
Learning new Learning new
production rulesproduction rules

Niels TaatgenNiels Taatgen

Combination and SpecializationCombination and Specialization

Rule 1 Rule 2

Fact

New rule

Production compilation: Production compilation:
specialization and specialization and
combinationcombination

�� Production rules are specialized by Production rules are specialized by
factoring out the retrieval request and factoring out the retrieval request and factoring out the retrieval request and factoring out the retrieval request and
retrieval match (if any, otherwise there retrieval match (if any, otherwise there
is no specialization)is no specialization)

�� Production rules are combined by Production rules are combined by
merging two rules into onemerging two rules into one

Support for skill acquisitionSupport for skill acquisition

�� By factoring out retrievalsBy factoring out retrievals
•• Speedup because retrievals are no longer Speedup because retrievals are no longer

neededneededneededneeded
•• It reduces errors (retrieval errors)It reduces errors (retrieval errors)
•• Frees up “working memory” by reducing Frees up “working memory” by reducing

interference interference

Discontinuous learningDiscontinuous learning

�� In declarative memory, activation (how often In declarative memory, activation (how often
is a chunk used) determines its successis a chunk used) determines its success

�� In procedural memory, utility (how efficient is In procedural memory, utility (how efficient is
the use of knowledge) determines its successthe use of knowledge) determines its successthe use of knowledge) determines its successthe use of knowledge) determines its success

�� A shift from declarative to procedural may A shift from declarative to procedural may
produce transition effects: for example, Uproduce transition effects: for example, U--
shaped learningshaped learning

Example: AdditionExample: Addition
(P initialize(P initialize--

addition addition

=goal> =goal>

ISA add ISA add
arg1 =num1 arg1 =num1
arg2 =num2 arg2 =num2
sum nilsum nil

(P increment-sum
=goal>

ISA add
sum =sum
count =count

=retrieval>
ISA order
first =sum

orderx

isa order

first sixsum nilsum nil

==> ==>

=goal> =goal>

sum =num1 sum =num1
count zero count zero

+retrieval> +retrieval>

ISA order ISA order

first =num1first =num1))

second =newsum
==>
=goal>

sum =newsum
+retrieval>

ISA order
first =count)

first six

second seven

Example: AdditionExample: Addition
(P initialize(P initialize--

addition addition

=goal> =goal>

ISA add ISA add
arg1 arg1 sixsix
arg2 =num2 arg2 =num2
sum nilsum nil

(P increment-sum
=goal>

ISA add
sum six
count =count

orderx >
ISA order
first six

orderx

isa order

first sixsum nilsum nil

==> ==>

=goal> =goal>

sum sum sixsix
count zero count zero

+retrieval> +retrieval>

ISA order ISA order

first first sixsix))

second seven
==>
=goal>

sum seven
+retrieval>

ISA order
first =count)

first six

second seven

Example: AdditionExample: Addition
(P initialize(P initialize--

addition addition

=goal> =goal>

ISA add ISA add
arg1 arg1 sixsix
arg2 =num2 arg2 =num2
sum nilsum nil

(P increment-sum
=goal>

ISA add
sum six
count =count

orderx >
ISA order
first sixsum nilsum nil

==> ==>

=goal> =goal>

sum sum sixsix
count zero count zero

+retrieval> +retrieval>

ISA order ISA order

first first sixsix))

second seven
==>
=goal>

sum seven
+retrieval>

ISA order
first =count)

Example: AdditionExample: Addition
(P initialize(P initialize--

addition addition

=goal> =goal>

ISA add ISA add
arg1 six arg1 six
arg2 =num2 arg2 =num2
sum nilsum nil

(P increment-sum
=goal>

ISA add
sum six
count zero

orderx>
ISA order
first six sum nilsum nil

==> ==>

=goal> =goal>

sum six sum six
count zero count zero

+retrieval> +retrieval>

ISA order ISA order

first six)first six)

second seven
==>
=goal>

sum seven
+retrieval>

ISA order
first zero)

Example: AdditionExample: Addition
(P initialize(P initialize--

addition addition

=goal> =goal>

ISA add ISA add

arg1 six arg1 six

arg2 =num2 arg2 =num2

sum nilsum nil

(P increment-sum
=goal>

ISA add
sum six
count zero

orderx>
ISA order
first six

(P new-rule
=goal>

ISA add
arg1 six
arg2 =num2
sum nil

==>
=goal>

sum nilsum nil

==> ==>

=goal> =goal>

sum six sum six

count zero count zero

+retrieval> +retrieval>

ISA order ISA order

first six)first six)

second seven
==>
=goal>

sum seven
+retrieval>

ISA order
first zero)

sum seven
count zero

+retrieval>
isa order
first zero)

What happens to other What happens to other
buffers?buffers?

�� As long as there are no conflicts, buffer As long as there are no conflicts, buffer
conditions and actions are all copied into the conditions and actions are all copied into the
new rulenew rule
Conflicts:Conflicts:�� Conflicts:Conflicts:
•• First rule has an action that second rule uses as a First rule has an action that second rule uses as a

conditioncondition
�� e.g. first rule +visual>, second rule =visual>e.g. first rule +visual>, second rule =visual>

•• Both rules have an action on the same bufferBoth rules have an action on the same buffer
�� e.g. first rule +manual>, second rule also +manual>e.g. first rule +manual>, second rule also +manual>

Example: Paired AssociateExample: Paired Associate
(p read-probe

=goal>

isa goal

state attending

arg1 nil

=visual>

isa text

(p recall
=goal>

isa goal
arg1 =val
state testing

=retrieval>
isa goal
arg1 =val
arg2 =ans

zinc-9

isa goal

state associatedisa text

value =val

==>

+retrieval>

isa goal

state associated

arg1 =val

=goal>

arg1 =val

state testing

)

?manual>
state free

==>
+manual>

isa press-key
key =ans

=goal>
state read-study-item

)

arg1 zinc

arg2 “9”

Example: Paired AssociateExample: Paired Associate
(p read-probe

=goal>

isa goal

state attending

arg1 nil

=visual>

isa text

(p recall
=goal>

isa goal
arg1 zinc
state testing

zinc-9 >
isa goal
arg1 zinc
arg2 “9”

zinc-9

isa goal

state associatedisa text

value zinc

==>

+retrieval>

isa goal

state associated

arg1 zinc

=goal>

arg1 zinc

state testing

)

?manual>
state free

==>
+manual>

isa press-key
key “9”

=goal>
state read-study-item

)

arg1 zinc

arg2 “9”

(p read-probe

=goal>

isa goal

state attending

arg1 nil

=visual>

isa text

value zinc

Example: Paired AssociateExample: Paired Associate
(p recall

=goal>
isa goal
arg1 zinc
state testing

zinc-9 >
isa goal
arg1 zinc
arg2 “9”value zinc

==>

+retrieval>

isa goal

state associated

arg1 zinc

=goal>

arg1 zinc

state testing

)

?manual>
state free

====>
+manual>

isa press-key
key “9”

=goal>
state read-study-item

)

(p read-probe

=goal>

isa goal

state attending

arg1 nil

=visual>

isa text

value zinc

Example: Paired AssociateExample: Paired Associate
(p recall

=goal>
isa goal
arg1 zinc
state testing

zinc-9 >
isa goal
arg1 zinc
arg2 “9”

(p zinc-9-rule
=goal>

isa goal
state attending
arg1 nil

=visual>
isa text
value zinc

?manual>
state free

==>value zinc

==>

+retrieval>

isa goal

state associated

arg1 zinc

=goal>

arg1 zinc

state testing

)

?manual>
state free

==>
+manual>

isa press-key
key “9”

=goal>
state read-study-item

)

==>
=goal>

arg1 zinc
state read-study-

item
+manual>

isa press-key
key “9”

)

Parameter Learning: Parameter Learning:
what we want from itwhat we want from it

�� Gradual introduction of new rules: after the Gradual introduction of new rules: after the
first opportunity for the rule to be learned, it first opportunity for the rule to be learned, it
should take some more practice or should take some more practice or
experience before it will regularly be usedexperience before it will regularly be usedexperience before it will regularly be usedexperience before it will regularly be used

�� Evaluation of new rulesEvaluation of new rules
•• If the new rule is better than the parents, it should If the new rule is better than the parents, it should

eventually fire whenever it matcheseventually fire whenever it matches
•• If the new rule is worse than the parents, it should If the new rule is worse than the parents, it should

eventually not fire anymoreeventually not fire anymore

Utility of new rulesUtility of new rules

�� Utility is learned according to:Utility is learned according to:

�� A new rule initially receives a Utility of A new rule initially receives a Utility of

Ui(n) = Ui(n −1) + α[Ri(n) −Ui(n −1)]

�� A new rule initially receives a Utility of A new rule initially receives a Utility of
zero. Each time it is recreated, its Utility zero. Each time it is recreated, its Utility
is updated:is updated:

Ui(n) = Ui(n −1) + α[U parent (n −1) −Ui(n −1)]

Parameter learning: exampleParameter learning: example

3

4

5

6

0.5
0.6
0.7
0.8
0.9
1

P
ro

ba
bi

lit
y

Noise = 0.2 α=0.1 Utility new rule = 6

0

1

2

3

0 20 40 60 80 100

recreations and experiences

0
0.1
0.2
0.3
0.4
0.5

P
ro

ba
bi

lit
y

Utility new rule

Utility parent rule

Probability
newrule>oldrule

Parameter learning: exampleParameter learning: example

3

4

5

6

0.5
0.6
0.7
0.8
0.9
1

P
ro

ba
bi

lit
yUtility new rule

Utility parent rule

Noise = 0.2 α=0.1 Utility new rule = 4

0

1

2

3

0 20 40 60 80 100

recreations and experiences

0
0.1
0.2
0.3
0.4
0.5

P
ro

ba
bi

lit
y

Probability
newrule>oldrule

PropertiesProperties

�� It takes a while for the new rule to be It takes a while for the new rule to be
learnedlearned

�� Rules that are recreated more often are Rules that are recreated more often are �� Rules that are recreated more often are Rules that are recreated more often are
learned fasterlearned faster

Instructions for paired Instructions for paired
associateassociate

�� startstart Read the wordRead the word stimulusstimulus--readread

�� stimulusstimulus--readread Retrieve associateRetrieve associate recalledrecalled

�� recalledrecalled Test success of recallTest success of recall (response found/wait)(response found/wait)

Type responseType response�� response foundresponse found Type responseType response waitwait

�� waitwait Read feedbackRead feedback new trialnew trial

�� new trialnew trial Complete taskComplete task startstart

Learning from instructionsLearning from instructions

Instructions for Paired Associate Task:

(op1 isa operator pre start action read arg1 fill post stimulus-read)
(op2 isa operator pre stimulus-read action associate arg1 filled arg2 fill post recalled)
(op3 isa operator pre recalled action test-arg2 arg1 respond arg2 wait)
(op4 isa operator pre respond action type arg2 response post wait)(op4 isa operator pre respond action type arg2 response post wait)
(op5 isa operator pre wait action read arg2 fill post new-trial)
(op6 isa operator pre new-trial action complete-task post start)

Example productionsExample productions
(p retrieve-operator

=goal>

isa task

state =state

step ready

==>

(p type-arg2
=goal>

isa task
step retrieving-operator
=imaginal>

isa args
arg2 =val

=retrieval>
isa operator
action type==>

+retrieval>

isa operator

pre =state

=goal>

step retrieving-
operator)

action type
arg2 response
post =state

?manual>
state free

==>
+manual>

isa press-key
key =val

=goal>
state =state
step ready)

(op4 isa operator task assoc pre respond action type arg2 response post wait)

Compiled productionCompiled production
(p production323

=goal>
isa task
task assoc
state respond
step ready

=imaginal>

(op4 isa operator
task assoc
pre respond
action type
arg2 response =imaginal>

isa args
arg2 =val

?manual
state free

==>
+manual>

isa press-key
key =val

=goal>
state wait)

arg2 response
post wait)

Model resultsModel results

Accuracy

0.9

1

Latency

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8

Trial

Data

Model no pc

Model pc

0

0.5

1

1.5

2

0 5 10

Trial

Data

Model no pc

Model pc

Unit Assignment: Unit Assignment:
Learning the Past TenseLearning the Past Tense

•• Children go through three stages in learning the past Children go through three stages in learning the past

tensetense

–– Stage 1: If they inflect an irregular verb, they do it correctly, e.g., Stage 1: If they inflect an irregular verb, they do it correctly, e.g.,

breakbreak--brokebrokebreakbreak--brokebroke

–– Stage 2: Children occasionally overgeneralize, e.g., breakStage 2: Children occasionally overgeneralize, e.g., break--

breakedbreaked

–– Stage 3: Children do it correct again: breakStage 3: Children do it correct again: break--brokebroke

•• This is called UThis is called U--shaped learningshaped learning

–– Important aspect: children do not get feedback on whether or not Important aspect: children do not get feedback on whether or not

the past tense they produce is correct.the past tense they produce is correct.

Learning the past tenseLearning the past tense

•• This is a different model than you This is a different model than you
have seen up to now:have seen up to now:
–– It is not an experiment (but real life!)It is not an experiment (but real life!)

–– It’s on a different time scale (months It’s on a different time scale (months
instead of hours)instead of hours)

–– It doesn’t use the perceptual and motor It doesn’t use the perceptual and motor
components of ACTcomponents of ACT--RR

What is already thereWhat is already there
The model code The model code

generate a goal likegenerate a goal like

goal1goal1

isa goalisa goal

� Your model has to fill in the
stem and suffix slots in the

imaginal buffer (in this case had

and blank, respectively), and
set the state slot in the goal to

state nilstate nil

And put a present tense in And put a present tense in
the imaginal buffer like:the imaginal buffer like:

verb23verb23

isa pastisa past--tensetense
verb haveverb have

stem nilstem nil

suffix nilsuffix nil

set the state slot in the goal to

done.

� Three rules that are already
provided in the model will then

“pronounce” the word.

� The feedback the model uses is
not failure or success, as kids
also do not get feedback, but
the costs of producing the past
tense.

Three Evaluation ProductionsThree Evaluation Productions
Reward 5

=goal>
isa goal
state done

=imaginal>

Reward 4.2
=goal>

isa goal
state done

=imaginal>

Reward 3.9
=goal>

isa goal
state done

=imaginal>
isa past-tense
verb =word
suffix blank

==>
=goal> state nil

=imaginal>
isa past-tense
verb =stem
stem =stem
suffix =suffix

- suffix blank
==>

=goal> state nil

=imaginal>
isa past-tense
stem nil
suffix nil

==>
=goal> state nil

What is already thereWhat is already there
The model also assumes you perceive things in the The model also assumes you perceive things in the

environment (e.g., parents). So for each past tense environment (e.g., parents). So for each past tense
the model creates itself, two examples are added to the model creates itself, two examples are added to
declarative memory:declarative memory:declarative memory:declarative memory:

word2323word2323 word4234word4234

isa pastisa past--tensetense isa pastisa past--tensetense

verb haveverb have verb useverb use

stem hadstem had stem usestem use

suffix blanksuffix blank suffix edsuffix ed

What your model should doWhat your model should do
•• It should attempt to retrieve past tenses It should attempt to retrieve past tenses

from memoryfrom memory

•• Alternatively, it can try to retrieve a different Alternatively, it can try to retrieve a different
past tense and do some pattern matching to past tense and do some pattern matching to past tense and do some pattern matching to past tense and do some pattern matching to
apply it to the current past tenseapply it to the current past tense

•• If something goes wrong it should just give If something goes wrong it should just give
up, and leave the stem and suffix slots up, and leave the stem and suffix slots
empty. This represents the case where the empty. This represents the case where the
child just used the present tense.child just used the present tense.

What your model should What your model should
learnlearn

•• Your model Your model
should learn the should learn the
regular ruleregular rule

•• Your model Your model
should exhibit Ushould exhibit U--
shaped learningshaped learning

Need 2 Retrieval ProductionsNeed 2 Retrieval Productions
(p retrieve2

….
==>

+retrieval>
isa past-tense
verb =word

(p retrieve1
….

==>
+retrieval>
isa past-tense
- suffix nil verb =word

- suffix nil
…)

- suffix nil
….)

Challenge for the class: Why?

