk C m
.

atrhac hlandin
AR AT RN EAN w

o
rHiacLvilico UI\-IIUIIIs

Activation 3.5325232
Probability of recall 0.2851124

Chunk B matches blending request
Activation 3.763482
Probability of recall 0.5479227

Chunk A matches blending request
Activation 3.3433368
Probability of recall 0.16696489

Slots to be blended: (VALUE SIZE)

Blending Example (computing value slot)

blending-test-1.lisp: Finding blended value for slot: VALUE

(sgp:vt:bltt:esct:ans.25:rt4) Matched chunks' slots contain: (32 1)

(chunk-type target key value size) Magnitude values for those items: (3 2 1)

(chunk-type size) With numeric magnitudes blending by weighted average

(add-dm Chunk C with probability 0.2851124 times magnitude 3.0 cumulative result: 0.85533726
(tiny isa size) (small isa size) (medium isa size) Chunk B with probability 0.5479227 times magnitude 2.0 cumulative result: 1.9511826
(large isa size)(x-large isa size) Chunk A with probability 0.16696489 times magnitude 1.0 cumulative result: 2.1181474

Final result: 2.1181474
(a isa target key key-1 value 1 size large)
(b isa target key key-1 value 2 size x-large)
(c isa target key key-1 value 3 size tiny)
(d isa target key key-2 value 1 size nil)
(e isa target key key-2 value 3 size small))

(set-similarities (tiny small -.1) (small medium -.1)
(medium large -.1)(large x-large -.1)(tiny medium -.3)
(small large -.3)(medium x-large -.3)(tiny large -.6)
(small x-large -.6)(tiny x-large -.9))

(ppl..==>
+blending>
isa target
key key-1)

Blending Example (Computing size slot)

blending-test-1.lisp:

(sgp :vt:bltt:esct:ans.25:rt4)

(chunk-type target key value size)

(chunk-type size)

(add-dm
(tiny isa size) (small isa size) (medium isa size)
(large isa size)(x-large isa size)

(a isa target key key-1 value 1 size large)
(b isa target key key-1 value 2 size x-large)
(c isa target key key-1 value 3 size tiny)

(d isa target key key-2 value 1 size nil)

(e isa target key key-2 value 3 size small))

(set-similarities (tiny small -.1) (small medium -.1)
(medium large -.1)(large x-large -.1)(tiny medium -.3)
(small large -.3)(medium x-large -.3)(tiny large -.6)
(small x-large -.6)(tiny x-large -.9))

(ppl..==>
+blending>
isa target
key key-1)

Finding blended value for slot: SIZE
Matched chunks' slots contain: (TINY X-LARGE LARGE)
Magnitude values for those items: (TINY X-LARGE LARGE)
When all magnitudes are chunks or nil blending based on common chunk-types and
similarities
Common chunk-type for values is: SIZE
Comparing value TINY
Chunk C with probability 0.285 slot value TINY similarity: 0.0 cumulative result: 0.0
Chunk B with probability 0.547 slot value X-LARGE similarity: -0.9 cumulative result: 0.443
Chunk A with probability 0.166 slot value LARGE similarity: -0.6 cumulative result: 0.503
Comparing value SMALL
Chunk C with probability 0.285 slot value TINY similarity: -0.1 cumulative result: 0.002
Chunk B with probability 0.547 slot value X-LARGE similarity: -0.6 cumulative result: 0.200
Chunk A with probability 0.166 slot value LARGE similarity: -0.3 cumulative result: 0.215
Comparing value MEDIUM
Chunk C with probability 0.285 slot value TINY similarity: -0.3 cumulative result: 0.0256
Chunk B with probability 0.547 slot value X-LARGE similarity: -0.3 cumulative result: 0.074
Chunk A with probability 0.166 slot value LARGE similarity: -0.1 cumulative result: 0.076
Comparing value LARGE
Chunk C with probability 0.285 slot value TINY similarity: -0.6 cumulative result: 0.102
Chunk B with probability 0.547 slot value X-LARGE similarity: -0.1 cumulative result: 0.108
Chunk A with probability 0.166 slot value LARGE similarity: 0.0 cumulative result: 0.108
Comparing value X-LARGE
Chunk C with probability 0.285 slot value TINY similarity: -0.9 cumulative result: 0.230
Chunk B with probability 0.547 slot value X-LARGE similarity: 0.0 cumulative result: 0.230
Chunk A with probability 0.166 slot value LARGE similarity: -0.1 cumulative result: 0.232
Final result: MEDIUM

Blending Example (time and success)

blending-test-1.lisp: This is the definition of the blended chunk:
(sgp :vt:bltt:esct:ans.25:rt4) (ISA TARGET KEY KEY-1 SIZE MEDIUM VALUE 2.1181474)
(chunk-type target key value size)
(chunk-type size) Computing activation and latency for the blended chunk
(add-dm Activation of chunk C is 3.5325232

(tiny isa size) (small isa size) (medium isa size) Activation of chunk B is 3.763482

(large isa size)(x-large isa size) Activation of chunk A is 3.3433368

Activation for blended chunk is: 4.6598654
(a isa target key key-1 value 1 size large) 0.050 PROCEDURAL CONFLICT-RESOLUTION
(b isa target key key-1 value 2 size x-large) 0.059 BLENDING BLENDING-COMPLETE

(c isa target key key-1 value 3 size tiny)
(d isa target key key-2 value 1 size nil)
(e isa target key key-2 value 3 size small))

(set-similarities (tiny small -.1) (small medium -.1)
(medium large -.1)(large x-large -.1)(tiny medium -.3)
(small large -.3)(medium x-large -.3)(tiny large -.6)
(small x-large -.6)(tiny x-large -.9))

(ppl..==>
+blending>
isa target
key key-1)

ghlights

elease Hi

Fall R

e Environment tools

odules

om
5 i

Aatec tNn avicti
WAULNUL WD UL /NI N\NI

Up
rl

* New module

e Performance

e Miscellaneous

Performance

 Added a set of test models to measure long
term performance values

— Ensure things are at least linear

e Lots of little changes
— Minor code changes (append -> nconc, etc)

— Internal representations
e Things people shouldn’t notice

 Two updates for the vision module

Vision module performance

Since it uses chunks internally there’re a lot of
“garbage” chunks created

— used once and then not needed

The built-in GUI tools now reuse and delete their
chunks when not needed

New parameter :delete-visicon-chunks

— The module’s internal chunks also get deleted
— Defaults to t

— May need to set to nil to work with some extensions
(EMMA)

ghlights

elease Hi

Fall R

e Environment tools

odules

om
5 i

Aatec tNn avicti
WAULNUL WD UL /NI N\NI

Up
rl

* New module

e Performance

e Miscellaneous

Viiscellaneous

 Manual now has sections on
— Working with chunk-specs
— Accessing and using buffers
— Adding new chunk parameters
— Defining new modules

e New command: capture-model-output

— Works like no-output to suppress output except it stores it
in a string which it returns

 Changes to some feature checks to work right with
Clozure Common Lisp (was previously OpenMCL)

pdates for the Winter release

Changed the internal mechanisms used to

hold and compute the chunk fan values
Added a third reset function option for
modules

New option for normalizing chunk names

Ongoing performance improvement work
— Still experimental
— Available for testing if interested

New fan storage mechanism

Previously
— Saved the list of all i’s in the chunk j (j is the source i is the chunk with
a connection to j)
— Required searching that list when computing fan; (fan-out;/fan-in)
Now
— Store only the total fan-out count in j
— Store the fan-in count for eachjinii

Much faster for models with large fan-outs
If you were accessing that fan-out list it’s not there now

— Wasn’t available through the normal mechanisms anyway
— Could add a flag to still save it if people really need that

I

hird reset function

e Modules now have an additional option for
when they can get called during reset

— After all the model code evaluated

e It's set as a third item in the :reset list when
defining the module if needed

“New” Chunk name Normalizing
* New parameter :dcnn (dynamic chunk name
normalizing)

 Works in conjunction with :ncnar

e When both are true (the default values)

— Chunk names are normalized as the model runs
instead of at the end

— When chunks merge all slots of ALL chunks which
have the merged name are updated to the true name

— Much closer to how the older ACT-Rs worked

Viore on :dcnn

Primarily for model debugging
— Never see multiple names for one chunk
— Should not affect the operation of the model

May or may not be faster that normalizing at the end

— Depends on how much merging occurs, the interrelations
among the chunks, and how many chunks the model has

Does require extra storage to hold the back-links
— So a larger memory footprint is required to use it

For best performance :ncnar should still be set to nil
— Disables all the normalizing

Simple :dcnn example

(chunk-type goal slot)

(add-dm (name isa chunk))

(p start
?goal> buffer empty
==>
+goal> isa goal
+retrieval> isa chunk)

(p set-up
=goal> isa goal
=retrieval> 1sa chunk
==>
=goal>
slot =retrieval)

(p report
=goal>
isa goal
slot =value
==>

Toutput! (the value is =value)

Istop!))

CG-USER(12): (sgp :dcnn nil)

(NIL)
CG-USER(13): (run 10)

0.050 PROCEDURAL

0.050 GOAL

0.050 DECLARATIVE
0.100 PROCEDURAL
0.150 PROCEDURAL

THE VALUE IS NAME-0
0.150 ———--—-

CG-USER(9): (sgp :dcnn t)

D,
CG-USER(10): (run 10)

0.050 PROCEDURAL

0.050 GOAL

0.050 DECLARATIVE
0.100 PROCEDURAL
0.150 PROCEDURAL

THE VALUE 1S NAME
0.150 ———--—-

PRODUCTION-FIRED START
SET-BUFFER-CHUNK GOAL GOALO
SET-BUFFER-CHUNK RETRIEVAL NAME
PRODUCTION-FIRED SET-UP
PRODUCTION-FIRED REPORT

BREAK-EVENT Stopped by Istop!

PRODUCTION-FIRED START
SET-BUFFER-CHUNK GOAL GOALO
SET-BUFFER-CHUNK RETRIEVAL NAME
PRODUCTION-FIRED SET-UP

PRODUCT ION-FIRED REPORT

BREAK-EVEN| Stopped by Istop!

Ongoing Update Work

Improve performance

— Development focus has been primarily on
functionality up to this point

— Try to stay ahead of demand
ldentify a mechanism that

— Takes a significant amount of time
— Common to most/all models

— Shows an opportunity for improvement without
significantly affecting current users

typically accounts for somewhere between 20-
50% of the run time

— Primarily in the production matching code

* Not the actual “conflict resolution” calculation

e Matching is a completely internal mechanism

— No user hooks or access to the low-level operation

Current Algorithm

For each production
Test each condition until
ali successful or one faiis
— Same as previous versions™

Linear in the total number of conditions in the productions

— Because each condition is a simple test — no search

Checked with a simple performance testing model
— Each production has two conditions and no actions
— One production matches and n do not match

* (ptarget =goal> isa test slot target ==>)
* (p failn =goal> isa test slot failn ==>)

— No other events in the model
— Essentially the only thing happening is conflict-resolution events

Real time in seconds

Run for 1000 simulated seconds

180

160 Pad

. /
. e

) e
N

e

0 1000 2000 3000 4000 5000 6000

Number of productions

=&—ACT-R 6 [r690]

e Linear —good

too bad

m
it

't see

NEC
voo

O

e Compare to similar model in ACT-R 5.0

Real time in seconds

Run for 1000 simulated seconds

180

160 Pad

140 /
120 /
100

80

. e

40

20 / -

0 1000 2000 3000 4000 5000 6000

Number of productions

—o—ACT-R 6 [r690]
~8—ACT-R5

e Room for improvement
ed

r-l-
r-l-

YNe
| I Mo

— Christian did a lot of work to improve ACT-R 4.0
— ACT-R 6.0 has had little performance work

— More abstraction in 6.0

e Probably never get to performance of 4.0/5.0 using the
same algorithm

Plan forward

 Two strategies

— Improve the internal production representation
and code

— Change the algorithm

 Working on both basically in parallel

7~ _

ode changes

 Two big updates so far

 Replaced the use of the general chunk

matching commands with specific code for
buffer chunks which cache the results

* Replaced the lambdas that were generated at
parse time with a structured representation
that’s tested at run time instead of evaled

Real time in seconds

Run for 1000 simulated seconds

180

160 Plad

140 /
120 / /
100
—6—ACT-R 6 [r690]

80 —B-ACT-R5
/ / / —#—ACT-R 6 [705]
> /// / ~>=ACT-R 6 [r719+]
N

20 I R

0 1000 2000 3000 4000 5000 6000

Number of productions

Algorithm

e Better than linear across all conditions?

e Whv not u

Ily 1INJWA

ETE?

(.I')

1\

— Doesn’t reaIIy fit our situation
 We don’t require search in matching

— Already linear in number of conditions

* We have a fairly small set of items to match (buffer slots)

e Try just a simple decision tree

Decision tree

Only considering the constant tests in the
productions at this point

— |sa tests, specific slot values, and queries
Nodes represent the conditions
— Branches for the possible values

Leaves are a set of productions which may
need further testing

At matching time it just needs to walk a path
from the root to a leaf

Current implementation

e Creates the tree given all the productions

— That’s why the third reset hook was added

e Use an existing algorithm to build it —1D3

— Add the condition which has the most information
gain
— Heuristic favors smaller depth trees

e Stop a branch when there’re no more
common conditions to test

Real time in seconds

180

160

140

120

100

80

60

40

20

Run for 1000 simulated seconds

1000

-
Al
s —
2000 3000 4000 5000 6000

Number of productions

——ACT-R 6 [r690]
—@—-ACT-R5
«==ACT-R 6 [r705]
=>¢=ACT-R 6 [r719+]
== ACT-R 6 [tree]

Needs more testing

That test model is essentially the best possible
situation for the tree

Run times with other models did improve

Not without potential issues
— Time to build the tree
— Space to hold the tree

Not enabled by default

— need to set the :use-tree parameter to t

— Should work for all models including those using
production compilation

