Learning new
production rules

Niels Taatgen

rijksuniv

C&ﬂi@giﬁMﬂ'&“ ﬁ / groninge n

“* Combination and Specialization

_,Rule i Rule 25

\ Fact /%

_ New rule L.

Carnegie Melon % / rijksunivrsite

| 1 WAV LULINDIL I VVIIIrIIIUl.LI\JI iIn

&%, specialization and
% combination

Production rules are specialized by
factoring out the retrieval request and
retrieval match (if any, otherwise there
IS no specialization)

Production rules are combined by
merging two rules into one

rijksuniversiteit
groningen

Cariiegie Mellon

9%
AN

Support for skill acquisition

By factoring out retrievals

Speedup because retrievals are no longer
needed

It reduces errors (retrieval errors)

Frees up “working memory” by reducing
interference

Cariiegie Mellon

gﬁhm

5 rijksuniversiteit
/ groningen

% Discontinuous learning

In declarative memory, activation (how often
IS a chunk used) determines its success

In procedural memory, utility (how efficient is
the use of knowledge) determines its success

A shift from declarative to procedural may
produce transition effects: for example, U-
shaped learning

&k

Capniegie Melon e / i porsitelt

(P initialize-
addition
=goal>

ISA add
argl =numl
arg2 =num?2

sum nil
==>

=goal>

sum =numl
count zero
+retrieval>
ISA order

first =num1)

Carniegie Melon

orderx
isa order

first six ———

second seven

Example: Addition

(P increment-sum
=goal>

ISA add

sum =sum

count =count
=retrieval>
ISA order
first =sum
second =newsum
==>
=goal>

sum =newsum

+retrieval>

ISA order

first =count)

jg% / rijksuniversiteit

) groningen

Example

(P initialize-
addition
=goal>

ISA add
argl SiX
arg2 =num?2
sum nil
=-=>
=goal>

sum SiX
count zero
+retrieval>
ISA order
first SiX))

Carniegie Melon

- Addition

(P increment-sum
=goal>
ISA add
sum SiX
count =count
orderx >
ISA order
first SIX
second seven
==>
=goal>
sum seven
+retrieval>
ISA order
first =count)

orderx
isa order
first six ——

second seven

rijksuniversiteit
groningen

/

(P initialize-
addition
=goal>
ISA add
argl Six
arg2 =num?2
sum nil
=-=>
=goal>
sum SiX
count zero
+retrieval>
ISA order
first Six))

Carniegie Melon

Example: Addition

(P increment-sum
=goal>
ISA add
sum SIX
count =count
rderx >
ISA order
first SIX
second seven
==>
=goal>
sum seven
+retrieval>
ISA order
first =count)

19%4 / rijksuniversiteit

) groningen

Example: Addition

(P initialize- (P increment-sum
addition =goal>
ISA add
s sum Six
ISA add count zero
argl six rderx>
arg2 =num?2 ISA order
sum nil first six
second seven
==> ==>
=goa|> =goal>
_ sum seven
S s +retrieval>
count zero ISA order
+retrieval> first zero)
ISA order
first six)

Gaiiégie eWon $h / e

Example: Addition

(P initialize- (P new-rule (P increment-sum
addition =goal> =goal>
ISA add ISA add
=gieEl= argl six sum Six
ISA add ey A1G2 =NUM2 count zero
argl six L sum il
arg2 =num?2 :;Zab
sum nil
sum seven
==> count zero
—goal> +retrieval>
isa order sum seven
ELI. first zero) +retrieval>
count zero \ ISA order
+rqtrieval> first zero)

CRiégie e B/ S

& What happens to other
* buffers?

As long as there are no conflicts, buffer
conditions and actions are all copied into the
new rule

Conflicts:

First rule has an action that second rule uses as a
condition

e.g. first rule +visual>, second rule =visual>

Both rules have an action on the same buffer
e.g. first rule +manual>, second rule also +manual>

Cariiegie Mellon

3

%,

g3 74 rijksuniversiteit
ﬁ / groningen

(p read-probe
=goal>
isa goal
state attending
argl nil
=visual>
isa text
value =val
==>
+retrieval>
isa goal
state associated

argl =val
=goal>
argl =val

state testing

Carniegie Melon

zinc-9
isa goal
state associated
rgl zinc
arg2 “9”

(p recall
=goal>
isa goal
argl =val
state testing
=retrieval>
isa goal

=y argl =val
arg2 =ans
?manual>
state free
=-=>
+manual>
isa press-key
key =ans
=goal>
state read-study-item

5%

Example: Paired Associate

/

rijksuniversiteit
groningen

(p read-probe
=goal>
isa goal
state attending
argl nil
=visual>
isa text
value zinc
==>
+retrieval>
isa goal
state associated

argl zinc
=goal>
argl zinc

state testing

Carniegie Melon

zinc-9
isa goal
state associated
argl zinc
arg2 “9”

(p recall
=goal>
isa goal
argl zinc
state testing
zinc-9 >
isa goal
argl zinc
arg2 “9”
?manual>
state free
=-=>
+manual>
isa press-key
key “g”
=goal>
state read-study-item

Example: Paired Associate

/

rijksuniversiteit
groningen

(p read-probe

=goal>

isa goal

state attending

argl nil
=visual>

isa text

value zinc

==>

+retrieval>

isa go

te sociated

ar zinc
= >

argl zinc

state testing

Caklickic Mellon

Example: Paired Associate

(p recall
:g ;

?manual>
state free
—_===>
+manual>
isa press-key
key “g”
=goal>
state read-study-item

%/

rijksuniversiteit
groningen

Example: Paired Associate

(p read-probe (p zinc-9-rule (p recall
=goal> =goal>
=goal> isa goal
isa goal state attending Jinc
state attending / argl il)
. =visual>
argl nil isa text zin
=visual> value zinc [
isa text ?manual> zinc
_ state free o
value zinc —=> 5 o
==> =goal> ‘ ma?l»::af
' state free
+retrieval> argl zinc
erieva state read-study- ==>
item +manual>
+manual> isa press-key
isa press-key key ugy
key ugu
) oal>
argl zinc state read-study-item
state testing)

Gaiiégie eWon $h / e

& Parameter Learning:
% what we want from it

Gradual introduction of new rules: after the
first opportunity for the rule to be learned, it
should take some more practice or
experience before it will regularly be used

Evaluation of new rules

If the new rule is better than the parents, it should
eventually fire whenever it matches

If the new rule is worse than the parents, it should
eventually not fire anymore

3

%,

Capniegie Melon e / i porsitelt

% Utility of new rules

Utility Is learned according to:
U,(n)=U,(n-1+a[R (n)-U,(n-1)]

A new rule initially receives a Utility of
zero. Each time It Is recreated, its Utility
IS updated:

Ui(n) = Ui(n _1) T a[Uparent(n _1) _Ui(n _1)]

Cariiegie Mellon

9%

rijksuniversiteit
groningen

=
0.9

+ 0.8

+ 0.7 >
+ 0.6 E
+ 0.5 <

N +04 2
—Utilitynewrule | g3 &

1 | — Utility parent rule + 0.2
- 0.1

0 I I I O
0 20 40 60 80 100
recreations and experiences

——Probability

Noise = 0.2 a=0.1 Utility new rule = 6

Gafﬁe#ieMQ'éﬁ % / ;:]é{ S;ﬁggf siteit

— Utility new rule

— Ultility parent rule

—— Probability 1040

0 20 40 60 80 100
recreations and experiences

Noise = 0.2 a=0.1 Utility new rule = 4

Gafﬁe#ieMQ'éﬁ % / ;:]é{ S;ﬁggf siteit

Properties

It takes a while for the new rule to be
learned

Rules that are recreated more often are
learned faster

Caﬂiegi.eMe'é“ % / géﬁ;?:ﬁmite“

& Instructions for paired
¥ associate

= start Read the word stimulus-read

= stimulus-read Retrieve associate recalled

= recalled Test success of recall (response found/wait)
= response found Type response wait

= wait Read feedback new trial

= new trial Complete task start

Carniegie Melon

9%

rijksuniversiteit
/ groningen

Learning from instructions

Instructions for Paired Associate Task:

(opl isa operator pre start action read argl fill post stimulus-read)

(op2 isa operator pre stimulus-read action associate argl filled arg2 fill post recalled)
(op3 isa operator pre recalled action test-arg2 argl respond arg2 walit)

(op4 isa operator pre respond action type arg2 response post wait)

(op5 isa operator pre wait action read arg?2 fill post new-trial)

(op6 isa operator pre new-trial action complete-task post start)

Carpiegie Melon %

% /

rijksuniversiteit
groningen

(p retrieve-operator

step retrieving-

=goal>
isa task
state =state
step ready
==>
+retrieval>
isa operator
pre =state
=goal>
operator)

Example productions

(p type-arg2
=goal>
isa task
step retrieving-operator
=imaginal>
isa args
arg2 =val
=retrieval>
isa operator
action type
arg2 response
post =state
?manual>
state free
==>
+manual>
isa press-key
key =val
=goal>
state =state
step ready)

(op4 isa operator task assoc pre respond action type arg2 response post wait)

Cariiegie Mellon

/

rijksuniversiteit
groningen

Compiled production

(p production323
=g9a|> (op4 isa operator
isa task task assoc

task assoc pre respond
state respond -
action type

step ready
=imaginal> arg2 response

isa args post wait)
arg2 =val
?manual
state free
==>
+manual>
isa press-key
key =val
=goal>
state wait)

eameglemﬁ'éﬁ 19%4 / rijksuniversiteit

L) groningen

Model results

Accuracy Latency
2.5
2
Data 1.5 S Data
—#— Model no pc - —#— Model no pc
Model pc 1 / Model pc
0.5
0 — T
0 5 10
Trial

Hiegie o 3 e

Unit Assignment:
Learning the Past Tense

. Children go through three stages in learning the past
tense

— Stage 1: If they inflect an irregular verb, they do it correctly, e.g.,

break-broke

— Stage 2: Children occasionally overgeneralize, e.g., break-
breaked

— Stage 3: Children do it correct again: break-broke
- This is called U-shaped learning
— Important aspect: children do not get feedback on whether or not

aTest ast tense they produce is correct. 8 iiksuniversitei
CatiiégicNenhs P yp %‘%; Vs toit

groningen

Learning the past tense

- This Is a different model than you
have seen up to now:

— It is not an experiment (but real life!)

— It's on a different time scale (months
iInstead of hours)

— It doesn’t use the perceptual and motor
components of ACT-R

Cariiegie Mellon

gﬁhm

5 rijksuniversiteit
/ groningen

The model code
generate a goal like
goall
isa goal
state nil

And put a present tense in
the imaginal buffer like:

verb23

isa pasttenstense
verb have

stem nil

suffix nil

Cariiegie Mellon

Q

Q

What is already there

Your model has to fill in the
stem and suffix slots in the
imaginal buffer (in this case had
and blank, respectively), and
set the state slot in the goal to
done.

Three rules that are already
provided in the model will then
“pronounce” the word.

The feedback the model uses is
not failure or success, as kids
also do not get feedback, but
the costs of producing the past
tense.

groningen

g% 4 / rijksuniversiteit

Reward 5 Reward 4.2
=goal> =goal>
isa goal Isa goal
state done state done
=imaginal> =imaginal>
isa past-tense isa past-tense
verb =word verb =stem
suffix blank stem =stem
==> suffix =suffix
=goal> state nil - suffix blank
==>

=goal> state nil

Cariiegie Mellon

¥ Three Evaluation Productions

Reward 3.9
=goal>
Isa goal
state done
=Imaginal>
ISa past-tense
stem nil
suffix nil
==>
=goal> state nil

gﬁhm

5 rijksuniversiteit
/ groningen

What is already there

The model also assumes you perceive things in the
environment (e.g., parents). So for each past tense
the model creates itself, two examples are added to
declarative memory:

word2323 woodd2334
Isa pasttenstense |ISagppastiensense
verb have veviensese
stem had Stetenusse
suffix blank suffixsedfix ed
Caifegic MeWon 8/ e

S \hat your model should do

- |t should attempt to retrieve past tenses
from memory

. Alternatively, it can try to retrieve a different
past tense and do some pattern matching to
apply it to the current past tense

. |f something goes wrong it should just give
up, and leave the stem and suffix slots
empty. This represents the case where the
child just used the present tense.

Cariiegie Mellon 2%

3

%,

rijksuniversiteit
groningen

&i\What your model should
- learn

. Your model
should learn the

regular rule

- Your model
should exhibit U-
shaped learning

Caiiegié Melon 5% rismiveriet

Need 2 Retrieval Productions

(p retrievel (p retrieve2

==>

==>
+retrieval> +_retr|eva|>
isa past-tense Isa past-tense
- suffix nil verb =Wor(
) - suffix nil

Challenge for the class: Why?

Caiiegié Melon 5% rismiveriet

