
Unit8 Model code Description

The example models for this unit either have no experiment code, or are driven by code that has
been described in previous units. The assignment task’s experiment code does not use any new
ACT-R commands or capabilities. Thus, instead of describing any of that code here, this text is
going to explain how the bst-learn-ppm model avoids using a !bind! to do a calculation and
instead uses a request to the imaginal module to do so.

The imaginal module has a second buffer called imaginal-action which can be used by the
modeler to make requests that perform custom actions. Those actions are typically used to
modify the chunk in the imaginal buffer, replace the chunk in the imaginal buffer with a new
one, or clear the imaginal buffer and report an error, but may perform any other arbitrary
calculation desired. Those requests can also take time during which the imaginal module will be
considered as busy. Note however, the imaginal-action buffer is not intended to be used for
holding a chunk. The imaginal buffer is the cognitive interface for the imaginal module and the
imaginal-action buffer exists only for the purpose of allowing modelers to create new operations
which can manipulate the imaginal buffer.

There are two types of requests which can be made to the imaginal-action buffer: simple-action
and generic-action. This model uses a simple-action to create a new chunk for the imaginal
buffer. The generic-action is more powerful in terms of what it can do, but also requires more
care and programming from the modeler in handling the action. The generic-action request is
beyond the scope of the tutorial, and users interested in using that capability should consult the
reference manual for details.

Here is the production from the model which uses a simple-action request to the imaginal-action
buffer:

(p encode-line-current
 =goal>
 isa try-strategy
 state attending
 =imaginal>
 isa encoding
 goal-loc =goal-loc
 =visual>
 isa line
 width =current-len
 ?visual>
 state free
==>
 =imaginal>
 length =current-len

 +imaginal-action>
 isa simple-action
 action compute-difference

 =goal>
 state consider-next
 +visual>
 isa move-attention
 screen-pos =goal-loc)

A simple-action request to the imaginal-action buffer requires specifying one slot, action, which
must name a Lisp function. When a simple-action request is made the imaginal module performs
the following actions: the imaginal module is marked as busy, if the imaginal module is currently
signaling an error that is cleared, the named function is called with no parameters, and the
imaginal buffer is cleared. After the current imaginal action time (default of 200ms and set with
the :imaginal-delay parameter) has passed the imaginal module will be marked as free and one of
two actions will occur depending on what the specified function returned. If it returned the name
of a chunk then that chunk will be placed into the imaginal buffer. If it returns any other value
the imaginal buffer will remain empty and the imaginal module’s error flag will be set to t.

Here is the compute-difference function which is called as a result of the request in the encode-
line-current production:

(defun compute-difference ()
 (let* ((chunk (buffer-read 'imaginal))
 (new-chunk (copy-chunk-fct chunk)))
 (mod-chunk-fct new-chunk
 (list 'difference
 (abs (- (chunk-slot-value-fct chunk 'length)
 (chunk-slot-value-fct chunk 'goal-length)))))))

It creates a copy of the chunk which is currently in the imaginal buffer using the ACT-R copy-
chunk command and then sets the difference slot of that new chunk to be the difference between
the length of the current stick and the length of the goal stick just as the !bind! did in the previous
version of the model. That new chunk is returned from the function and thus will be put into the
imaginal buffer after 200ms have passed.

Here is the segment from the trace showing the actions related to the simple-action request when
the encode-line-current production fires:

 2.141 PROCEDURAL PRODUCTION-SELECTED ENCODE-LINE-CURRENT
 2.191 PROCEDURAL PRODUCTION-FIRED ENCODE-LINE-CURRENT
 ...
 2.191 PROCEDURAL MODULE-REQUEST IMAGINAL-ACTION
 2.191 PROCEDURAL CLEAR-BUFFER IMAGINAL-ACTION
 ...
 2.191 IMAGINAL CLEAR-BUFFER IMAGINAL
 ...
 2.391 IMAGINAL SET-BUFFER-CHUNK IMAGINAL ENCODING0-0-0

Except for the additional clearing of the imaginal-action buffer, which should not hold a chunk
anyway, it performs the same actions as the normal imaginal buffer requests do to create new
chunks.

One important thing to note about a simple-action request is that it will always clear the
imaginal buffer. That means that the chunk currently in the buffer will become an element of
the model’s declarative memory at that time. In this model that does not matter because it is not
retrieving those chunks later. However, in models where later retrieval is important, having
intermediate chunks added to memory like that could cause problems. In those cases, one would

probably want to use the generic-action request to extend the imaginal capabilities because it
does not clear the buffer automatically.

