ACT-R 6.0 Reference Manual
Working Draft

Dan Bothell



Includes material adapted from the ACT-R 4.0 manual by Christian Lebiere, documentation on the
perceptual motor components by Mike Byrne and the Introduction is a shortened version of the ACT-
R description written by Raluca Budiu for the ACT-R web site.



Table of Contents

1) (S0 i o) 1 17=) 1 -SSRSO OR PR 3
PIOIACE. ...t e ettt e e ettt e e e e e ar e e e e e eaba e e e e e are e e e e taaaeeeeabaaeeeaaraeeeetraaeeeenrereees 14
IITOAUCTION. ...cetetiiiieieee ettt ceeeetre e e eeeeesababrereeeeeeesesssraareeeeessesssssaaserseeesessnsssranrsresessanssessseeens 15
DOCUINENT OVEIVIEW......evvvererirerereierererereretereeerererererere.e....................................................n.oooon 16
General SOftware DeSCIIPION .....cccvieiierieeieiieeeieerteete et e e te et esre e teessseesseessseeseesssaesseasssessssssesnssees 17
Notations in the DOCUMENtALION. .......cc.veeieeiiieeeecieeee et e et eeeereeeeeeetreeeeeeseeeeeeeeenansnsnssseraaeeaeeeeeeeens 18
DiStIIDULION COMEEIIS. ...vvviieiiiiieiiriireeeeeeeeerirrreee e et eeeeesatrerereeeeseessssrrrereseeeessesssssaresesessemsssssssnnnnnssssssseses 20
COMIMIANIAS. ... etvteeeeeiieeeeecite e e eeetteeeeeetteeeeeetbaeeeeetasaeeeeassaseeeesssseesessseeeesnssseeeesssaeeseeannnnssssssssnenees 20

[a0) (i 1 (016 U1 [<T SO URR 20
QOVICES. e eeteeee ettt eecte e eeett e e e e e etaeeeeeeaaeeeeeeasaeeeeeassaeeeessaeeeeesseseeanssssseeesssaeeeansaeeeennsssaeans 20
QOGS uuueeeieie ettt e e eeete e e e e et esse b ba s e e e e eesess s b b e b e raeeeseeasaabaarraeeeesanaraaa st b e btbbrraannnnnnnns 20
EIIVITONINICIIE . ...evvvvrrrerererereseeeseesseseseseseessssesesessssssssesssssssssssssssssssssssssssssssssssssssssssssssssnnnnssesssssnnnensesses 21
EXET@S. 1vvvvvvvrrrrrrarsssesesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssasssssssssrsnnnaeessserenn 21
FTAIMEWOTK. ....c..evvieeeeiieee ettt e ettt e e e et e e e eetbaeeeeeasseeeeeessseeeeessseeeeessaeeeeeeennnnsnnnnns 21

1 (016 111 L= TR 22
OTNET-FILES. ... ettt e e ee ettt e e e e ar e e e eeetaeeeeeasaeeeeesssseeeeessseaeeeeeaannnsssnnnnes 22

S1010] 010) 1 PSR U O OO PP PRSPPI PPPPPRRORPPPRRRR 22
EXAIMIPLES. ...ttt ettt ettt ettt et e et e st e s bt e a e e e bt e e te e e bbeeeenbeeeebtaeeenaes 22
{1010 ] F-F R USROS U URRRRRRRRRPRPRRORt 22
[10170) u ¥ | KSR U SUU OSSR TN U PP UPPUTTR 22
1057 o (0T a SRR 22
Loading and Running the ACT-R SYStEM........cocertiriiriiiniiienieniteieeiestete sttt 24
ComPiler OPtMIZATIONS. ......veirriieeriieieitieeriteerie e et e esteessbeessteeesstaeesbaeesseessssaesssseesssseesssseessssssssees 24
LOGICAL HOSE. ettt ettt ettt et b e st s bt ettt s bt et st e bt b et e e e b e s ane 25

| o Y: 1d o) ('« (<) USROS UUUPPPRRRRRNt 25
RECOMPILINEG. ....cetiiiieiiieeee ettt ettt et e st e bt e st e e bt e e bt e bt e sabeesateesnbaeesnneas 25
PACKAGINE. ...eeieiieeeiieieeee ettt ettt e e st e e e st e e et e e s st e e s ab e e st b e e e baeenabaeenbaeenabaaeeeenaraaaeas 26
CLBAN....ee ettt ettt e eeete e e e et e e e e e e baeeeeetaaeeeeessaaeeeesbaaeeeessaeeeaassaseeeesraaeeeeeannnnnnsrrrrraeees 26
PaCKAZEA. ... .coieieiieeee ettt ettt e st e et e e e s ta e e abae e s e aataaeeeeennnes 26
OVerall SOftWare DESIGN.....ccc.eiriiiiiierieeiteete ettt et ettt e st e st e e sa b e e bt e sabe s bt e sabe e beesasessssaeesnnees 27
|\ (o Ta 1<) 5 1 L= OO 28
LA LS B 0] 0 TP TP PPRRON 30
(@00 131 00F: 116 TR0 USROS 30
CLEAT=A1L....ce ettt eeetee e e e e ta e e e e e ta e e e eeeaba e e e e naaeeeeaaaaaaeeeeeeeeennranrnraararaaaens 30
1Y = VTSP 31
TELOAM. ...ee e ettt ettt e e eettr e e e e treeeeeeabeeeeeeaasaeeeessaeeeeessaeeeaansaaeeeensaaeeeanraeeeennrreaeann 32
ITID-TIITIC ..ttt ettt et e ettt e e ettt e e e ettt e e s s st te e e e asbeeeesaabaeeseasbaeesasasbaeeesassaeeesssbeeesnssaaeeansssnnnssnnnnes 33
ITNIP-EITIC-IIIS . c..eeeeiiieiit ettt et bb e e s bt e e s ba e e s aas e s abeessbbeesbbeesbaeesbaeesnsnaaeessaannns 33

BV EIALS. ..t anaranananannaanan__a__nnnanatantnnnnnnnnnnntnnnnnrneeserres 35
COMIMANAS. ....ctvteeeeeitiee ettt e eeetteeeeeeteeeeeetaeeeeeeteeeeeesssaaeeeessseeeeasssseeeassssaeesasssssasaaeeeeeeeeeeeeannnnnnsnns 35
INP-SHOW-QUEUE ...ttt ettt et et e et e bee s bt e bt e st e e st e st e e sseeesseeaseesaseesseeenneeesans 35
INP-SHOW-WAITINEG. ..ottt ettt et r st a e sabe e sbeesbeesbeeeas 36
INP-TNOAUIES-EVENILS. ....centiiiieiiieeiteeteeete et ettt et st e te et esaee st e e s st e s bt e sseesaseessteesbeensseeesnneeenane 36
IMLOAUIE. ...ttt e ettt e e et e e e e e aaeeeeeeasaeeeeeessaeeeeesssaeeeeesssseeeesssaeeeannnsssssssraraeeeaeeens 38
(@00 131 00F: 116 TR0 USROS 38
ITIP-PIINE-VEISIOMS. .eetiiiiiiiiiieiiiie ettt ettt r e s ar e s b e e s ba e s s ba e s s baeesabeessabeesssneeesssaeeesennn 38



COMIMANCS. ....eeevieireetieete ettt ett et e et este e bt e s sbeebeessteesseesssesasaesssassseeassessseenssessssseesnssseessnsseesnsseen 40
DUETETS. ..ttt et ettt s e et eestteesbeessae e baessae e beeesaeebeeenaaeeanraaeeennaeeans 40
DUFET-CHUNK. ...ttt ettt e st st e e ae e s sbeesaesnsaeens 41
DU EI-SEALUS. ... eeeveeieeete ettt ettt e et e st e et e e ae e et e e saesabeeseeesseesaeeassseeeasseaeesnseeennns 42

1Y 04 (<] USRS PRI 45

(10)101 00 F=1 1 16 3PP 46
efiNe-TNOMEL........eiiiiiiieeieeeee ettt s e et e st e e bt e s st e e e e s st e e ba e e e nnreeeensaeeennnes 46
4 23 e (T w010 a =) OO USSRt 47

ChUnKS & CRUNK-TYPES....c..uiiiiiiiiiiiiiiteeie ettt este et st e st e sateesbeessaesbeesstessseesssesssaesssassseesnsssessnnsns 48

Chunk-type COMMAINQS.......cccueeriirieiiienieeieeete ettt et e st e s te e bt e sate s bt e satesbeesstessseessaesseesseesasees 49
CUNK ALY P ottt ettt e bttt e s be e ta e st e e st e ssbeessaesnseesseessseessaesnsaensaannsaenns 49
PPTINE-CHUNK-EYPE. ...ttt et ettt ettt e et e bt e st e s bt e st e e bt e sabeebeesaneeeas 52
CRUNK LY PPttt ettt e et e st esae e st e e st e e b e e saesnbe e st e enbee e nnbeeenntaeeennnes 53
ChUuNK-tyPe-SIOt-NAMES.......c.coiiiiiiieitieee ettt ettt ettt e sae e st e e bt e st ee e e 54
Chunk-type-doCUMENTAtiON........c.ceiieeiierieeieeteete ettt ere e e e s aeesateebeessaesesseeessnseesssssaesnsnnes 55
ChUunK-type-slot-Aefault..........coouiriirieieieeee et sttt ees 56
CHUNK LY PE-SUDLYPE P .eeiiieiieeiieeteete ettt ettt ettt e et e e s e e sbe e s st e esbeessseeessseesassseesasssaesasnnes 56
CHUNK-LYPE-SUDLYPES. ..ottt ettt s et e et e st e st e e bt e e be e e s nbeeesasaeeenane 57
CHUNK LY PO-SUPETTYPES. ... vteeeieeiieeiieeieeete et e ste et st e et e st e sbe e saeessaesstessseesssesssaensaesssseesnsseassnssees 58

ChUunk COMIMANGS........ccocuieiiiieiiiieeieeecieeesteeeseeeerteeesteeesteessteesssaeeessaesssseessssesssseesssseesssseessssnssnes 60
EfiNE-CHUNKS. .....ueiiiieiiieieeeee ettt s e e st e e bt e s sb e s beessseesseesssesssaessseessnns 60
pprint-chunks & pprint-ChUNKS-PIUS.......c..cccoviiiriiiieiieceieeecee et e e eara e e e e e 61
CRUNKP ettt ettt et e et e e st e s bt e s st e e s b e essbeeessbaesasnseesasssaeeannees 64
ChUuNK-CRUNK-TYPE. ...ttt ettt e et e e e e e e e e e e aaes 65
ChUNK-AOCUMENTAtION. ... .ciitieiieeiieeieeteeie ettt te et tesste e st e e bt essbestaesaseesseesssesseessseeseesnnes 65
CHUNK-SIOt-VAIUE. ... eviicieecee ettt et e et e e et e e s bae e e beeeeaaeessseeenssaessnseesnnnnns 66
SEt-ChUNK-SIOt-VAIUL.....ccviiriiiiieeieeeeeeeeeee ettt st e st e s sbe e saaesbeesaeessssaeeesnns 67
INOA-CHUNK. ...ttt et e et e e e a e e et ee e s bae e saaaeesaseeesaeeessaeeeeensnssaeeessnnssenes 68
COPY-CHUNK ...ttt ettt e a e s ae e st eebe e ssb e s tae st eesseesssesnseensseenseesnnns 70
ChUNK-COPIEA-TTOM.....eeciiiciiecieceeeeee ettt e rte e ee e ebe e et e e beesabeeaeessseesaesnseenseesnnes 70
CRUNKS. ...ttt et e et e s bt esae e st e e st e e sbeeseesnseeseeenbaeennsseeennsaeeennes 72
EIEtE-CRUNK. ... .eiiiiieetieecee ettt et e et e e et e e et e e s sate e e aee e e saeeesseesnsaeassssaeasennnnns 72
PUIZE-CHUNK....ouuiiiiiiiiieteeeee ettt ettt e e te e st e st e e sabessbeesssessseesssaeeensseesnssaesennses 73
INETEE-CHUNKS. ... ittt ettt ettt e et e e bt e st e s bt e st e e bt e sab e e beesate e bt esabeebeesannaeenans 74
CTEAte-ChUNK-11AS. .. .ctieeiiiiiecieee ettt e et e e be e s s e e e ssseeensaeeennns 76
trUE-CHUNK-NAIMIE. .....eeiiiiiiciiece ettt e e ste e s tae e st ae e s aaeessaeesssaaeeeeensssaneesennnns 77
BO-CHUNKS. ...ttt ettt s e st e e te e st e e st e esb e e st e sssaesaesssaeesanseaesnses 78
EQUAL-CHUNKS. ....eiiiieeiieeciee ettt et e et e et e e s tee st e e e ate e e saeeesteeessaeeassaeesssaasnnssaseaeesssnssneeens 79
ChUNK-S10t-QUAL.....c.tiieiiiiieeiecteetee ettt ettt s e e sbe e s b e s te e st e ebeesssessaesssaenseesnnes 80
NOTIMAliZe-ChUNK-NAIMIES. ......cccuiiiiiiieccieeeiie ettt eeeeee e e e steeeeateessabee e saeeessaeeessseesssaessssneesssnnnns 81

Special ChUunK FUNCHOMNS. ........coiiiiriiiiierieerteeieesteeie et e ste et e s aeesaeesteesaeeesbessssaeessssaessssseessssseeennns 83

GENETAl PATAIMIELETS. ... vieieieeeiieeeiteeeiteeetteeeteeesteeesaeeessseeessseessaeesssaeesssaeessseeensseesnsseesessnssssaesessnnsenes 85

COMIMANGS. ....eeeveerireeitesie ettt et et eeteeste e bt esstesbeessteesseesssesssaesssessseeassessseenssessssseesnssseesnnsseesnsseen 86
St urteeaurteeautte st e sttt et e e bttt e bt e e bt e e e b e e e et e e e et e e e a bt e e b bt e e bt e e e a b e e e bt e e e bt e e e a bt e e abee e nb e e st e e e e e e nrrees 86
get-parameter-default-ValUe...........cociiriiiiiieniiriieieeeeeee ettt a e e e 88
WHLN-PATAIMIELETS. ... tieeieeeteeete ettt ettt e e e te e et e e eaaeesseeeesbeeeessaeesnseeensseeensseesnsseesnsseannn 88

SYSLEIM PATAIMETEIS. ..cceeeuureieeriiiteeeitteeeeitteeeett e e ettt e e e sbteeessarteesessseeeessnsseeessnsteeeessnseaaaeeeseeessssnnnns 90

(10)10100F=1 1 16 3PP 90



IMOAE]L OULPUL. ....veeeieeiieeiteeteeite ettt e et et eete et e steessteebeesseessseesssasssaasssessseesssessseesssesnssseesnsseeesnssees 93
COMMANA OULPUL.....vveeeiieeeiieeetteeeteeesteeesteeeeteeserteessseeesseeessseeesseesssseesssseessssessssseessssesssssseeessssssees 93
WAITHIIES. ...ttt ettt et e s ettt e e st e e e s aaet e e e easteeeesssaeeeesassaeesesasaeeeensseaeeeeaeeesesssnnnnnn 93
(@00) 13)50T: 1 16 KT TR 94
MOAEI-OULPUL ..eviiiieiieeieete ettt ettt e e st e e be e s aesbeesstessbeesssessseesssessseensseeessseesnnes 94
TTIEEA-P-OULDUL...etttteereereeiitteeeeeeseeeiiereeeeeesesaeuarartteeeessessnssntaasesssessasssnsaeaeeesssssssssssseaeesssansesssssees 95
COMMANA=OULPUL. .. veetreeiieeteesieesteesseesseesteeeteesseesseesseessseesssessseesssessseenssesssesnssesssessssssessnsseesnnsns 96
TIO-OUEDUL. ...vvttteererieeiiettteeeeseeseertteeeeeessasaaserteeeeesssssssnsaaeaeessssnssssssstaaeesssssssssssesaeessssnsssssssssssssses 97
CAPLUTE-TNOUEI-OULPUL. ... .eiieiiitieeieeiteeie et ete et e ste et e st e s be e st e sbeessaessseesseessseessesssaenseessssaesnsnses 97
PIINE-WAITIHIIS . ¢ tteeitteeeiteeette et e et e ettt e ettt e st e e s bt e e e bt e e eastesembee s nbtesnseeeasbeeesbeeeaseeeenseeesnneeennseenan 98
MOAEI-WAITINE. ... viiiieeiieiieeeeeee ettt e st e et essbessbeessta e st essseessaesnseesnsseesnnsseesnne 99
SUPPIESS-WAITHIIZS. ...ceeuvteeeuteeerteeerteseseeeaseeeaseesasseesssseesssseessteeeseeesssaeeenseesssseesssseesssseesanseessssnns 100
COIMIMANAS......vvrieeeireieeeeitieeeeeeiteeeeeetreeeeettteeeeesaseeeeesssseeeessssseeeassssseeeesssseesessssssssseseeeeeeeeseesansssssnes 101
1411 RO TR 101
TUN-TULL-EIINIO ..t eeate e e eeaa e e e e eearaeeeeesaeeeeeensseeeeensaaeeeeeeeeeenns 103
RN) R U oL ] ] o 0 <SR 105
TUN-UNE L -CONAITION. ....eciiiviiiceiiie ettt e e e e e eeaar e e e eeareeeeenarareeeeeeeeeeeeennnes 107
TUDNIETImE VOIS, .. uuveeeitiinenenenesesnsesssnnssssnsnansnsssssssssnsssssssssssssssnsssssssssssssssssssssssssssssnsssnsssssssssnnnesessssssnnn 108
TUDI=STOP et eeeuetteeeeriteeeeeuteeeeesureeeseeusteeeesseteeesasbaeesasssaeesesnstaeessssseeesassseeesasnstaeeeeeeeesssssssssnnnnsssnns 110
SChedULING EVENLS......coiiiiiieeteeeete ettt ettt ettt st et e st e e bt e st e e bt e st e e st e sabeeeseesasaeeeanes 113
DEtAIlS Of EVENLS.......uvviiiieiiiieeeeeee ettt e e et e e e e e tbe e e e eearaeeeeesaaeeeeeaaeeeeenbareeeeeeeeeas 113
EoVEIIE A CCESSOIS. cuuuuueeeeeeeeiietieeeeeeeeeeeeteteeeeeeeeeererestnaaeeeeserrssssnnnaaeeeessssssssnnnassesssssssssnnesssnneesssnnnessen 114
General Event COMIMANGS.........c.uveiiiiiiiieeeiieieieeireeeeeiteeeeeeteeeeeeeaeeeeeessaseeeesssssseeeeeeeeeeeeeseesessssnsnes 115
F0) N 10 EE LB V7<) o | R 115
EVENE-AISPlAYEA-D. . eeeiieiiieiieie ettt ettt sttt s e e st e et e s s be et aeeteebeeesbeetaeeenaraee s 116
Scheduling COMMANAS.......ccccuerttirierieete ettt et et et e st e e beesateessbeeesseeeessaeeesanaeeas 117
SCREAUIE-EVEINL......ccoovviiiieeiiiee ettt ee e e eeaa e e e e e abaeeeeebaeeeeeessseeeeesseeseeenssseeeenns 117
SCHEAUIE-EVENE-TEIALIVE. .......ciiieeiieiieiee et e e e e e e e e e e e e sessasbaeeseseasssaasaaanannnnes 119
schedule-event-after-MOULE.............coovviiieiiiiiieeee e e eerr e e eeaareeeenes 120
schedule-event-after-Change.............cevieiieriereriereeee ettt e st esbeeeaees 122
SChedUule-PeriodiC-EVENL. . .....cccuiriiriieeieeieeete ettt ettt et st e e teesbeebeessbesseeeesssaesesnsaeeas 124
el o e LU (= o) =T TR 126
SChedUule-Dreak-TEIAtIVE. .........ccuveiieeirieeeeeieie ettt et e e e e eeare e e eeesaeeeeeeeeennsssnnnnns 127
schedule-break-after-IMOAUIE. .........cccuvvviiiiiiiiieeeecece et e e e e e e e e e e s snnanes 128
schedule-break-after-all............c..oooooiiiiiiiiie ettt e e e e e e e e e e nanees 130

(6 S] [ R A v/<) 1 | R 131
EVEINE HOOKS. ....eeeieitiiie ettt ee et e et e e eeate e e eeeaaeeeeeeasaeeeeessaseeeenssaseeeesnseeeeeeeeeeennn 132
Event HOOK COMIMANAS.......uuvviiiiiiiiiiiiieiieeeeeeeeeeiireeeeeeeeeeesaraeeeeeeeesessssssseeessesesssssnsnnssssssssssseseees 132
Add-Pre-eVeNT-NOO0K. .....ccctiiiiriieiieeie ettt ettt steeste e st e e be e st e e beessbeebaeerteennreeeennraaeas 132
Add-POSt-BVENT-NO0K. ... ..viiiiiiieeiiieeiieeeeeeeteeseee et e e ete e e steessateeessaeeebaeessssaesssssaseeeessssssseassnnnes 134
Elete-EVENE-NOOK. .......eiiiieirieieeiiie ettt e e et e e e et e e e e tt e e e e e rareeeeraraeaeeas 135
About the INCIUAEA MOAULES..........euveiieiiiiiiiieceeeeee et e e e e e esssabaaeeeeeeesesssssseseessssssees 137
PaTAIMIETEIS. ...evvviieieiiiiieieieeeeeeeeeeeeeeeeeeeeerereeerereseereeresesssssesssssssssssssssssssssssssssesssssssssssssssesssesesssssrnnnneesaes 138
(o] o TR 138
TNOAEI-WATITHIIES. ... veevieeieeiieeieereeete et e et e st e ste e st e sbeesstessseesssessseesstessseesssesansseesassseesnsssesensnses 139

] L0 )1 B o RSSO 139
HTACE-AOLAIL.......vveieeeiieeee ettt eere e e e eebae e e eeettaeeeeenaaee e e e anaarrrrararaaeaeeeeeeeaann 139

1 = Tal < 1 L 1<) RSSO 140



e ir= 100 LS (<) PR 142

COIMIMANAS......ccvvreeieetrieeeeiieeeeeeiteeeeeeteeeeeeitteeeeesareeeeesssseeeessssseeeassssseeeesssseseesssssssssssseeeeeeeseesnnsssssees 144
TIEW-TIAITIE  ...evvuuueneeeeererrrennnneeeeeeeressssnnnaeeeessssssssnnnnseesesssssssssnnnseseessssssnsnnnesssessssssssnnneseessssssssnnesssnnns 144
TELEASE-TIAINIC. ......ceiuvvieeeeiieeeeeeiteeeeeeetreeeeetaeeeeeeaereeeessaseeeeesseseeensssseeeessseeeensssseeseseeeeeseesnannnsssnnes 145
NIEW-SYITIDOL. ...ttt ettt s e et e st e e bt e s st e et e e st e et esat e s beeenaee s 147

L 10 L 1<) TR PRRRPRPRRE 148
0 =Y 0 16 [0) 1 811/ T )0 <D SRR 148

SEB™...ccuvreeeeeeireeeeeeite et eeee e e eerae e e e e e r e e e e e —areeeea—eteeeaaabaeeeeaaaaeeaaraareeeaabaeeeeaataraaaaeeeeeeeeaeannnnrraes 148

(@00 131 50T: 1 16 KT 149
Lol o v 11 6 [0) .1 PO USRS 149
Tl o a1 (0 £ <Y RO 150
TANAOIMZE-TIINIO. .. .eeeieeiieieeeeieeeeeeite e e eeeteeeeeeiteeeeeebeeeeeesseeeeeesssseeeeessssseeeessseeeesssrseeaeeeeeesesennnnsnnes 151

BUffer trace MOAUIE.........covviiiieiieeeeeeeeee ettt ee e e e e e e eaaaeeeeeeeseeessssssssssseeeeeees 153

PaTAIMIETETS. ...evvvieeieieieieeeieeeeeeeeeeeeeeereeeeeeereeeeereseereerssesessserssasssssssssssssssssssssssssssssssesssssssssssesesssssrnnneesaes 154
W 01T (<) 1 =Tl SRRSO 155
DU ET-TACE00K. ...eii et e e e e e e aaeaeeaeeeas 155
DU ET—TACE-STED. ... e ivieeieeiiecteee ettt ettt et e e et st e e be e s tbe e be e s st e enbeessaeenbaeesaeenbaenraeeennes 155
oY AV 0] U (=) i v Lol TR RSR T URU RO SO PR 155
R = Tal e B 011 i (<) AT RRRRROR RO 155

COIMIMANAS......cvvreeieereieeeeitieeeeeeteeeeeeteeeeeettaeeeeesareeeeesssseeeeassseeeasssseeeeesssseesesssssssssrsseeeeeeeseennnssssnnes 155
Get-CUITENE-DUTTEITACE. ... eeteeeieiieieeeeeee ettt sttt sae et s sa et e e 156
AAd-DUL ET-ITACETIOES. ....vveieeeiieieeeeteee ettt eetr e eeete e e eetareeeeeasaeeeeeareeeeennrreeaeeeeens 159

Central ParameterS IMOAUIE........cooouvvvviiiiiiiieciteeeec ettt eee e eeeaare e e e e e eesssabaaeereeessessssssssseeeeseenees 160
PaTAIMIETETS. ...eevviiriiieiieeieieieeeeeeeeeeeeeeeeeeerereeerereseereeresesasesessssssssssrssssssssssssssssssssssssesssssssesssssesssssrnnaneesaes 160
<) NPT URRRRRRt 160

LTy TP RRRPRPRt 161

o) ORI 161

SYSLEIM PATAIMETETIS. ...cceeuviieieriiteeieeitteeeeiiteeeeeirteeeeeitteeessrreeesssareeesesanseeeessnsseeessssaaesessssssssnnnsssnnnne 161
SSTAITING-PATAITIETEIS. ..eeeevteeeeuireeeeettee ettt e e eeireeeseerbeeesesnraeeeessbteeeeessreeeeesssaeesesnnsaeesessnraeesensnne 161

COIMIMANAS......cuvvreeieeirieeeeiteeeeeeteeeeeetreeeeettaeeeeesaeeeeeesssseeeessssseeeesssseeeeesssseeeesssssssssrseeeeeeeeseennnsssssnes 161
register-subsymbOliC-Parameters. ........cooiiiiuieniieiieieee ettt 162

The Procedural SYSTEIM........cccveeiuiiriierieeiienieeeeste et e ste et e stesteesteesteesssessseesseessseesnssaeesssseessnsseeennns 163
|2 o TalcTa U =1 B\ (o 16 111 (TR 164
CONTICE RESOIULION. ....cuvviiieeiiiieeeeiieee ettt ettt ceetee e e eette e e e eeaeeeeeesaaeeeeeessaeeeeesssaeeeeeeeeeeeseeesnsssnes 164
PATAITIETETS ...uueeeeeeeeiieieeee e eeeeeeceee e e e e ee ettt eeeeeeeeeeetasaaaeeeeeasssssssnnnnseeeeessssssnnnneessessssssnnnnnesssnnneseen 165

3 1 O OUP U UUUPOt 166

O eeeeeieeteett i ieeeee et eeettu i eeeeeeeereataa—————eeeeeeraraat_————aeeerrtrar_—_—_aeetrrtrarnn——aaeeerrrrtrnnaaaeeeeerratnaesrrnnerren 166
SCYCIER00K .ttt ettt et e e et e e be e s st e e teesnteeseeennns 166

(a0 3 0] B 1 = T/ Y] A 167

LSttt e e e e e e e eeaa b e e e e aaeeeeeabaaeeeeraaeeeeaaraeeeenaaareeeeraraeeeens 167

2] ST PP PPPPPPPPPN 167

9] 2100 1100 )OSR 168

1 1 ] U 168

STV E-WAITHIIZS. ... veeveeiieeieeete et et e et et eete e st eebe e st e e be e saeesseesseessseensaesssaenseesssesnseenssaenssaessnnses 169

TUS TR, .. e eeeeeeerertttieeeeeeerreerranieeeeeeeerssssnsanaeeeesssssssssnnaseesssssssnsnnasesssssssssnnnnnseesessssssnnnasesessssnnnsens 169

1 0] £ FO TSR PRT RPN 169

| yoTa U Tain (o) o 01U Y i (<) USRI 170

COIMIMANAS......cuvvreeieeirieeeeiteeeeeeteeeeeetreeeeettaeeeeesaeeeeeesssseeeessssseeeesssseeeeesssseeeesssssssssrseeeeeeeeseennnsssssnes 170
P/AETINEP .ttt ettt e b e et e et e et e e beeeabe e beeerbaee e nbaeeenreas 170



PH/AOTINE-D™ ...ttt ettt et e e et e s b e e b e e et e e bt e e rbe e bt e e be e reeerbaae e nraeeenres 186

F B o) o L8 Lt o) 1 S FE RSO USROS PPRRRI 190
PP+ eennnnrrrteeeeeeansauiertateeeeeaaearrtataeeeesana i a——aaaeeeeeaaa i a——ttaaeeeseaa e haraaaeeeeeeaa i nbaataaeeeseenanraraaaeeeeeeaann 191
PDIEaK/PUNDIEAK. .....cctiiiiieiiieieeeee ettt et e b e s e e be e et e e beesnneennnes 193
PAiSADIE/PENADIE. .....cc.eiiiiiie ettt e et e et e e e e e saa e e e be e e e be e e e ree e naae e naaaens 194

A4 1172810 | SO SO POURPSRRTRRRRRIN 196
PrOdUCON-fITING-0MN1Y....cctiitieiirierteeee ettt ettt st e st e s e saesanenseas 199
UN-delay-Conflict-TeSOIULION. ......ccctiriiiiieeiterte ettt et ste e s re e sbe e s eesaessseesseeennns 199

ol 121 0] (0T L1 Lot 0] 1 -SSRSO 200
deClare-DUFTEIr-USAGE. ......eerviiiieeieeeee ettt ettt te et e st e et e e e ntb e e e s nsaeeennraeeas 201
UHHEY TNOAULE. ...ttt ettt st e st e st e s bt e st e e bt e eabe e st e e s eanbeeeennaeeaan 203
PaTAIMITETS. ..ottt ettt ettt e e st e st e s bt e s bt e s na e e s enna e e e e e ennee 203
11 0] 0 PSPPSR 204
A ettt sttt et h e bt et e e h e b e et e e bt e b e e st e e bt et e et e sbt e beeatenbeebeea 204
B ettt ettt e e ettt e et e e e bt e e e bt e e h bt e e ht e e e bt e e e bt e e e bt e e et e e s e R bt e e e ab e e e Rt e e e Rt e e e bt e e e beeeebaee e e nrraeeeeeanrae 204

L PP P P PO PP PP ROPPPPPPRRNt 204

TILL e+ tteeatteeeutteeeutte s et e s st e s bt e e s bt e e e st e e e st e e e bt e e e a s et e e bt e e e a b e e e ea bt e e a b e e e e a b e e e ea bt e e ab e e e e bbaeeee e e e nrbaeeeaeeann 204
FEWATA-N00K. ...ttt ettt et a et s bt et s ettt e st e saaeeea 204

181 OO PSP PPRPRPPRRE 205
ULttt ettt st e b et h et et e a e et e et e e bt e b e et e ea e et e e bt e e bt e e beeeneeeas 205

14 | F TP PPPPPPPPO 205
UL 00K, .. ittt sttt e e st e e a e st e e st e snte e teeenbaenns 205
UL LY = OF SRS ettt ettt ettt et st ae et et e s ae e aneennteas 206
COMIMANAS. ...ttt ettt ettt et s e st e e s st e st et e e st e beebe s st e bt e st esstebesaseesaseesaseesaseesaseesaseenas 206
EEIGEOT-TEWATIT. ...ceutieiieeteeeite ettt ettt ettt e e e bt e et e e bt e sab e e bt e sab e e bt e sabe e bt esasbeeeeasbeeeeasaeeenasaeens 206

SP P+ teeeennrreeeaaurteeeaatraeeaa bt e e ettt e e e ettt e e e e abtee e e bt e e e e bt e e e e nbtae e e ttae e e e naeeeeeantbaeeeenraeeeeens s nnnnrrnne 207
Production Compilation MOAUIE...........ccccuiiieiieieiieecieeccieeere ettt e e e e e sae e e eaae e s saaeeeaaeessnaaaeas 213
PaTAIMITETS. ....ceiitiiiiiee ettt ettt et e s bt st e s bt e s ab e s bt e s bt e s enna e e e s e ennee 215
<] 0] OSSPSR PSRRI 215
POl ettt ettt e e ettt e e e ettt e e ettt e e ettt e e e ettt e e e bt e e e e b bt e e e e bt e e e e e n bt e e e e bt e e e e e nraaeeeenreeeeenaraaeeeenraaens 215

1 L SO OO U OO PP PPPPUPPPPPPPPPPRN 215
COMIMANAS. ...ttt ettt ettt et s e st e e e s bt e st et e s bt e be et e s st e bt esbesstebeeaseesaseesaseesaseesaseesnseenas 216
Show-compilation-buffer-tyPes.........cceeiiririiiniiieeeeeee et 216
COMPIlatioN-DUITEI-tYPE......iociiiiiieiieeeee e e e e e arae s 216
speCify-compilation-DUffer-type.........ccceecerieririenieeeeee e s 217
GOAL IMOAUI. ...ttt ettt s a et s e s et et e st e s bt et e et e e st e e sabeesaseesaseennseenas 219
GOAL DUTET ...ttt ettt ettt e s et e st e et e s st e beenbeesseeesaesneean 219
ROQUESTS. ..ottt ettt ettt e et e e e st e e e st e e s e bt e s e aab e e e e tteaeeeeeeeeeeananns 219
MoOdifiCation REQUESES.......cccviiiieeiieeiieeieeieeete et eeteeteesteeveesaesteessaeeseesssesseesssaeessseaessseens 220
COMIMANAS. ...ttt ettt ettt et e st e e s st e st e et e s bt e be e b e s st e bt e st esstebesaseesmaeesaseesaseesaseesaseenas 220
BOAI-TOCUS .ttt ettt et s e sttt e st e b et et e s ae e beestenaeeteenreenns 220
INIOA- OCUS. ¢ttt ettt et ettt e s bt e b e st esat e b e e st e s bt e b e sab e e sabeesabee e st eeneeeane 222
IMAGInal MOAUIE.......cc.eiiieeee ettt ettt e st st e e st e et e e st e e st e e e s bbeeenaee 225
PaTAIMIETETS ...eoiiiiiiiiieiiteeee ettt ettt et e s e st e s ab e s ab e e senb e e s nbe e s enna e e e e e ennee 225
AMAGINAL-EIAY ettt ettt e et e 225
VAL ettt ettt et st s h et et e bt bt et s a e et e e bt e e bt e e bt e e aeeea 225
IMAGINAl DUTET......eeeiieeeieeeee ettt ettt st b ettt esaaesaseas 225
ROQUESTS. ..ttt ettt e ettt e ettt e e e et e e e st e e s e bt e e s et e e e e e raeeeeeeeeeeeeennnns 226
MOAifiCAtION TEQUESES........vieieieetieeiieeieeete et eeteeteeseteeteesaeeeseessaesseesseeesseasssesssessseasseenssessseensees 227



Imaginal-action DUFTET........cc.eiiiiriiiieeeee ettt ae e s 227

ROQUESTS. ..ottt ettt ettt e ettt e e et e e e st e e s s bt e e s et e e e e e raeeeeeeeeeeeeennnns 228
(@00 1318 0T: 1 16 KT 229
SEt-TMAGINAI-TTEO. ... eiitieeeieiie ettt te e st e esba e e sssbaesssnnaesans 229
SEt-TMAGINAL-EITOT . ... .eiiieiiietee ettt ettt ettt et e s te s sbe e st e e bt e sabeesbeesabaeean 230
Declarative MOAULE............ocoiiiviiieeieee ettt eeree e eeebee e e eeaaeeeeeeaaseeeeenssseeeeeeeensssssssssnreeeens 231
F AN 117721110 )  OTT U ST TSR PPPR 232
BaASE-LEVEL....cneeeeiieeeeee e ettt e e e e e e eata e e e eeaae e e e e raraeeeraraaeeeas 232
SPreading ACHIVALION. ...cc.ceiiutirieeiteriteete ettt ettt e et e st e e bt e st e e bt e st e e eabeeeenbeeesanbeeeeanees 234
Partial MatChing.........cooiiiiiiiieeieceeeceeee ettt e s e e et e e st e esbeessnesbaesnnnaees 235

IN OIS eiieeeeettceeee et ettt reeeeeeeeeeeeaat i eeeeeeeeesesssatanaeeeeesssssssnnnnseeesssssssnnnnseeeessssssntnnsesssnnnessnnnnesnnnn 236
RETTIOVAL tIINIB......ivviei ittt ceete e eetre e e ee et e e e eeataeeeeeaaeeeeenssaseeeessseeeeessaeseeessnsreeeeeeeenennn 237
DECIATALIVE FINSES....vviiiiiiiiiiiiiiiiee ettt e et e e e eeaaae e e eesaeeeeesaseeeeesnaaeeseeaseeesennssseseensnreeeeas 237
PaTAIMIETETS. ...evvvieeieieieieeeieeeeeeeeeeeeeeereeeeeeereeeeereseereerssesessserssasssssssssssssssssssssssssssssssesssssssssssesesssssrnnneesaes 237
(ol SO RPN 238
oLl Av= L 0] 1 B0 i 1<) 1TSS 238
AT1S.1tuuueeeeeereeururteaeeeeerrrarara_——eeeerrrrrar—_——_eeetertrarnn_———eeetertraran—aaeeeerrratrnnaaaeeeerrrnrrnnaaaeerarnneseannneeres 239

0] B 1 Voo ) SO PP PRUTT 239

) (RO RRRRRRRR 239
DLttt e e e e et a e e e eeaba e e e e araeeeebbaaeeeaaaaeeeenbaeaeaaeeeeeeeaaannnnes 239

(a0 100 01 =T a5 T 1o - OO 239
:ChUNK-METZE-NO00K.......coiiiiiiiieeeeeeee ettt e s e e e s ssraesennes 240
:deClaratiVe-NUIM-FINSTS. .....vveiiiiieiee ettt ce et e e et e e eeaaae e e e essaaaasaaereeeeeeeeseeennnns 240
declarative-finSt-SPAN.........ccciiriiriiierieee ettt e et e st e e et et e e be e aaeebeeennraeas 240
ASTAITIEIZ . ¢ . ettt ettt ettt et s et e e s ae et e et e s bt et e e st e s st e se e st esse et e easesrbeeensaeenneeneeennee 240

LB e et e e et e e e e —— e e e e ——a e e e et b—aeeeaabaaeeaaaaaeeeettreeeentareeeenaraeeas 241
SR 241
TT0AS ©vvvvvevnvnnnnnnnsesesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnneessssssnne 241
1L« FO TR 241
11010 SO OO OO PSP PP PP PPPPPPPPRRRIR 241
TITIS teeetttiiieeeeeeeetttt ——eeeeeeetaaar_—————eeeeetrrttar_————eeeerertrana————etetrrttann—ateeeeertrarnnaaeeeeerrrarnnaneeeeerrnneens 242

1 11 OO O O OSSPSR PO RPUPRRRRPPRPRRRRRPIR 242
70 KL< 1 oY ) : TR 242
partial-matChing-NOO0K..........cociiiiiiiiiieeeece et s it e e s aeennes 242
DA ttttteeeeete ettt e et e e e s e et bttt e e e e e sa e bttt aaeeesaaa abaaaaeeeeeaa abtataeeeeeena e srtaaaaeeeesanssnnnannnnnnaeeeens 242
Tetrieved-ChUNK-NOOK..........ccooviiiieiiie ettt e et e eeare e e eeaareeeeeeeean 242
TetrieVal-TeQUEST-NOO0K. ....cccuviiiiieciee et et e et e e st e e e aae e e e e nnaaes 243
TOTIOVAL-SEI-N00K. ... vviiiieieee e et e e e e e e b e aaeas 243

4 SRR 244
- [ VU UP U UUPOt 244

3 105 10T OO RRRRR 244
STITNOOK . ettt et et e st e et e e a e e et e e ateeenttaeeanntaeennraeeeans 244
SPIEAAING-NO0OK. ... .eiiiiiiiie ettt et st s ettt e 245
WoRI00K. ot ee e e et eeeaba e e e e aaa e e e eabaraeeaeeeeeeeaeannnaes 245
RETIOVAL DUFTOT......eviiiiieeiiieeeee ettt et e e et e e e eeaaae e e seabaeeeeeeeeeeesesnnnnnnnnes 245
O U L] o 1< RN 245
REQUESES. ..ceeiiieeeeteee ettt et e e s ettt e e e e e ses s sbbteaaeeesessssasbaaaaeeseseesnnnnnnnnnnnnsaaness 246
COIMIMANAS......cuvvreeieeirieeeeiteeeeeeteeeeeetreeeeettaeeeeesaeeeeeesssseeeessssseeeesssseeeeesssseeeesssssssssrseeeeeeeeseennnsssssnes 247
e Ta (6 4 ) 0 VTSR 247



T4 | 1.1 USROS PPRRRRTI 250
PIANE-AIM=FINSES. ..e.tiiiieeieee ettt ettt eete e e te et e e e te e beesabe e beeesseesseessseesseeesseesaesssaensaesnsennes 252
SAPD . teeuteeeureeteeete et e et e e e e te e tt e et e e tt e et b e e ate et e et teen b e et te et e e b teanb e e st e et e e ateenb e e saeenseenste e nraeeennraeenn 253

] =16 Ta ] OO SRRRUPPPRN 260
SIMIArity/Set-STMILATTHIES. ..eviiriieiieeieeteee ettt ettt e e ste et eebeesasessbeesanessseeas 262
get-base-level/set-base-levels/set-all-base-levels............coccoeviiriiiiiiniiniiiieeeeeeeeeeeee 264
ClEAT-AIML....cuviiiieeit ettt ettt e et e et e et e st e e bt e ssb e e saesssaesseessseaseesasssassnsssaesnsseeesnns 267
T€Set-AeClaratiVe-TINStS. .. eeiieiiieeierieeteeter ettt ettt ettt e st e sae e teesse e e naeeenaseenns 268
INETEE-CIM .. .eiiiiiiieieee ettt ettt et e st eebe e s st e ssbeesseeesbeessseesseesssessseenseesssaenssesansseesanssaeens 268
PrINE-ACTIVATIOM-TIACE. ...ettetiiieeeiiiiiteeeeeteeseeitteeeeeeeseesrartrteeeeesssssssssrteaeesssssssssnsesseeeesssnssssssesesennnes 272
Print-ChunK-actiVation-trace...........ccceerierierieeeieee ettt et e aeeseeesteesse e seesaseeseesssesnnseas 273
SAVEd-aCtiVatiON-NISTOTY....cccuiiiieiiiiiee ettt ettt sttt s e e sbe e st e b e e e saraee s 276
WRYNOE-0IM. ittt e et e st e e te e st e e beessbesseesaseesseesssaaesssaessnnsees 276
SIMUIAtE-TOITIEVAI-TEQUEST. ... .cccvtieecereeeciieeecieeeeieeeetteeetee et e e re e e sateesbaeeetaeesasaaeeeeesnssaeaesennssnes 280
Perceptual & Motor MOAUIES..........ccveriiiiiiiiieeiieieee ettt ettt reesaeesbeesaeesbeesaeeessnseeesnsseeennns 283
The DeViICe MOAUIE........ooouiiiiiiieeeee ettt ettt et ettt et e bt e sat e st e e sateebeesabesbeesnnees 284
PATAIMELETS. .....eeeeeeiiiiee ettt ettt e e et e e s ettt e s e bt e e e e saseeeeseassaeesesasbeeeesnsnaeeeeesesnnnnnn 284
NOUSE-FItES-CORTE ..ottt ettt et ettt e e sane s 284
TEEAS TIIOUSE. ....eeuvreeererrueeereestterteesteeesseesstesseesssesssaesstesssessssesseesseesssessssessessseesssessssesssessseesssenns 285
00l S T 1 Tl PO SO UUPRR 285
PTOCESS-CUTSOT....ceeeuueeeeeenuneeeesaureeeeasnnsteesassseeesssssseesesssseeesssssstessssssseesssssseeesssssssessssnssssssseeeeeeees 285

TS OWEOCUS. .. ettt sttt ettt sttt et ae e naeeneeeate s 285
StADIE-10C-TIAIMIES. ...c..viiiieeiieeieee ettt ettt s e e e be e st e e beessteesbeesssesesssaesansseesnssneesnns 285
ETACE-TTIOUSE. ....eeeueeeeeuteeeeitee et e ettt e e bt e e bt e ettt e s bt e e eabeeeeabeeseabteseustesaabeesnbeeeanbeessbeeeasaeesnnrnteeeans 285
VIEWING-AISTANCE. ... veeeeieeiieiieeiteeie ettt et ste st e s tesbe e st e e teessbe e st esssesseessseessaensseassnsseessnssens 286

A7 7 PO PUPPPPPPTP 286
COMIMANGS. . ..veevieiieeieeete et eete et et e s te et eebeesseessseeseessseeseassseessaeassaesseesssesssseessssseesnsssesansseesnnssns 286
INSTALL-EVICE. ...ttt ettt e bt e st e e bt e st e e bt e sate e abaeeenabaeeas 286
CUITEIE-AEVICE. . euveeeereeieeeteeteeeteesteesteesteessseesseessteesseesssesssaesssaesseesssessseesssessssessnsssessnsseesessseesnnns 287
BOL-TTIOUSE-TTACE. ..c.uuveeriteeeiteeeitee ettt e ette e et e e e sbeeesaae e e sbeesasbeeesteeeaseeesasaeeenseesanseesanseesasseesanseeesnnnn 287
MOdel-GeNerated-aCtiON.......cueeiiierieriierieeiteerte et et e et e steebe e aesbeesateesseesasesseesseessseesssesnseensees 288
ViSION MIOAUIE. ..ottt ettt ettt e s bt e st e bt e s abe e bt e eabe e e nbeeeenneeeans 290
The model’s VISUAl WOTIA........ccoiiiiiiiieiieeeeeee ettt eaaee s 290
THe WHRETE® SYSTOIM....ccccuiiiiiiiiieiieieiieeeite et e et e et e ssteeeseaeessaeeesaeeesaeesssaeesssaeesssaeesssaeessssssssseeeans 290
DSOS ottt ettt e ettt e s ettt e e s et e e e et e e e et e e e e nra e e e e raaaeeeeeeaeenanns 291
THe WHRaAt SYSEIML.....iiiciiiieiieieiieeeite ettt e et e esteeesteeeseteestaeesaaeesssaeesssaeesssaeesssaeesssaessssnsssneesanns 291
RE-ENCOAING ....veeiviiiieeiieeiteeieeeeet ettt ettt et e st e e s te e e beesaeessbe e saessseesseessseenssessssseessnsseenns 292
SCENE CRANGE. ...ttt ettt ettt et e st s bt e st e e bt e s b e e ebeesabaeeas 292
TTACKITIZ .vveevteeiieeieeeteete ettt et s e et e st e et e e s at e ssbe e s st e ebeessteesseenssessseenseessseessessnsseesennseenns 293
PATaIMELETS .....oeiiiiiiieiiee ettt ettt e et e e e bt e s s esbe e e s enra e e e e e arae e e e e e e e eeaans 293
g L (O 111=) 1 1¢ AU 293
SOPHIMIZE-VISUAL .oeiniiiieiiiecieecee ettt e ee et e e s ae e e s te e e nte e s naeeesaeeesaeesssaeennsens 293
:scene-change-threShold..........oo.vvviiiiiiii e e e 294
LS BALS. 1ttt ettt ettt ettt e a et e et e a e e be et e te e be e st e beenaeenaeenaaean 294
:VISUAl-AtteNtION-1AtENICY ... ceiuiieiieeieeiieeieet ettt ettt et e s b e s ae e st e e beessaessseesasaenseesnnns 294
SVISUAL-TINSE-SPAN. ... eevieeiieiie ettt ettt et e e te e e be e be e st e ebeessbeesaessbaesseensseenseeesaeenseensaeeennes 294
:VISUAl-TNOVEMENT-tOIETANCE. ... .eeeuieeiiieeieeiieeieesiteeie et e e e esteesteesteessae e saessseeseesssesnseesnsessseesnnns 295
SVISUAL-IUIMAINISES. ¢ttt ettt sttt s b et st e sae e s s e e s sbeesnseesnseesnseans 295



VAT L] o) s Y ] T 1 o USSP 295

Visual-10Cation DUFTET......ccceiiiiiiiiiieeieeeee ettt be e e s sbeaesssseaeenns 295
QQUEBTIES ...eeeeereiieeeeeeeeeeeetiteeeeeeeeeeeetaraeeeeeeeeeresasanaaeaaeeeessssssnsnnaseeessssssssnnneeeessssssssnnnnseessssnnessssnnesees 295
ROQUESTS. .. ettt ettt ettt e et e e et e e e st e e s e bt e e s e aab e e e e e rtaeeeeeeeeeeeannnnns 296

VASUAL DUTTOT ...ttt e bt e s ta e s be et e e beesssaeesessaeeessaaeenssaeennns 300
O U L] o 1< RN 300

Chunks & CRUNK-LYPES. ... .coiiiiiiiiieeiteee ettt ettt ettt s bt e st e st esabesbe e st e e e saneeesaas 304

COMIMANGS. ... veeveeiieeieeeie et este et e st e st e et esbe e stessseesaeesseesseassseessaesssaasseesssessseesnsssessnsssesansseesenssns 306
PIOCAISPLAY ...ttt ettt ettt e st e e bt e st e et e e st e e bt e st e e bt e e abe e bt e sabeenateeateenne 306
TEMOVE-VISUAI-FINSTS. .. eeriiieiiieiiiiieeieee ettt e st e et e s e s e e st e ebeesssesnnneas 307
SEt-VISIOC-AETAUIL.......cociieiiiiecieeee ettt e et e e raeeabe e saeebaesanaeeas 309
PIINE-VISICOM. cttetieiititee ettt e eeitee e e ettt e e ettt e e s abeeesstrteesesasneeeesnsaeeesannsaeesasansteeessnnaaeaaeeeeeesnansnnns 310
AAA-WOTA-CHATACTETS. .. .ccvveeeiieeeieeeetee et e et e eeteeestteeesteeesseeeessseeesssaeensseesssseesssseesseeensseesssseesanns 311
SEt-VISUAL-CONEEI-POINL. . veeiieeieeriieeieerteete et eete et eeteesteessbeeseesssessseesssessseesssessseesssesseenssessseens 312

AUAIO MOAUIE.....ceiiiieiiieecteec ettt rte e et e e e rte e e e be e e s beeesaeeessbeeessseeesseesnsseessseessseessseesnssenes 314

AUAILOTY WOTLA.....c.eeiiiieeieeeeeeeee ettt ettt et e e st e e b e e st e sbe e s st e esseesssesnssaesnnsseeas 314

The WHRETE® SYSTOIM....ccccuiiieiiiiieiieieiieeeiee e tteee it e et e s steeeseaeeseaeeeaaeessaeesssaeesssaeesssaeesssaeesssnnsssseeeenn 315

The WRat SYSTOIM......eiiiiiiiiiiieeieeieeeie ettt ettt e s te e bt e st e e saaessseesstessseessesssaesssesssesasssaesnssseenns 315

PaTAIMELETS ...ttt ettt et e sttt et e e e e s e bttt e e e e e sessssasbaaaeeeessesssssstaaaeeeeeeaaeeannes 315
6o | e (e ot et (<] F | OO RORRUPRRSPR 315
SAIGIE-AUTALION. c...eeieetiee ettt et ettt e et e et e e st e et e e sate e e aabe e e e b e e e ennbeeeeanees 316
(AiGIt-TECOAR-AELAY ....eveeieieiiieiieeteeeeee ettt e b e et e et e e saaeesst e e snsneeesnnes 316
TREAT-NEWEST-OMLY ....eiiiiiiiee ettt sttt ettt be e st e b e e 316
:SOUNA-AECAY-TIIME  .uviieiiiiiieeieeiieeie et e ete et e st e e e s teeteesatesseessseessaessseesseesssesssaenssessseensseesnnsns 316
TEONE-ALECT-ARIAY . ... eeuteeeieeieete ettt ettt ettt e bt e st st e e st e e bt e sabeesbe e st e eseeennne 316
EONE-TECOAR-ARIAY ....eeriveeiiieiieiieecte ettt ettt et e st e s te et eebeesseesseesseessseenssesnsesnssessseenssenne 316

AUTal-10CatioN DUFTT.......ciiiiieiieiececeee ettt e re e sae e ae e saeesbeenaneens 316
[ U L) o 1< RN 317
ROQUESTS. ..ceeeeeeeetee ettt e e st e e e s sttt e e e e s abe e e e s tb e e e s e aaeee e e abaeee e raaaaaaaeeeeeeanannns 318

AUTAL DUFTET ...ttt et e et e st e et e et e e beessbeesaesnsaesseassnsseens 319
QQUEBTIES. ...ceeeeeeieeeee et eeeeett i eeeeeeeeeeeetaraeeeeeeeeesessssnsaaeeeeessssssssnnaseeessssssssnnnseeessssssssnnnnseessssnnessssnnesees 319
ROQUESTS. ..ottt ettt ettt e et e e e st e e e st e e s e bt e s e aab e e e e tteaeeeeeeeeeeananns 320

Chunks & CRUNK-LYPES. ... .cooiieiiiieetteete ettt ettt et ettt e st e e bt e sabessbe e st e e s sanaeesans 322

COMIMANGS. ... veeivieiieeieesie et eete et et e s rte e st e sbeesseessseeseeesseeseassseessaesssaesseesssessseesssssessssssesansseesnsses 322
new-digit-sound/new-tone-sound/new-other-sound/new-word-sound.............ccccceeceeereeeeenuneenn. 322
PIANE-AUAICOM. .. .eteeitieiteeieert ettt et e et e et e st e e sseessteesseessseesseesssassseasssesssaessseensseeesnnsenens 324
SEt-aUAIOC-AETAUIL.......cocuiiiiiiieceece ettt e e e e e s ae e reesbe e beeesaeesaesnaaeeas 325

IMOLOT TNOAUIE.......ceiiiiiieeiieteeeeet ettt ettt st e et e e aeessbe e saesssaeseessseesseessseessaesssesseesnseesnns 327

PRYSICAL WOTLA. ...ttt ettt ettt e a e st e e bt e st e e bt e sabeesneeeeaas 327

OPEIALION. ....eteeieiiiteeeeite e eettee e ettt e e ettt e e e sttt e e e earteeeesasaeesseanraeesansaeeeesassaaeessnnsaeesasnseeeessnnsneesesnns 327

PATAIMELETS. ... veeeeeieeee ettt e ettt e e e sttt e e e s sbb e e e s sabaee e e abbeeeessssaaeesssssaeesassssaeeensnsaaeeeeesesnnanen 330
TCUTSOT-TIOISE. ¢eeeeuerteeeeuiteeeeairteeeaeureeeseastteessuseeeeasasteessasseeesssssseeesassaeesesssseeesssnssneessssaeesssnsnnnes 330
sdefault-target-Width.........cccoeiieieeee ettt 330
:INCTeMENtAl-TNOUSE-TNIOVES  .....eerivieiuieeiieriieeieestteeteesteesteesseessseesseesssessseesssessseesssessseesnssseesnsnees 330
110101 (0) ot D0 13 ot 10 2 L= PR 330
:MOLOT-TEAtUTE-PIEP-TIIME  .ioviiiiiieiiiieiieeieeree ettt et e et e st e e teeseeesbeesseessseesssesaseenssesssesnssennns 330
100110 B 1 1 1.1 LT U TS U SRR PRRRPSPRR 330
TMOLOT-INITIATION-TIITIC. ...eeteeeiiteeeeeitt e eeet e e et ee e et ee e e sareeeeseunreeessaarteesessseeeesnseaeesssnsaeesssnnsnnnes 330
PECK-TILES-COBTT ..eeieeeeeee ettt ettt e e s e e et e e sa e e beesraeeebeessaeeennns 331



MANUAL BUT T ..o, 331

ROQUESTS. ..ottt ettt ettt e ettt e e et e e e st e e s s bt e e s et e e e e e raeeeeeeeeeeeeennnns 332
Chunks & CRUNK-LYPES. ... ..coiiieiiiieeteee ettt ettt ettt s bt e st e et e st e s sbe e st e e s sanaeesaas 341
COMIMANAS. ...ttt ettt ettt et s e st e e b s bt e st et e s at et e et e s st e bt esbesate b eeaseesaseesaseesaseesaseesseenas 342

Start-hand-at-IMOUSE .........cooiiriiiieeieeeeee ettt sttt et e st e st e s bt e sbe e st e eaneeas 342

set-cursor-position

..................................................................................................................................................... 342

SEt-NANA-10CATION. c..c..eeeiiiiieieee ettt ettt 343

EXtENA-TNANUAI-TEQUESES. ...cccuvieierieeeiteeeiieeeitteeeteeeeteeesreeestaeessareeesaeesssaeessseeenssaeesessssssseesennssssees 344

TEMOVE-MANUAI-TEQUEST.....eeeieeiieiieeieeeteeieerte et et e eteesteebeesaesseesseessseesssesnseesssesssessssesnsesnsees 345

SPEECH MOMUIE.........eiiieiieceeceeeeee e ettt e et e e e te e e tte e e st eeeseeeansaeeeessssssaaasennnnes 347
The VOCAL WOTI.....coueiiiiiiiieieee ettt ettt ettt et e st e bt e e st e e sateeeaseas 347
(0] 0153 =1 110 1 FEUUU U TP OPPPPURRRRRPPPRRRt 347
PaTAIMIETETS ...eoiiiiiiiiieiite ettt ettt s e st e st e s ab e e senb e e s nae e sennae e e e eennee 348

SSYLLADIE-TALE. ...ttt ettt et be e st esbe e st e e nae e e e 348

1CHAT-PET-SYILADIE. .....coiiieiieiece ettt e e aba e e ennes 349

:SUDVOCAlizZe-deteCt-delay.......ccciiiiiiiiiieee ettt 349
VOCAL DUFTT ...ttt ettt ettt e et e bt e e sateeeane s 349

QQUEBTIES. ...ceeeeeeieeeee et eeeeett i eeeeeeeeeeeetaraeeeeeeeeesessssnsaaeeeeessssssssnnaseeessssssssnnnseeessssssssnnnnseessssnnessssnnesees 349

ROQUESTS. ..ottt ettt ettt e et e e e st e e e st e e s e bt e s e aab e e e e tteaeeeeeeeeeeananns 351
Chunks & CRUNK-LYPES. ... .cooiieiiiieetteete ettt ettt et ettt e st e e bt e sabessbe e st e e s sanaeesans 352
COMIMANAS. ...ttt ettt ettt et e st e e s st e st e et e s bt e be e b e s st e bt e st esstebesaseesmaeesaseesaseesaseesaseenas 352

get-articulation-time/register-articulation-time............cccccceerieriieriienrieneee e 352

TemPOTal MOMUIE.......cc.eiiiiiiiieieeeeeeee ettt e s ebe e st e ebeessbesasaesstessseesssesnssaees 355
PaTaIMELETS .....eeeiiiiiieiiee ettt ettt e st e e e et e s s esbe e e s e bt e e e e arae e e e e e e eeeeanns 355
TeMPOTAL DULTET.....cutiiiieeieeeee et st e et e st e te e e te e ssbeeessbaaeessaeennns 356

REQUESES. ..ceeiiieieeteee ettt et e e s ettt e e e e e se s bttt e e eeesessssssbaaaaeeseseennsssnnnnnnnnsaaeens 356

MOAIfICAtION TEQUESES. ...ccuveirereeiierieeteerteerteeste et estesteesate e beesssesseesseessseesssessessseesssessssessseensees 357
Chunks & CRUNK-LYPES. ... .coiiieiiiieetteeee ettt ettt ettt st e st e s bt e satessbeesabeessaseeesnas 357

AAVANCEA TOPICS. . veieieeiieiieeiierieeiterte et e st e ste et e s beesseesteesstessseesssessseessaesssessssessseeseessseesssesssesnseens 359

(0] 1100015 Tl ol F PSPPSRt 360
COMIMANAS. ...ttt ettt ettt et s e st e e e s bt e st et e s bt e be et e s st e bt esbesstebeeaseesaseesaseesaseesaseesnseenas 361

efiNe-ChUNK-SPEC.......iiiiiiiiecieetecte ettt ettt et e s te e teesaae e beessbeebeessseesseessae e nsaeasnsaeans 361

PPIINE-CHUNK-SPEC......eiiiiieiiiiiieeieecte ettt ettt ettt et esbe e st e e sbeessbessseesssseeennsseeennsseesnnsenenn 362

MAtCh-CHUNK-SPOC D ... tiiiiiieceeceeee et ste e et e e s saae e s saeesaaeeeenssnaaeaeas 364

find-matChing-ChUNKS ........ccciiiiiiiiiieee ettt e e s sae e e sanee s 366

ChUunNK-SpPeC-ChUNK-TYP.......eiiiiiieiee ettt et as 368

ChUNK-SPEC-SIOTS.....eeutiiiieiiieeieeeee ettt e et e s ae e e st e e s aaessbeesseesssaesseesssesnsaennsaeens 368

SIOt-IN-ChUNK-SPEC D ... tiiiiieeee ettt et ee e st e e e sta e e s eba e e e e e e nssaeeeeennnnenes 369

ChUNK-SPEC-SIOt-SPEC. ... .eetiiiieeiieeieet ettt ettt e s te e bt e s b e e ssae e b e e st e ssseensnesnsaesnsneens 370

ChUNK-SPEC-Variable-P.....cccuviieiiiieieeceeeee et et e s te e s re e s rae e s saaeeeeennns 371

strip-request-parameters-from-cChunk-SpecC............ccceeveriiirriiniiinieeieeeecieee e 372

Chunk-spec-to-ChUNK-Aef............coooiieiieiececeeeee ettt e tee e e bae e e raeeesavaaeenes 373

Chunk-name-t0-ChUNK-SPEC..........cccuiiriiriieiieeteeeee ettt et e s e saa e e baesnnee s 374
COMIMANAS. ...ttt ettt ettt e et et e st e e bt e e ab e e bt e eabe e bt esab e e bt esabeebaeeenabaeeenbaeeenseeeennnas 377

DUFFEI-TOA. ...ttt sttt st s e be et s e e e s 377

QUETY-DUTTOT ...ttt ettt re e et e b e e s ae e beesabe e saeesseeeensbaeeenssaaesnsseens 379

ClEAT-DUTLET ...ttt sttt ettt st sae et e e e 382

SEt-DUFEr-CHUNK. ....c.eieiieiieece ettt 384



OVEIWIITR-DUTTOI-CRIUNK . ...ttt eeeeeeeeeeeeeeeeeeeenenennaanseesennnn 387

MOA-DUTFEI-ChUNK......ooiiiiiiii ettt e 390
INOAUIE-TEQUESE......eeeerieeiieeeiteeeee et ee et e et e e te e e stteeeteeessaeeessseeesssaeensseessseesssseessseeessseesnsseesanns 393
MOAUIE-TNOA-TEQUEST. .....eeutieeiiieiieeieeite et erteete et e et esieesteesseesbeesssesasaesseessseesssessssaeesnsseeesssseens 396
DU EI-SPIOA. ... eeeirieieecie ettt ettt ve et e e be e s ba e ebe e saeesbaessbesasaeeesnaeeennnees 399
buffers-module-Namme............coouiriiiiiieieee ettt s 400
EXtending CRUNKS. ....c..coiiiiiieeeee ettt ettt et ettt e st e st e e st e e st e e e s bbeeenane 401
COMIMANAS. ...ttt ettt ettt et s e st e e e s bt e s ae et e s at e be et e s st e bt e st esstebeeaseesaaeesabeesaseesaseesseenas 403
EXEENA-CHUNKS. ..ottt ettt st e s et e e s neee e 404
EXteNding CRUNK-TYPES....cccutiiiiiiieeiieitieeieeteet et et eae st e ete e st e sbe e st e ssaessaessseesssesssasnssesssessssseesns 407
Default MeChaniSm........cc.eeciiriiiieierceeeteeee ettt sttt ettt e st e sseeaeeaaeesateenasean 407
Static TYPe MeChANISIT.......ciiciiiiieriieiieeieerteeie ettt e et e s e e e e st e e saeesaseesseessseesaesssasnseesnses 407
Creating @ STALIC TYPe.....uiiiiiiieiieeeiteeeteet ettt ettt e bt e st e e st e s e bt e s s bt e s easeesenseesanreeeennn 408
Slots With @ value Of MiL.......cooiiiiiiiriiie ettt ettt 408
Chunk-type hierarchy ........c.cooueiiiiiieee ettt ettt et 409
IMIEIGINIG. ..ceeeneeeeeeeietee ettt ettt e ettt e e et e e e sttt e e e s bt e e e s ssbeeessaasteeeessseeeesnsaaeesasssteesennsaaeeaeaens 410
DITECE REQUESTS. ....eevvieeeeiiieeeeciieeeeeeireeeeeite e e st e e s s sitee e e e s ateeeesssbaaessssseessssssaeeesssseaaeaseessssnnnnnns 410
SUDEYPE NMAIMIES.....c..viiiieeieeriieeieesiteeteestteeteesseesseesseesseesseesssesssessseessasassessseesssesssesessseesssseesnnsns 411
COMIMANAS. ..ottt ettt et e e e at e st e e bt e st e e bt e e st e e bt e s st e e bt esabeebaee e ssteeenseeeenseeaennnas 411
eXteNd-ChUNK-TYPE-SIOLS. ...ccuiieiiiiieieeieeeteet ettt ettt et e s b e s e e st e e sbeessbeesseeenasaeeas 411
Defining NeW MOAUIES.........cooiiiiiriiieeieeeeeeeeere ettt sttt et et e e st e s st e sbeetesaeesaseesaneenns 414
D OCUMENTALION. ..c..ueiiiiiieiitieeteeete ettt ettt s bt e et e essabeesbaeesbaesesbaesenbeesenbeessnnsnaeeesennnnne 414
BUTTETS. ...ttt sttt et e b et e et et et e e e b e et e at e beebeeaeenareas 415
spreading activation WeIGht........ccueviiriiiiiiieiieiecieeeeee ettt esaee s ba e e sesbteesssneaesnes 415
TEQUEST PATAIMIELETS. ..eeeteetiereerurrrreeeerteareeierreeteeeesssssssnrreeeeesssssssssssteeeessssssssssssssssssssssssssnnnsssssessees 415
QUETIES. ..eteeeeeieeeeeeeiteeeeeettteeeeuateeessunreeeeeasteeessassaeeesasaaeesasstaeeessssaeeesnssaeesasssaaeesssnsaeaaeesessssnnnnn 416
QUETY PIINTIIIE . ..ceiiiiiietiiiirieeieiteee ettt s ettt e e e ettt e e e e brteeseesbaeeesenbteeeesraeeeseansaeeesennrteesesnraeeessesns 416
PaTAIMITETS. ....ceiitiiiiiee ettt ettt et e s bt st e s bt e s ab e s bt e s bt e s enna e e e s e ennee 416
TIATTIC. ...eteeeeunrteeeeurteeeseubaeeseenateeeesrbeeesesabaeeseemsbte e e e sbaeeeeensbaeesenba e e e e e s baee e e e bbaeeseenbb e e e e e bteeeeeeeeeanns 417
OWIIET ..eeieteeeiteeeitee ettt e e ebae e sttt e s bt e e s abee e e bt e s eabte s e mb e e s bt e s ema e e e mb e e s nb e e e baeeeasbeeesbaeeensaeeensaesennaesnseens 417
QOCUIMENEATION. ...ttt ettt ettt ettt e et e et e et e e bt e sab e e bt e sabe e bt esab e e bt e sabeeabeesateeaseesneesseesnneeas 417
e aUI-VALUE. ...ttt sttt ettt sttt e st e e e e 417
VALIA-EOSE. ettt et ettt et s bt e st e et e st e e bt e e at e e bt e s abesbeesateebeeeane 417
WATTHIIIZ ...eeeeeueteeeeeeueteeeeseuateeesenrteesesustteeesnsaeeessssseeesasasaeeeesnseeessasssaeesasnsateessnnnssssnnneaeaeeeeeesssnnnns 417
INtETface FUNCHIOMS. .....eiieeeieiieieceeeee ettt ettt sbe et e st et e e besaeenseenaasaee s 418
(ol (=16 (o) 1 TP PTRPPTN 418
L] <] PO OO O O OSSP PSP PPPPPRRRRPPPPPPON 418
ELELE...eee ettt ettt et st a et et h e bt et s st bt et e e s abeeeareeas 419
PATAITIETETS. ... vvtteeeeeeeeeiiierteeeeeeeeseuaertateeeesssssrnseraaaeeessssssssnseaaeeessssessssssstaaeessssnsssssseaseeesseeeeesssasnnn 419
QUETIES. ..eteeeeeuieeeeeeeiteeeeeettteeeeaateeessuareeeesasteeeesassaeeesasaaeesasstaeessassaeeeesssaessassaaesssnnsaeaeeeeeesnsnnns 419
TRQUESES. ..veeeeeuurreeeesireeeeasreeeesauseeesssereeeessereeesssssaesssssaeesssssseeesssssseesssssseeesssssseseeeeeeesesssnssnnsnsssnns 420
buffer ModifiCation TEQUESES........cccviiriiriieiieeieeeeete ettt ebe et e st e e e s beeesssseeesnnaees 421
NOLIY UPON CLEATING....ccuveeuieeieieeiesteeie ettt ettt ettt s et e e te st e sbesbesae e beesseeenseeennseenns 421
notify at the start of a new call to run the SYStem..........cocveeieerieriiiiiieeeeieeee e 422
notify upon a completion of a call to run the SYStem...........ccceevuerieneriieneereeieseereee e 422
warning of an UPCOMING TEQUEST........cccvtirrerrieerieeieertersteesereeseeseessseesseessessssessseesseessseesseessnssns 423
Common Class of Modules — GOal Style........coeieririiinienieiieieeeeeeeeee e 423
WItiNGg MOAUIE COME........viiiiieiieiiieieeee ettt e et s e et e s te e st e ssseesseessseessseeessseasssseesnnns 424
MOAUIE @XAMIPIES. ..cc.uvieieiieeeiieeeiteeeeie e et e ettt e estteesteeessaeeesseesesseeessseeessseeessseesssseassseesessnsssseesennnes 425



COIMITIANIAS. e eeeeeeeeeeeeeeeeette e eeeseeeeetaaenaaeeseseeesanenanaesesesesseennnaesesessssnnnnnaesesssssnnnnsensnsssnnnesssennesennnn 425

GEE-INOAULE.....cetiieieiieeteeee ettt et e et e et e st e et essbe e s aesssa e saessseeseesasstaesasseaesnsseeennns 426
AEfiNE-PaATAIMETET.......cccieeiieeiieeieecteete et eteeste et e teeebe e teeebeessaeeseesssesseesssesnseesssasessseaesnsseens 426
define-MOAUIE........coouiiiee ettt st ettt 428
UNAEfiNe-INOAUIE.........iiieieeeee ettt sttt sbe et esba e e saaeennaeens 434
B0Al-STYLO-QUETY ... eeeeiiiiiieeieeteete ettt ettt e e et e s b e e s ae st e e seessbe e saesasstaeeanstaesanseaennns 435
B0Al-STYLE-TEGUESL. ...ttt ettt et ettt e st e e bt e st e e bt e st e bt e st e e be e e e e abaeeas 435
B0al-StY1E-TNOA-TEQUESL.......eeiieeiieeiieeiteeite ettt et s e e e beestesbeessteeseaesssseasssseassnsseeennns 436
IMUILIPIE IMOAEIS.......viieiiieeiiee ettt ettt et e et e e et e e s etee e e baeesssaeesaseeesssaeesseeesseeennsssneaeanns 438
SYNChIoNOUS MOGEIS......ccviiiiiiiieiieeieeeee ettt ettt et e st e et e s b e e ssaeesbeesseeeessaeesnsseessnnsens 439
COMIMANAS. ..ottt ettt ettt et eeat e st e e bt e e ab e e bt e eabe e st e s st e e bt esabeebaee e ssaeeenbeeeenreeeennes 441
CUITENE-TNIOACL ..ttt et b et st b et s e beebe st e e saeeeane 441

1001 010 01016 1<) LSRR 441
delete-TNOAEL......c..eoiieieieeeee ettt sttt b e sttt e e e 442
WIR-MOAEL....cneiiii ettt ettt et e st e st e e s 444
ASYNCHIONOUS MOGEIS.....c..eiiiiiiiiiiieeieeiee ettt ettt e e eebeesbeessbeessaesssaesseessseeesnsaeenssseesns 446
COMIMANAS. ...ttt ettt ettt e et e bt e st e e bt e sat e e bt e e st e e bt e s st e e bt esabeebaee e sbaeeensaeeenreeeennns 447
AefiNe-TNOLA-PIOCESS. ...cuveerieeiieiiienieetteete et e eteeste e st e eaeessteesseesstessseesssessseenseessseenssesssseesensseeens 447
INIELA-PTOCESS-TIAITIES. ... .euvrrreeeeererrnnarreeeeeeeesaasunrertaeesssesssssssaeseessssssssssessesssssssssssesaaeesssssssssssssass 448

el EtE-TNIELA-PIOCESS. ... vveeerierereeieeriteeieesteerteestteeseesstesseesateesseesssesnseesssessseesssessaesssesssessssesnseensees 449
CUTTENE-TTICLA-PTOCESS. ¢t ueeueerrreeereereesunrereeeeeesassassunrteteesesssssssseseaseesssssesssnsesseeesssssssnssnsesseeesesseseees 450
WItH-TNOtA-PIOCESS. .. eeveeeieeeiieeieeete et ste et et e et e st e st e st e s be e st e ssseessaessseensteesseesssesnsaesssssessnssees 450
Combining synchronous and asynchronous models..............ccocuerrieriiieniinieniieniieeeeeeeee e 452
Other multiple MOdel XAMPIES.........cociiriiriiierieeiterre ettt teesaee s s aaeeesasaeeennns 453
MU -DUTTETS. ...ttt sttt st et e st et e s e e besabe e aseesaseennseanns 454
COMIMANAS. ...ttt ettt et s e s bt et e s st e s ae et e sat et e e b e sst e bt esbesstebesaseesaneesaseesaseesaseesnseenas 456
StOre-M-DUffer-ChUNK.........ccoiiiieieiee et 456
Get-IN-DUFFET-ChUNKS. .....cooiiiiiiiecieeceee ettt e e s be e e ssbe e e ssaseeeenes 458
remoVe-M-bUffer-ChUunK...........cocoiiiriiii et 459
remove-all-m-buffer-ChUunks............c.ooiiiiiiiiee e e s 460
ETASE-DUITET....ceieeieeeee ettt et st b e st st esaeeeaneas 461
SearChable DUTTETS. .....coueiiiiie ettt st ettt 462
Configuring Real Time OPeration...........ccceecueeeerieesiereerierieneesieesteseessesstesseessesssesseessseesssesssseessseesns 465
DYNAIMIC EVEILS. ..ceiieuiiiieieiiiieeeeiittee ettt e ettt e e e estteeeestreeesssaraeeseesseeesssnsseeesssssaeesssssseeessssssaeesesesanns 467
COMIMANAS. ..ottt ettt ettt et eeat e st e e bt e e ab e e bt e eabe e st e s st e e bt esabeebaee e ssaeeenbeeeenreeeennes 468
MP-Teal-tiMe-MANAZEIMENL. ........eeeieiriieeieeiteerteeseesteeseesteesteesteeseesseessseessaesseesseesssesssseessssseens 468
RETEIEIICES. ...ttt ettt e e st et e st e s bt et e e st e sseesseestebeentesaeesesasesstenseensesseesnseennseanns 471

13



Preface

This document is still a work in progress. The content is accurate, but so far only covers the basic
operations and the primary modules in detail. It contains references to sections on advanced
materials, but most of those are not yet included. The hope is that although it is not yet complete, this

working version will be of some use to ACT-R modelers.

14



Introduction

ACT-R is a cognitive architecture: a theory about how human cognition works. Its constructs reflect
assumptions about human cognition which are based on numerous facts derived from psychology
experiments. It is a hybrid cognitive architecture — it has both symbolic and subsymbolic
components. Its symbolic structure is a production system and its subsymbolic structure is
represented by a set of massively parallel processes that can be summarized by a number of
mathematical equations. The subsymbolic equations control many of the symbolic processes, and are

also responsible for most learning processes in ACT-R.

Using ACT-R, researchers can create models that incorporate ACT-R's view of cognition and their
own assumptions about a particular task. These assumptions can be tested by comparing the results of
the model performing the task with the results of people doing the same task. By "results" we mean
the traditional measures of cognitive psychology: time to perform the task, accuracy in the task, and,

(more recently) neurological data such as those obtained from fMRI.

One important feature of ACT-R that distinguishes it from other theories in the field is that it allows
researchers to collect quantitative measures that can be directly compared with the quantitative

measures obtained from human participants.

ACT-R has been used successfully to create models in domains such as learning and memory,
problem solving and decision making, language and communication, perception and attention,

cognitive development, or individual differences.
Beside its applications in cognitive psychology, ACT-R has also been used in other fields including:

- human-computer interaction to produce user models that can assess different computer
interfaces

- education (cognitive tutoring systems) to "guess" the difficulties that students may have and
provide focused help

- computer-generated forces to provide cognitive agents that inhabit training environments

- neuropsychology, to interpret fMRI data.

For more detailed information, please refer to the latest description of the ACT-R theory in the paper
"An Integrated Theory of the Mind" (2004) which is available from the ACT-R web site at: http://act-

r.psy.cmu.edu/papers/403/IntegratedTheory.pdf.

15


http://act-r.psy.cmu.edu/papers/403/IntegratedTheory.pdf
http://act-r.psy.cmu.edu/papers/403/IntegratedTheory.pdf

Document Overview

This manual is a guide and reference for the ACT-R 6.0 software implementation. It is not meant to
be a tutorial or a textbook on the ACT-R theory or a “how to” on writing models using ACT-R. The
ACT-R Tutorial, which accompanies the software, is designed to introduce the theory and techniques
for modeling with ACT-R. This document is intended to be a compliment to the tutorial, and it
describes the components of the implementation, how they are connected, the commands available to

the user, and some recommended practices for use.

This manual is a reference for the ACT-R 6.0 implementation only. It does not describe mechanisms
from older implementations nor does it thoroughly discuss how commands may differ from similar

commands in previous versions.

16



General Software Description

ACT-R 6.0 (hereafter referred to only as ACT-R) is written in Common Lisp. It was implemented

and tested using Allegro Common Lisp by Franz Inc. http://www.franz.com/, Macintosh Common

Lisp by Digitool Inc http://www.digitool.com/, Clozure CL http://www.clozure.com/clozurecl.html,

LispWorks by LispWorks Ltd http://www.lispworks.com, CMUCL http://www.cons.org/cmucl/,

CLISP http://www.clisp.org, SBCL http://sbcl.sourceforge.net/, and ABCL http://common-

lisp.net/project/armedbear/. It should run in any ANSI compliant implementation of Common Lisp,

but has only been tested with those listed above. If you have problems loading or running ACT-R in

any Lisp please contact Dan Bothell (db30@andrew.cmu.edu) with the details. We also make the

ACT-R system available as a standalone application for those that do not have Lisp software, but the

standalone versions are not as robust or as flexible as using ACT-R with a full Lisp implementation.

It is not necessary for one to be a Lisp programmer to be able to use ACT-R for basic modeling work.
However, because ACT-R is running in Lisp, some basic understanding of how to program in Lisp
can be helpful, and for those looking to extend the capabilities of a model it will be essential. An
introduction to Lisp is beyond the scope of this document, but there are many introductory Lisp
books available as well as many online resources. Two online resources where you can find

additional information about Lisp are The Association of Lisp Users, http://www.alu.org/alu/home,

and CLiki, the Common Lisp wiki, http://www.cliki.net/.

The primary means of interacting with ACT-R is through the Lisp read-eval-print loop - a command
line interface. All of the commands described in this manual are available through that interface, and
the manual assumes that that is how one will be using the system. However, there is also a set of GUI
tools available (included with the main distribution) called the ACT-R Environment. The ACT-R
Environment provides an alternate interface to a subset of the commands and is described in its own
manual. The ACT-R Environment is useful for beginners, and because it uses multiple windows to

display the information, can be helpful to coordinate viewing model data for advanced users as well.

Commands and names in ACT-R are not case-sensitive. Also, many ACT-R user commands are
implemented as macros so that one does not have to quote the arguments. That also means that the
arguments to such commands are not evaluated. For most of the macro based commands, there is
also a corresponding function which will have the same name, but with a —fct appended to it. The

commands’ descriptions and examples should make clear how each command is to be used.

17


http://www.cliki.net/
http://www.alu.org/alu/home
mailto:db30@andrew.cmu.edu
http://common-lisp.net/project/armedbear/
http://common-lisp.net/project/armedbear/
http://sbcl.sourceforge.net/
http://www.clisp.org/
http://www.cons.org/cmucl/
http://www.lispworks.com/
http://www.clozure.com/clozurecl.html
http://www.digitool.com/
http://www.franz.com/

Notations in the Documentation

When describing the commands’ syntax the following conventions will be used:

items appearing in bold are to be entered verbatim

items appearing in italics take user-supplied values

items enclosed in {curly braces} are optional

* indicates that any number of items may be supplied

" indicates that one or more items may be supplied

| indicates a choice between options which are enclosed in [square brackets]

(parentheses) denote that the enclosed items are to be in a list

a pair of items enclosed in <angle brackets> denote a cons cell with the first the car and the
second the cdr

-> indicates that calling the command on the left of the "arrow" will return the item to the
right of the "arrow"

::= indicates that the item on the left of that symbol is of the form given by the expression on
the right

When examples are provided for the commands they are shown as if they have been evaluated at a

Lisp prompt. The prompt that is shown prior to the command indicates additional information about

the examples. There are three types of prompts that are used in the examples:

A prompt with just the character “>’ indicates that it is an individual example — independent
of those preceding or following it.

A prompt with a number followed by ‘>’, for example “2>” means that the example is part of
a sequence of calls which were evaluated and the result depends on the preceding examples.
For any given sequence of calls in an example the numbering will start at 1 and increase by 1
with each new example in the sequence.

A prompt with the letter E preceding the “>’, “E>”, indicates that this is an example which is
either incorrect or was evaluated in a context where the call results in an error or warning.
This is done to show examples of the warnings and errors that can occur.

In the description of some commands it will describe a parameter or return value as a “generalized

boolean”. What that means is that the value is used to represent a truth value — either true/successful

or false/failure. If the value is the symbol nil then it represents false and all other values represent

true. When a generalized boolean is returned by one of the commands, one should not make any

assumptions about the returned value for the true case. Sometimes the true value may look like it

provides additional information, but if that is not specified in the command’s description then it is not

guaranteed to hold for all cases or across updates to the command.

18



ACT-R Software Distribution

There are two primary means of acquiring the ACT-R software. The first is from the ACT-R web

site http://act-r.psy.cmu.edu. The software page of the web site has the most recently released

version of ACT-R available as either a .zip of the source files or built into a standalone application
for Windows or Mac OS. The released versions have been tested against the reference models and
the output of the models should be consistent with respect to what is printed in the tutorial. New
releases are made when there are significant updates or patches and typically happen two or three
times a year. The other method for acquiring the software is via version control software called
Subversion. More information on Subversion can be found at http:/subversion.apache.org/. The
ACT-R archive is located at svn://act-r.psy.cmu.edu/actr6. The Subversion archive contains the most
up to date version of ACT-R, and often contains minor changes or bug fixes not yet available in a
released version. Note however that the minor changes made to the sources available through
subversion are not all tested thoroughly against the tutorial models and there may be discrepancies

with respect to the tutorial documentation until the next released version.

19


http://subversion.apache.org/
http://act-r.psy.cmu.edu/

Distribution Contents

The primary components of the ACT-R distribution are the Lisp source code files. It also includes
the ACT-R Environment application (a GUI for inspecting and debugging ACT-R models), the
Tutorial units and models for learning ACT-R modeling, and additional documentation. All of the
files are distributed in a single directory, called actr6, which contains one file and several
subdirectories. The file is named load-act-r-6.lisp. When that file is loaded it will load all of the
other components of the system. Here is a listing of the subdirectories along with a general

description of their purpose and some of their specific contents:

commands
This directory contains code for user commands for some of the central modules. One feature of this

directory is that any file with a .lisp extension placed into this folder will be compiled and loaded

with the rest of the system.

core-modules
This directory contains the code that defines the modules which instantiate the main ACT-R system

described in the theory. They are assumed to always be available, but are not absolutely required.
The base modules are Procedural, Declarative, Goal, Vision, Auditory, Motor, Speech and Imaginal

and are all described in this manual.

devices
This directory contains subdirectories which each contain two files that control the interaction

between the ACT-R device and a specific Lisp and the corresponding AGI (ACT-R Graphical
Interface) functions for that Lisp. There is also a generic (virtual) system that is available for all

Lisps. The device and the AGI are described in later sections of this manual.

docs
This directory contains the documentation files for ACT-R. They include details on using the system,

as well as documents describing particular features. Here are descriptions of some of the files found

there:

- reference-manual.doc
0 This document.
- compilation.xls
0 An Excel Spreadsheet that is used to define the operation of the production
compilation mechanism.
- compilation.doc

20



0 A document describing the design and theory of the production compilation
mechanism.
- differences.txt
0 Some notes about differences between ACT-R 5.0 and ACT-R 6.0.
- framework-API.doc
0 A document that describes the internal system upon which ACT-R is built along with
the API of the functions it provides. It is being replaced as a reference by this
document and it has not been maintained with the most recent changes. It is still
included as a reference for those interested in the design of the software.
- LGPL.txt
0 The Lesser Gnu Public License text. That is the license under which the ACT-R
software is distributed.
- template.lisp
0 This is a lisp file that is the recommended starting point for any new modules or
additions which are for general use with ACT-R. The author and contact information
at the top should be changed, and then the remaining pieces filled in appropriately.
- extending-actr.ppt
0 A power point presentation which was given during the ACT-R advanced tutorial at
ICCM in 2007. It describes the basics of creating new devices and adding new
modules.
- EnvironmentManual.doc
0 The reference manual for the ACT-R Environment.

environment
The environment directory contains all of the files necessary for using the ACT-R GUI tools, called

the ACT-R Environment. There are several items in this directory: lisp files that define the tools and
the communication between ACT-R and the Environment, the Environment applications for both
Windows and Mac OS X, and a GUI directory that contains the files used by the Environment

application.

extras
The extras directory contains additional modules and other files that have been contributed to the

distribution, but which are not part of the default ACT-R system. Directions for using those files
should be found within the files themselves or the documentation which accompanies them. They are

not loaded by default.

framework
The framework directory contains the Lisp files that define the software framework upon which the

ACT-R system is based. The software framework is a basic discrete event simulation system that

was designed to implement ACT-R, but is not based on the theory of the ACT-R.

21



modules
The modules directory contains additional modules that are not part of the core system. As with the

commands directory, any files with a .lisp name placed into this directory will be loaded

automatically when ACT-R is loaded.

other-files
This directory contains some files that add tools for viewing BOLD response data and graphic traces

in the ACT-R Environment. Like the commands and modules directories, any file with a .lisp

extension placed into this directory will be automatically loaded with the system.

support
The support directory contains files that may be needed for certain Lisp implementations, for certain

modules of the system, or for possible user support. These files are loaded when required by other

files.

examples
The examples directory contains source files that provide examples of some advanced components or

techniques available to modelers. Currently, it has examples showing multiple models being run

together, creation of new devices and a simple example of creating a new module.

tools
The tools directory contains source files that define user functions and modeling tools for ACT-R.

Like the commands and modules directories, all files with a .lisp name placed into this folder will be

automatically loaded.

tutorial
The tutorial directory contains several subdirectories. Each one holds the files for a unit of the ACT-

R Tutorial. Each unit consists of a text on a particular aspect of ACT-R, one or more demonstration
models, a partial model which provides a starting point for an assignment, a text describing the Lisp
code in the provided models, and in some units an additional text with details on how to debug

models along with a broken model to work through debugging.

user-loads
The user-loads directory contains no files in the distribution. It is provided as a place for users to add

files which will be loaded automatically after ACT-R has finished loading and initializing. All of the

files in the user-loads directory with a .lisp name will be compiled and loaded in order based on the

22



file names sorted using the Lisp string< function. Because this occurs after the system has been

initialized it is safe to put a model file into this directory.

23



Loading and Running the ACT-R System

To start ACT-R all one needs to do is load the load-act-r-6.lisp file into a supported Lisp system.
That will load all of the necessary files for ACT-R. The file should only be loaded into a given Lisp

session once.

The files are compiled before loading and that will usually generate a lot of warnings from the
compiler. Those warnings can be safely ignored. The files are only compiled the first time you load
ACT-R. The compiled files are saved with the source files and on subsequent loadings there is no
need to recompile everything. Thus, on all loadings after the first one, it should load faster and

produce fewer warnings.

Once the loading is complete, you will see a listing of all the modules that were loaded for ACT-R

along with their versions and brief descriptions followed by a line that looks like this:
#ittHH#H# Loading of ACT-R 6 is complete #####it#Hit#H

At that point, ACT-R is ready to use. If there were any files in the user-loads directory then there
will be at least two additional lines displayed. The first will be:

HiHH#HE# Loading user files ##H##HE#HHH

That will be followed by any information displayed while the files in that directory are compiled and

loaded. After all of those files have been loaded this will then be displayed:

#HHH## User files loaded ###HHHH#H

Compiler Optimizations

Normally, when ACT-R compiles its files it uses the current optimization settings of the Lisp.
However, if :actr-fast is on the features list when load-act-r-6.lisp is loaded it will apply these

settings before compiling the ACT-R sources:

(proclaim '(optimize (speed 3) (safety 1) (space 0) (debug 0))))

With those settings ACT-R should run faster, but how much faster will vary from Lisp to Lisp. Note
that the :actr-fast switch only affects things when the files are compiled. If the files have been

compiled already it may be necessary to recompile them to improve the performance.

24



Logical Host

As part of loading the system a logical host of “ACT-R6” is defined which maps to the directory
where the load-act-r-6.lisp file is located. That logical host is available for use by the user. It can be
useful when working with the tutorial in a command-line only Lisp to load the tutorial models. Here
is an example which will load the count model from unitl (assuming that one has not moved the
tutorial files):

> (load "ACT-R6:tutorial;unitil;count.lisp")

; Loading C:\Users\db30\Desktop\actr6\tutorial\uniti\count.lisp
T

Note however that some Lisps will not allow a logical pathname to be passed to commands like load
and one will have to first translate that into a physical pathname using translate-logical-pathname:
> (load (translate-logical-pathname "ACT-R6:tutorial;unitl;count.lisp"))

; Loading C:\Users\db30\Desktop\actr6\tutorial\uniti\count.lisp
T

Load order

For those considering adding extensions or just having files loaded automatically the files/directories

are loaded in the following order:

- framework directory files in a predefined order
- core-modules directory files in a predefined order
- all lisp files from the commands directory in no particular order
- the virtual device files
- any Lisp specific device files
- all .lisp files from the modules directory in no particular order
- all .lisp files from the tools directory in no particular order
0 the ACT-R Environment files are loaded as part of this step
- all lisp files from the other-files directory in no particular order
- all .lisp files from the user-loads directory in order based on file name sorted using the Lisp
string< function.

Recompiling

If one of the source files in the distribution changes (the date on the .lisp file is newer than the date on
the compiled version of that file) then it will automatically be recompiled the next time it is loaded.
However, there may be times when you need to force all of the ACT-R files to be recompiled. For

instance, if you upgrade or change your Lisp system you will likely need to recompile everything.

25



Also, if you get an update to your current set of ACT-R files it is often best to force a recompile the
next time you load it because there may be some interdependencies that will require more than just

the updated file to be recompiled.

To force ACT-R to recompile all of its files you should execute this call before loading the load-act-r-

6.lisp file:

(push :actr-recompile *features*)

Packaging

By default, the ACT-R files are loaded into which ever package is current at the time they are loaded
i.e. there are no package specifications. However, there are two features which can be set that will
chage the package into which ACT-R is loaded. Note that both of these options are still considered

experimental and may not work properly in all systems — please contact Dan if you have any
problems or questions.

Clean

The first option is to add the :clean-actr switch to the features list before loading:

(push :clean-actr *features*)

That will force the files to be loaded into the :cl-user package in most Lisps (the only exception is

that when using ACL with the IDE it will force them into the :cg-user package because that is the
typical default package there).

Packaged
The other option is to add the :packaged-actr switch to the features list before loading:

(push :packaged-actr *features*)

When the load file is then loaded it will create a new package called :act-r and force all of the files to
be loaded into that package. Nothing is exported from that package by default.

26



Overall Software Design

The ACT-R software is composed of two major components. From the perspective of the user, these
components operate together seamlessly to form ACT-R, but it is worth noting from the perspective

of the theory of ACT-R that there are really two separate pieces to the system.

The first is a discrete event simulation system which controls the timing and coordination of
operations within ACT-R. It was designed to provide all the support necessary to implement the
current ACT-R theory, but is not itself a part of the theory. It defines the abstractions and tools which
underlie the operations of the system, namely a meta-process, a module, a buffer, a chunk and a
model (which will all be described in later sections). Some of those items are components of the
theory of ACT-R, for example buffers and chunks, but their specific implementation in the software

is not prescribed by the theory.

The other component is the set of modules that instantiate the theory of ACT-R. These modules
contain the components that are used to model human cognition as described in the paper “Integrated
Theory of the Mind” and the book “How Can the Human Mind Occur in the Physical Universe?”.
The actions and timing profiles generated by these modules when a model is run are the actual
predictions of the theory. Anything else, for instance the actual time it takes the software to run the
simulation, is not based on the theory. Most of the time, the distinction is unimportant to the user, but
sometimes it is important to distinguish between what is a psychological claim of a model and what is

just a consequence of the current software implementation.

27



Model files

Generally, when working with ACT-R one will generate text files that contain the description of a
model along with any necessary control and support code which will be loaded into a Lisp that has
the ACT-R system already loaded. This is not the only way to develop models in ACT-R, but is by

far the most typical usage.

An ACT-R model file is a text file of Lisp source code. It can be generated in any text editor.
Because it will be loaded into Lisp it must be syntactically correct Lisp code. Thus, it can be useful to
use an editor that helps with that. The editors built into the GUI based Lisp systems (like MCL,
LispWorks, or ACL with its IDE) are good choices if using such a Lisp, but if not, an editor like

Emacs which has automatic Lisp indenting and parentheses matching will also help.

A typical model file will have the following structure:

(clear-all)
{Lisp functions for presenting an experiment, data collection or other support needs}
(define-model model-name

(sgp {parameter value}*)

{chunk-type definitions}

{initial chunks are defined}

{productions are specified}

{any additional model set-up commands}

{additional model parameter settings}

The ACT-R commands shown above and the model components referenced (chunk-types, chunks,
and productions) will be described in later sections of this document, but for now here is a basic

description of what the components of the model file do.

- (clear-all)
The clear-all command completely resets ACT-R’s state to a clean slate. This does not have to be
the first thing in the file, but it should occur before defining any models.

- {Lisp functions for presenting an experiment, data collection or other support needs}
The Lisp commands that define any experiment for the model or other code typically come before
the ACT-R model description. The amount and nature of the code can vary significantly between
models.

- (define-model model-name
The define-model command is used to specify exactly what constitutes the components of the
model and to give it a name for reference. Everything between the name specified for the model
and the closing parenthesis of this command are considered the model’s initial configuration. The
commands are processed sequentially, thus the order of things does matter.

28



(sgp {parameter value}*)
The sgp command is used to set parameters that control the general operation of the system. This
is typically the first command in the model’s definition so that all of the conditions are properly
set before anything else occurs.

{chunk-type definitions}
Descriptions are given for the types of chunks that will be used in the model.

{initial chunks are defined}
The initial chunks for the model are created and typically placed into the model’s declarative

memory.

{productions are specified}
The productions that control how the model will act are written here.

{any additional model set-up commands}
Any other commands necessary to configure components of the model or modules are specified.

{additional model parameter settings}

Parameters for chunks and productions specified above are set.

The define-model call is ended with a closing parenthesis.

29



Meta-process

The main component of the simulation system is called a meta-process. It is essentially the clock and
event coordinator for the system. It maintains a schedule of events that the other components have
initiated and executes them at the desired time. It also maintains a list of events that are waiting for
specific events to occur before they are added to the main event queue. It is not part of the ACT-R

theory — it is purely a component of the software system.

It is possible to have more than one meta-process defined in a running ACT-R system. Doing so
would allow one to have multiple asynchronous models. That is an advanced topic discussed in a
later section of the manual. Typically there is only one meta-process (the default that exists when the
system is loaded) and users will not need to create any others. For most users, the meta-process is

essentially invisible — it runs the system behind the scene.

Regardless of how many meta-processes are defined, only one is accessible at any given time. This is
referred to as the current meta-process. Only the current meta-process will be manipulated by the
commands. If there is only one meta-process, then it will always be the current meta-process. If
there is more than one meta-process defined, then it is up to the modeler to specify which is current

before executing any commands (see the multiple models section for more details).

Commands

clear-all

Syntax:

clear-all -> nil
Arguments and Values:
none

Description:

clear-all restores ACT-R to its initial state. It removes all meta-processes except for the default meta-
process and all attributes of the default meta-process are set to their initial values: there is no model
defined, the time is set to 0.0, the event queue is cleared, waiting events are removed and the event

hooks are cleared.

30



In addition, the current binding of the Lisp variable *load-truename* is recorded for use by the reload

command.

Typically usage is to place clear-all at the top of a model file to ensure that when the model is defined

it starts in a clean system and that the reload command can be used.

Examples:

> (clear-all)
NIL

reset

Syntax:

reset -> [meta-process-name | nil]

Arguments and Values:

meta-process-name ::= a symbol which is the name of the meta-process that was reset
Description:

The reset command is similar to clear-all except that it only affects the current meta-process and
instead of removing all currently defined models they are restored to their initial conditions.
Specifically, for the current meta-process the time is set to 0.0, the event queue is cleared, all waiting
events are removed and then each of the currently defined models is reset. The details of what
happens when a model is reset are described in the models section. The name of the meta-process

which was reset is returned.

There are also two special situations which can result when there is a single empty model in the
current meta-process (see the model section for the details of an empty model). If the empty model
was loaded from a file, then a warning is displayed and that file is reloaded (using the reload
command). If the empty model was not loaded from a file then the call to reset has no effect on the

system and a warning is displayed to indicate that.
If there is no current meta-process, then a warning is displayed and nil is returned.
Examples:

> (reset)
DEFAULT

31



> (reset)

#|Warning: Resetting an empty model results in a reload |#

; Loading C:\model.cl

DEFAULT

> (reset)

#|Warning: CANNOT RESET an empty model that wasn't loaded. |#
#|Warning: RESET had no effect! |#

DEFAULT

E> (reset)

#|Warning: reset called with no current meta-process. |#
NIL

reload

Syntax:

reload {compile?} -> [load-return-value | :none]
Arguments and Values:

compile? ::= a generalized boolean indicating whether or not to compile the file
load-return-value ::= a generalized boolean returned from calling the load command

Description:

The reload command calls the Lisp load command to load the file recorded by the last call to the
clear-all command. If the compile? parameter is specified with a true value and that file has a type of
“lisp” it will be compiled before loading. The return value from reload is the value returned from the
call to load which is a generalized boolean that indicates true for a successful load or false if there

wadsS an error.

If the compile? parameter is specified as true but the recorded file is not of type “lisp” then it is not

compiled. A warning is printed and the file is just loaded.
If the recorded value from clear-all is nil then no file is loaded and the keyword :none is returned.

Additional information may be printed by the call to load depending on the Lisp implementation and

current settings.

Reload is essentially a shortcut for reloading a model file that has been edited to incorporate those

changes.

Examples:
> (reload)

32



; Loading C:\model.lisp
T

> (reload t)

;7 Compiling file C:\model.lisp
;5 Writing fasl file C:\model.fasl
;;; Fasl write complete

; Fast loading C:\model.fasl

T

> (reload t)

#|Warning: To use the compile option the pathname must have type lisp. |#
; Loading C:\model.txt

T

E> (reload)

#|Warning: No load file recorded |#
:NONE

mp-time

Syntax:

mp-time -> [current-time | nil]
Arguments and Values:

current-time ::= a number representing time in seconds

Description:

mp-time returns the current time of the current meta-process in seconds.
If there is no current meta-process, then a warning is displayed and nil is returned.

This is generally used for two purposes. First, it can be useful for debugging a model. It is also used

for collecting response time data from a model.

Examples:

> (mp-time)
0.3

E> (mp-time)
#|Warning: mp-time called with no current meta-process. |#
NIL

mp-time-ms
Syntax:

mp-time-ms -> [current-time | nil]

33



Arguments and Values:
current-time ::= a number representing time in milliseconds
Description:

mp-time returns the current time of the current meta-process as an integer count of milliseconds.
If there is no current meta-process, then a warning is displayed and nil is returned.

This is generally used for two purposes. First, it can be useful for debugging a model. It is also used

for collecting response time data from a model.

Examples:

> (mp-time-ms)
300

E> (mp-time-ms)

#|Warning: mp-time-ms called with no current meta-process. |#
NIL

34



Events

As indicated in the description of the meta-process, the simulation system for ACT-R is implemented
using a sequence of events. Generally, each event consists of a time at which it should occur, an
indication of which module made the request, the action that should occur and possibly some
additional details of the action. Effectively, every action of the model occurs as an event in the

system, and the model’s trace when it runs is just a printing of those events.

More details of events will be discussed in the section that describes the mechanisms for creating
them. Here it will just describe some commands which one can use to get information about existing

events.

Commands

mp-show-queue

Syntax:

mp-show-queue -> [event-count | nil]

Arguments and Values:

event-count ::= a number indicating how many items are on the event queue
Description:

mp-show-queue prints all of the events that are on the event queue of the current meta-process to the
Lisp stream *standard-output* in the order that they would be executed. It returns the number of

events in the queue.
If there is no current meta-process then a warning is displayed and nil is returned.

This command can be useful for debugging, but is generally more important when working on

creating modules and experiments than when debugging a model.

Examples:

> (mp-show-queue)
Events in the queue:

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 GOAL #<Function CLEAR-DELAYED-GOAL>

35



E> (mp-show-queue)
#|Warning: mp-show-queue called with no current meta-process. |#
NIL

mp-show-waiting

Syntax:

mp-show-waiting -> [event-count | nil]

Arguments and Values:

event-count ::= a number indicating how many items are in the waiting queue
Description:

mp-show-waiting prints all of the events that are on the waiting queue of the current meta-process to
the Lisp stream *standard-output* along with a description of the condition necessary for each to be

added to the main event queue. It returns the number of events that are in the waiting queue.
If there is no current meta-process a warning is displayed and nil is returned.

This command can be useful for debugging, but is generally more important when working on

creating modules and experiments than when debugging a model.

Examples:

> (mp-show-waiting)
Events waiting to be scheduled:

NIL PROCEDURAL CONFLICT-RESOLUTION Waiting for: (ANY NIL)
1

E> (mp-show-waiting)
#|Warning: mp-show-waiting called with no current meta-process. |#
NIL

mp-modules-events

Syntax:
mp-modules-events module-name -> [ event-list | nil ]

Arguments and Values:

module-name ::= a symbol which should be the name of a module
event-list ::= a list of events scheduled for the named module

36



Description:

mp-module-events returns a list of all of the events from both the regular and waiting queues of the

current meta-process which have a module specified that matches the module-name provided.
If there is no current meta-process a warning is displayed and nil is returned.

Examples:

> (mp-modules-events 'procedural)
(#S(ACT-R-EVENT ...))

> (mp-modules-events 'not-a-module)
NIL

E> (mp-modules-events 'procedural)
#|Warning: mp-modules-events called with no current meta-process. |#
NIL

37



Module

Module is unfortunately an overloaded term in ACT-R because it has different connotations when
talking about the software and the theory. At the software level a module is a basic component of the
system. It can serve any number of purposes, for instance there is a printing module, a random
number generator module, as well as a vision module, a declarative memory module and many
others. Each module is essentially an independent component, and it is the modules which provide
the functionality of the overall system. There are basically no restrictions built in to control what a
software module can do and adding new modules is the primary way of extending or modifying the

overall system.

From the theory perspective however a module is a reference to some cognitive faculty which can
typically be ascribed to a particular region of the brain. Thus, something like the random number
module in the software obviously would not be considered a module of the theory. Another issue is
that the implementation of the cognitive modules as software modules is not always one-to-one. For
example, the vision system of ACT-R, which is implemented in the software as one module, is more
appropriately considered as two cognitive modules — one for location information and one for object
information. In the other direction, the theory’s procedural module is actually implemented as three
modules in the software (one that controls production definition and matching, one to handle the

utility computations and one to implement the production compilation mechanism).

Often the context in which one encounters “module” with respect to ACT-R makes it clear what is
being discussed (the software or the theory) so it is not usually as confusing as it might seem. For
clarity, from this point on in the manual, when it says module, the reference will always be to the

actual software modules unless explicitly stated otherwise.

Each module will provide its own set of commands to the system and may also provide one or more
buffers as an interface for other modules as well as a set of parameters that can be used to adjust its
operation. The details of the modules of ACT-R and details on constructing and accessing modules,

buffers and parameters are described in later sections.

Commands
mp-print-versions

Syntax:

38



mp-print-versions -> nil
Arguments and Values:
none

Description:

mp-print-versions prints the version number of the ACT-R framework and the name, version number,

and documentation of each module which is currently defined. It always returns nil.

Examples:

> (mp-print-versions)
ACT-R Version Information:

Framework 1.1

VISION 2.4 A module to provide a model with a visual attention
AUDIO 2.2 A module which gives the model an auditory system
GOAL 1.0 The goal module creates new goals for the goal buffer
NAMING-MODULE 1.0 Provides safe and repeatable new name generation
PROCEDURAL 1.3 The procedural module handles production definition
PRINTING-MODULE 1.0 Coordinates output of the model.

BUFFER-PARAMS 1.0 Module to hold and control the buffer parameters
ENVIRONMENT 2.0 A module to handle the environment connection if opened
RANDOM-MODULE 1.0 Provide a source of pseudorandom numbers

SPEECH 2.2 A module to provide a model with the ability to speak
PRODUCTION-COMPILATION: 1.1 A module that compiles productions

CENTRAL -PARAMETERS 1.0 a module that maintains parameters

MOTOR 2.3 Module to provide a model with virtual hands

IMAGINAL 1.1 a goal style buffer with a delay and an action buffer
DECLARATIVE 1.1 stores chunks from the buffers for retrieval

DEVICE 1.1 The device interface for a model

UTILITY 2.0 A module that computes production utilities
BUFFER-TRACE 1.0a1 a buffer based tracing mechanism.

NIL

39



Buffers

Buffers in ACT-R are the built in interface between modules. Each buffer is connected to a specific
module and has a unique name by which it is referenced e.g. the goal buffer or the retrieval buffer
which are associated with the goal and declarative modules respectively. A buffer is used to relay
requests for actions to its module, to query its module about the module’s state, and it can hold one
chunk which is visible to all other modules. A module will respond immediately to a query through
its buffer with a generalized-boolean. In response to a request, the module will usually generate one
or more events to perform some action(s) and may place a chunk into the buffer to indicate the result
of that action. Any module may access or modify the chunk in any buffer at any time, but typically a
module will only manipulate its own buffer(s). A buffer will also respond directly to queries to
determine whether or not it currently holds a chunk and for the status of how the chunk was placed
into the buffer (whether it was the result of a specific request or if it was unrequested and

spontaneously placed there by the module).

An important thing to note is that when a chunk is placed into a buffer the buffer makes a copy of that
chunk which it then makes available. Any changes made to the chunk in the buffer only affect the

copy that it holds — they do not impact the original from which it was copied.

One of the current research areas with ACT-R is in using the buffers to track the activity of their
associated modules and then comparing that activity to data from fMRI studies to find correlations
between regions of the brain and particular buffer/module activity in ACT-R models. Thus providing
a mechanism for mapping cognitive modeling work onto actual brain regions and even being able to

make predictions about where activation should show up in future fMRI research.

Typically, an ACT-R modeler interacts with the buffers through the production system. These
commands provide general information about buffers which is most often needed for modeling work.
A later section will describe the commands one can use for more low-level interaction with the

buffers which would be necessary for creating a new module.

Commands

buffers

Syntax:

buffers -> (buffer-name®*)

40



Arguments and Values:
buffer-name ::= a symbol which is the name of a currently existing buffer
Description:

The buffers command will return a list with the names of all the currently defined buffers in no

particular order.

Examples:

> (buffers)
(VISUAL-LOCATION MANUAL RETRIEVAL IMAGINAL VISUAL AURAL PRODUCTION VOCAL AURAL-LOCATION
IMAGINAL-ACTION GOAL)

buffer-chunk

Syntax:

buffer-chunk buffer-name* -> [(<buffer-name [chunk-name | nil ]>*) | ([chunk-name | :error]*) | nil]
buffer-chunk-fct (buffer-name®*) -> [(<buffer-name [chunk-name | nil ]>*) | ([chunk-name | :error]*) | nil]

Arguments and Values:

buffer-name ::= a symbol that names a buffer
chunk-name ::= a symbol that names a chunk

Description:

Generally, the buffer-chunk command prints out the names of buffers along with the chunks those

buffers hold in the current model.

If no buffer names are specified, then it prints all the buffers and the chunk name of the chunk in that
buffer (or nil if the buffer is empty) one per line to the model’s command output stream and returns a
list of cons cells where the car of the cons is the name of the buffer and the cdr is the name of the

chunk it holds (or nil) in no particular order.

If specific buffers are provided, then for each of those buffers, in the order provided, it prints the
buffer name followed by the name of the chunk in that buffer (or nil if the buffer is empty) and if
there is a chunk in the buffer that chunk is also printed. In this case it returns a list of the names of
the chunks in the buffers provided in the same order as they were specified in the call. If an invalid
buffer name is provided the corresponding value in the return list will be the keyword :error and

nothing will have been printed.

41



If there is no current model then a warning is printed and nil is returned.

Examples:

> (buffer-chunk)
VISUAL-LOCATION: NIL
MANUAL: NIL
RETRIEVAL: E-0 [E]
IMAGINAL: NIL
VISUAL: NIL

AURAL: NIL
PRODUCTION: NIL
VOCAL: NIL
AURAL-LOCATION: NIL
IMAGINAL-ACTION: NIL
GOAL: NIL

((VISUAL-LOCATION) (MANUAL) (RETRIEVAL . E-0) (IMAGINAL) (VISUAL) (AURAL) (PRODUCTION)
(VOCAL) ...)

> (buffer-chunk-fct '(retrieval goal))
RETRIEVAL: E-0 [E]
E-0

ISA COUNT-ORDER

FIRST 4

SECOND 5

GOAL: NIL
(E-0 NIL)

E> (buffer-chunk-fct '(bad-buffer-name))
( :ERROR)
E> (buffer-chunk retrieval bad-name goal)
RETRIEVAL: E-0 [E]
E-0

ISA COUNT-ORDER

FIRST 4

SECOND 5

GOAL: NIL
(E-0 :ERROR NIL)

E> (buffer-chunk)
#|Warning: buffer-chunk called with no current model. |[#
NIL

buffer-status

Syntax:

buffer-status buffer-name* -> [ ([buffer-name | :error]*) | nil]
buffer-status-fct (buffer-name®*) -> [ ([buffer-name | :error]*) | nil]

Arguments and Values:
buffer-name ::= a symbol that names a buffer

Description:



The buffer-status command prints out the status information for the buffers and their modules from
the current model to the current model’s command output stream. For each buffer specified (or all
buffers if none are specified) the buffer name is printed followed by the current state of the required
status items (t or nil) for the buffer/module, one per line, followed by any module specific status the
module prints (the module specific status is not constrained by the system and could be any type of

output). It returns a list of the buffer names of the buffers for which the status was printed.

If specific buffers are provided, and an invalid buffer name is specified, the corresponding value in

the return list will be the keyword :error and nothing will have been printed.
If there is no current model then a warning is printed and nil is returned.
Examples:

> (buffer-status)
VISUAL-LOCATION:

buffer empty : T
buffer full : NIL
buffer requested : NIL
buffer unrequested : NIL
state free : T
state busy : NIL
state error : NIL
attended new : NIL
attended nil : NIL
attended t : NIL
MANUAL :
buffer empty T
buffer full : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL
preparation free : T
preparation busy : NIL
processor free T
processor busy : NIL
execution free : T
execution busy : NIL
last-command : NONE
RETRIEVAL:
buffer empty : NIL
buffer full T
buffer requested : T
buffer unrequested : NIL
state free : T
state busy : NIL
state error : NIL
recently-retrieved nil: NIL
recently-retrieved t : T

(VISUAL-LOCATION MANUAL RETRIEVAL IMAGINAL VISUAL AURAL PRODUCTION VOCAL ...)

> (buffer-status goal)
GOAL:

43



buffer empty T

buffer full : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL

(GOAL)

> (buffer-status-fct '(retrieval))

RETRIEVAL:
buffer empty : NIL
buffer full T
buffer requested T
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL
recently-retrieved nil: NIL
recently-retrieved t : T

(RETRIEVAL)

E> (buffer-status goal non-buffer)

GOAL:
buffer empty T
buffer full : NIL
buffer requested : NIL
buffer unrequested : NIL
state free T
state busy : NIL
state error : NIL

(GOAL :ERROR)

E> (buffer-status)
#|Warning: buffer-status called with no current model.
NIL

| #

44



Models

An ACT-R model is one simulated cognitive agent. The software can have essentially any number of
models loaded simultaneously (practically there is a limit that will depend on the hardware and Lisp
software) and they can be run either individually or synchronized. However, the most common usage
of ACT-R is to work with only one model at a time. Most of this manual assumes that one is
working with only one model at a time. Information about dealing with more than one model

simultaneously is covered in the multiple models section.

A model is referenced by a name specified when it is defined, and that name must be unique within
the current meta-process. A model consists of the code specified in its definition, an instance of each
module in the system (which is independent of any other model’s copy of that module unless a
specific module indicates otherwise), and its set of chunks (which are always independent of the

chunks of any other model).

A model is explicitly created with the define-model command which specifies its initial conditions
and causes the creation of a new instance of each module for that model to use. The reset command
will return the model to that state. Specifically, when a model is reset the following sequence of

actions occur:

- All chunk-types and chunks are deleted from the model
- All the model’s buffers are marked as empty
- The default chunk-types and chunks are created
0 A chunk-type called chunk with no slots
0 Chunks named free, busy, error, empty, full, requested and unrequested all of type
chunk
- The model’s modules have their primary reset functions called (in no specific order)
- The parameters of all the modules are set to their specified default (in no specific order)
- The model’s modules have their secondary reset functions called (in no specific order)
- The model’s definition code is evaluated in the order given (left to right)
- The model’s modules have their tertiary reset functions called (in no specific order)

As with meta-processes, it is possible to define more than one model at a time, and regardless of how
many models are defined in a meta-process, only one is accessible at any given time. This is referred
to as the current model (note that different meta-processes will each have their own current model).
Only the current model in the current meta-process may be manipulated by the commands. If there is

only one model in the current meta-process, then it will be the current model. If there is more than

45



one model defined in the current meta-process, then it is up to the modeler to specify which is current

before executing any commands (see the multiple models section for more details).

Commands

define-model

Syntax:

define-model model-name {model-code*} -> [model-name | nil]
define-model-fct model-name ({model-code*}) -> [model-name | nil]

Arguments and Values:

model-name ::= a symbol that will be the name of the model
model-code ::= a Lisp expression that will be evaluated when the model is created and when it is reset

Description:

The define-model command creates a new model with the given model-name in the current meta-

process. Its initial conditions are specified by the model-code provided.

If there is not already a model by that name in the current meta-process and there are no errors in

evaluation of the model-code forms then the new model is created and model-name is returned.

If there is not a current meta-process, model-name is already the name of a model in the current meta-
process, or an error occurs during the evaluation of the model-code then a warning is printed and nil

is returned.
Special case:

If no model-code is specified when the model is defined, then the new model is considered an “empty
model”. That has some implications when using the reset command, and generally empty models are

not recommended.

Examples:

Only basic usage of define-model is shown here — see the tutorial for definition of actual cognitive

models that perform meaningful tasks.

> (define-model-fct 'model-10 (list '(chunk-type start slot)))
MODEL-10

1> (define-model model-1 (chunk-type goal state))

46



MODEL-1

2E> (define-model-fct 'model-1 nil)

#|Warning: MODEL-1 is already the name of a model in the current meta-process. Cannot be
redefined. |#

NIL

E> (define-model model-2)

#|Warning: define-model called with no current meta-process. |#
NIL

E> (define-model model-3 (pprint "start") (pprnt "end"))
"start"

#|Warning: Error encountered in model form:

(PPRNT "end")

Invoking the debugger. |#

#|Warning: You must exit the error state to continue. |#

Debug: attempt to call "PPRNT' which is an undefined function.
[condition type: UNDEFINED-FUNCTION]

#|Warning: Model MODEL-3 not defined. |#
NIL

delete-model

Syntax:

delete-model {model-name} -> [t | nil]
delete-model-fct model-name -> [t | nil]

Arguments and Values:
model-name ::= a symbol that should be the name of a model
Description:

The delete-model command removes the model with the specified model-name from the current
meta-process. If model-name is not provided the current model is deleted. Deleting a model
removes all events generated by that model from the event queues, deletes each of the model’s
instances of the modules, and removes the model from the set of models currently defined. If a

model is successfully deleted then t is returned.

If there is not a current meta-process, model-name is not the name of a model in the current meta-
process, or no model-name is given and there is no current model, then a warning is printed and nil is

returned.
The delete-model command is typically only useful when working with multiple models.

Examples:

> (delete-model)

47



T

> (delete-model-fct 'model)
T

E> (delete-model)

#|Warning: delete-model called with no current meta-process.
No model deleted. |#

NIL

E> (delete-model)

#|Warning: No current model to delete. |#

NIL

E> (delete-model-fct 'model)

#|Warning: No model named MODEL in current meta-process. |#
NIL

Chunks & Chunk-types

Chunks are the elements of declarative knowledge in the ACT-R theory and are used to communicate
information between modules through the buffers. A chunk is defined by its chunk-type, which
specifies the slots that it has, and by the values that it has in those slots (which are typically other
chunks). A chunk also has a name which is used to reference it, however, the name is not considered

to be a part of the chunk itself.

In the ACT-R software each chunk also has a set of parameters associated with it that are independent
of its chunk-type that contain additional information needed by the modules or the modeler. The
chunk parameters are a construct of the software and not the ACT-R theory although they are used to
implement the mechanisms of the theory. A modeler may add chunk parameters for recording
additional information that is needed in a model or in a new module that is defined. See the section

on extending chunks for more information on adding and manipulating chunk parameters.

Chunk-types define the structure which a chunk will have. The chunk-type specifies what slots the
chunk will have and what (if any) the initial value of those slots will be. When a chunk is created, its
chunk-type is specified and that cannot be changed directly by the modeler, but the chunk-type
extension mechanism may result in changes to the type of a chunk indirectly. There are currently two
different mechanisms which implement chunk-type extension and those different mechanisms impose
some different constraints on chunk-types. The description of chunk-types provided here is true for
the default extension mechanism. The differences for the alternate mechanism are described in the

chunk-type extension section.

Chunk-types can be organized in a hierarchy. When creating a new chunk-type one can specify one

other chunk-type to be the parent type for the new chunk-type and it will then be a subtype of that

48



parent. The subtype will have all of the slots that its parent (or supertype) has and will also inherit
any default values for those slots. It can also have any number of new slots (including zero) or
specify different default values for the inherited slots. There is no limit to the depth of the inheritance
— the supertype of a new chunk-type could itself be the subtype of another chunk-type. That new
chunk-type would also be considered a subtype of both its supertype and its parent’s supertype.

When a hierarchy of chunk-types is used in a model and a test is performed to determine if a chunk
matches a specification the match should be successful for a chunk with the chunk-type given or any
of its subtypes if all of the other constraints are also satisfied. That is true for all of the provided
modules which perform chunk matching (the procedural, declarative and vision modules), but other
modules could be implemented which handle their matching differently than that recommended
practice. Thus, when using modules other than those provided by default with the system, you should
check any accompanying documentation before using them with chunk-type hierarchies if they

perform any chunk matching.

Generally, a modeler will only need to create new chunk-types and chunks and use the productions of
the procedural module for matching, comparing and modifying chunks. For debugging though it may
be necessary to check on some of the details of a chunk-type, particularly one which is created
outside of the model (for instance in a module), and there are times when directly creating,

manipulating, or inspecting chunks can be useful.

An important distinction between ACT-R 6 and previous versions of the software is that chunks are
now independent of the declarative memory system of the model. Any module may use chunks as its
internal representation. All modules must use them to communicate through buffers and those
chunks do not need to belong to the set of chunks in the model’s declarative memory. One thing to
note however is that the chunks from the buffers will be collected by the declarative memory module
and incorporated into the model’s declarative memory automatically. See the declarative memory
module for details of how that occurs. As noted in the buffer section, buffers hold a copy of the
chunk placed into them, thus the other modules see a copy of the chunk that a module places into a
buffer. The module that created it effectively still has the original which it can continue to use

without affecting the chunk that is seen by the other modules.

Chunk-type Commands
chunk-type
Syntax:

49



chunk-type { [type-name | (type-name (:include parent-name)) | (type-name (:static [ t | nil]))] {doc-string}
[slot-name | (slot-name default-value)]*} -> [ type-name | (type-name?*) | nil ]

chunk-type-fct [ nil | ([type-name | (type-name (:include parent-name)) | (type-name (:static [ t | nil]))] {doc-
string} [slot-name | (slot-name default-value)]*)] -> [ type-name |(type-name?*) | nil ]

Arguments and Values:

type-name ::= a symbol that is to be the name of the new chunk-type

parent-name ::= a symbol that names a chunk-type to be the supertype for this new chunk-type
doc-string ::= a string that is used as documentation for this chunk-type

slot-name ::= a symbol that names a slot which will be part of this chunk-type

default-value ::= any Lisp value which specifies the value that will initially be in the corresponding
slot-name of a chunk created of this chunk-type

Description:

The chunk-type command creates a new chunk-type for the current model or displays all the currently

defined chunk-types for the current model.

If no parameters are passed to the command (or nil to the function) then all of the existing chunk-
types in the current model are printed to the command output stream and a list of their names is
returned (in no particular order). The printing of a chunk-type shows the chunk-type name, and if it
is a subtype of another chunk-type then the name is followed by “<-” and the name of its parent
chunk-type and then the documentation string for the chunk-type, if it has one, is printed. Then the
slot names of the chunk-type are printed one per line, and if a slot has a default value it is printed in

parenthesis after the slot name.

If a valid chunk-type specification is provided then a new chunk-type is created for the current model

and the name of that chunk-type is returned.

If there is no current model, the given type-name already names an existing chunk-type in the current
model, or there is an error in the specification of the chunk-type then a warning is printed and nil is

returned.

If the :static specification is given as t then this chunk-type will use the alternative chunk-type

extension mechanism instead of the default.

Examples:

> (chunk-type)

50



SOUND
KIND
CONTENT
EVENT

AUDIO-COMMAND

MOVE-CURSOR <- MOTOR-COMMAND
OBJECT
LoC
DEVICE

(SOUND AUDIO-COMMAND MOVE-CURSOR ...)

1> (chunk-type goal slotl state)
GOAL

2> (chunk-type-fct '(other-type slotl slot2))
OTHER-TYPE

3> (chunk-type (subgoall (:include goal)) new-slot)
SUBGOAL1

4> (chunk-type-fct '((sub-goal2 (:include goal))))
SUB-GOAL2

5> (chunk-type new-type (slot default-value) (other-slot 4))
NEW-TYPE

6> (chunk-type detailed-type "This documents the type detailed-type" slot)
DETAILED-TYPE

7E> (chunk-type sub-goal)
#|Warning: Chunk-type SUB-GOAL is already defined and redefinition is not allowed. |[#
NIL

8> (chunk-type-fct nil)

GOAL
SLOT1
STATE

SUBGOAL1 <- GOAL
SLOT1
STATE
NEW-SLOT

DETAILED-TYPE "This documents the type detailed-type"
SLOT

SUB-GOAL <- GOAL
SLOT1
STATE

NEW-TYPE
SLOT (DEFAULT-VALUE)
OTHER-SLOT (4)

OTHER-TYPE
SLOT1

51



SLOT2
(.. GOAL SUBGOAL1 DETAILED-TYPE SUB-GOAL NEW-TYPE OTHER-TYPE ..)

E> (chunk-type goal slotl state)

#|Warning: chunk-type called with no current model. |#

NIL

E> (chunk-type (new-type (:include bad-type)))

#|Warning: Unknown supertype BAD-TYPE specified for type NEW-TYPE. |#

NIL

E> (chunk-type (new-type :include bad-type))

#|Warning: Too many options specified for chunk-type NEW-TYPE. NO chunk-type created. |#
NIL

pprint-chunk-type

Syntax:

pprint-chunk-type type-name -> [ type-name | nil ]

pprint-chunk-type-fct type-name -> [ type-name | nil ]

Arguments and Values:

type-name ::= a symbol that is the name of a chunk-type

Description:

The pprint-chunk-type command is used to print a description of a chunk-type. The output is sent to

the current model’s command output stream.

If the parameter provided is the name of a chunk-type in the current model of the current meta-
process then that chunk-type is printed in the same way chunk-types are displayed with the chunk-
type command: the chunk-type name is printed and if it is a subtype of another chunk-type then the
name is followed by “<-” and the name of its parent chunk-type, the documentation string for the
chunk-type, if it has one, is printed, and then the slot names of the chunk-type are printed one per line
with the slot’s default value in parenthesis after the slot name if one was provided when the chunk-

type was created.
If there is no current model, current meta-process, or the given type-name does not name an existing

chunk-type in the current model then a warning is printed and nil is returned.

Examples:

52



1> (chunk-type test slotl (slot2 2))
TEST

2> (chunk-type (subtest (:include test)) "a subtype of test" slot3)
SUBTEST

3> (pprint-chunk-type test)
TEST
SLOT1
SLOT2 (2)
TEST
4> (pprint-chunk-type-fct 'subtest)
SUBTEST <- TEST "a subtype of test"
SLOT1
SLOT2 (2)
SLOT3
SUBTEST
E> (pprint-chunk-type not-a-chunk-type)

#|Warning: NOT-A-CHUNK-TYPE does not name a chunk-type in the current model. |#
NIL

chunk-type-p

Syntax:

chunk-type-p chunk-type-name? -> [ t | nil ]
chunk-type-p-fct chunk-type-name? -> [ t | nil ]

Arguments and Values:
chunk-type-name? ::= a symbol to be tested to determine if it names a chunk-type
Description:

The chunk-type-p command returns t if chunk-type-name? is a symbol that names a chunk-type in the
current model and returns nil if it does not. If there is no current model then a warning is printed and

nil is returned.

Examples:

\

(chunk-type-p visual-object)

\%

(chunk-type-p-fct 'chunk)
T

> (chunk-type-p bad-name)
NIL

53



> (chunk-type-p-fct 'non-chunk-type)
NIL

E> (chunk-type-p chunk)

#|Warning: get-chunk-type called with no current model. |#
NIL

chunk-type-slot-names

Syntax:

chunk-type-slot-names chunk-type-name -> [(slot-name?*) | nil] exists
chunk-type-slot-names-fct chunk-type-name -> [(slot-name*) | nil] exists
chunk-type-possible-slot-names chunk-type-name -> [(slot-name?*) | nil] exists
chunk-type-possible-slot-names-fct chunk-type-name -> [(slot-name?) | nil] exists

Arguments and Values:

chunk-type-name ::= a value which should be a symbol that names a chunk-type
slot-name ::= a symbol that names a slot in chunk-type-name or a subtype of chunk-type-name
exists ::= a generalized boolean indicating whether the chunk-type-name given is a valid chunk-type

Description:

The chunk-type-slot-names and chunk-type-possible-slot-names commands return two values. The
first is a list of slot names if chunk-type-name is a valid chunk-type. If chunk-type-name does not
name a valid chunk-type in the current model then the first result will be nil. Note that the first result

could also be nil if the named chunk-type does not have any slots.

The second value will be true if chunk-type-name was a valid name for a chunk-type in the current

model and it will be nil if it was not a valid chunk-type name.
If there is no current model a warning is printed and both return values will be nil.

The difference between chunk-type-slot-names and chunk-type-possible-slot-names is that chunk-
type-slot-names only returns the names of slots in the chunk-type chunk-type-name whereas chunk-
type-possible-slot-names returns the names of the slots in the chunk-type chunk-type-name and the

names of all the slots in the subtypes of chunk-type-name.

Examples:

> (chunk-type-slot-names sound)
(KIND CONTENT EVENT)
T

54



> (chunk-type-slot-names-fct 'move-cursor)

(OBJECT LOC DEVICE)

T

> (chunk-type-slot-names chunk)

NIL

T

E> (chunk-type-slot-names-fct 'bad-chunk-type-name)
NIL

NIL

E>(chunk-type-slot-names chunk)

#|Warning: get-chunk-type called with no current model. |#

NIL
NIL

chunk-type-documentation

Syntax:

chunk-type-documentation chunk-type-name -> [ doc-string | nil]
chunk-type-documentation-fct chunk-type-name -> [ doc-string | nil]

Arguments and Values:

chunk-type-name ::= a value which should be a symbol that names a chunk-type
doc-string ::= a string of the documentation provided when chunk-type-name was created

Description:

chunk-type-documentation returns the documentation string of the chunk-type chunk-type-name from
the current model if it names a valid chunk-type and has a documentation string. Otherwise it returns

nil. If there is no current model then a warning is printed and nil is returned.

Typically this command is not needed by a modeler because the chunk-type command will print out

the chunk-type information, but it may be useful to someone creating a new module.

Examples:

These examples assume that the chunk-types shown in the chunk-type examples exist.

> (chunk-type-documentation detailed-type)
"This documents the type detailed-type"

> (chunk-type-documentation-fct 'visual-object)
NIL

> (chunk-type-documentation non-type)
NIL

E> (chunk-type-documentation visual-object)

#|Warning: get-chunk-type called with no current model. |#
NIL

55



chunk-type-slot-default

Syntax:

chunk-type-slot-default chunk-type-name slot-name -> [ default-slot-value | nil]
chunk-type-slot-default-fct chunk-type-name slot-name -> [ default-slot-value | nil]

Arguments and Values:

chunk-type-name ::= a value which should be a symbol that names a chunk-type

slot-name ::= a value which should be a symbol that names a slot in chunk-type-name
default-slot-value ::= a value which will be the initial value for the slot slot-name of chunks created of
type chunk-type-name

Description:

chunk-type-slot-default returns the default value for the slot slot-name in the chunk-type chunk-type-
name from the current model if it names a valid chunk-type and has a slot named slot-name.

Otherwise it returns nil. If there is no current model then a warning is printed and nil is returned.

Typically this command is not needed by a modeler because the chunk-type command will print out

the chunk-type information, but it may be useful to someone creating a new module.

Examples:

These examples assume that the chunk-types shown in the chunk-type examples exist.

> (chunk-type-slot-default new-type other-slot)
4

> (chunk-type-slot-default-fct 'new-type 'slot)
DEFAULT -VALUE

> (chunk-type-slot-default visual-location screen-x)
NIL

> (chunk-type-slot-default-fct 'bad-name 'bad-slot)
NIL

E> (chunk-type-slot-default visual-location screen-x)
#|Warning: get-chunk-type called with no current model. |#
NIL

chunk-type-subtype-p

Syntax:

chunk-type-subtype-p subtype? supertype -> result

56



chunk-type-subtype-p-fct subtype? supertype -> result
Arguments and Values:

subtype? ::= a value which should be a symbol that names a chunk-type to be tested
supertype ::= a value which should be a symbol that names a chunk-type
result ::= a generalized boolean (no guarantees on what value will be returned for true)

Description:

The chunk-type-subtype-p command determines if the chunk-type subtype? is a subtype of the
chunk-type supertype in the current model. If it is, then a true value is returned. If subtype? is not a
subtype of the chunk-type supertype or either subtype? or supertype does not name a valid chunk-

type then nil is returned. If there is no current model then a warning is printed and nil is returned.
Note, a chunk-type will return true when checked as a subtype of itself.

Examples:

> (chunk-type-subtype-p move-cursor motor-command)
MOTOR-COMMAND

> (chunk-type-subtype-p-fct 'text 'visual-object)
VISUAL-OBJECT

> (chunk-type-subtype-p visual-location visual-location)
VISUAL-LOCATION

> (chunk-type-subtype-p text motor-command)
NIL

> (chunk-type-subtype-p-fct 'move-cursor 'visual-object)
NIL

> (chunk-type-subtype-p non-chunk-type chunk)
NIL

> (chunk-type-subtype-p move-cursor non-chunk-type)
NIL

E> (chunk-type-subtype-p move-cursor motor-command)
#|Warning: get-chunk-type called with no current model. |#
NIL

chunk-type-subtypes

Syntax:

chunk-type-subtypes chunk-type-name -> [ (subtype*) | nil ]
chunk-type-subtypes-fct chunk-type-name -> [ (subtype*) | nil ]

Arguments and Values:

57



chunk-type-name ::= a value which should be a symbol that names a chunk-type
subtype ::= a symbol that names a chunk-type which is a subtype of chunk-type-name

Description:

chunk-type-subtypes returns a list of the names of the chunk-types which are subtypes of chunk-type-
name if chunk-type-name names a valid chunk-type in the current model. The list of chunk-types
returned will be in the order in which those subtypes were created with the most recent first and
chunk-type-name always being the last element of the list. Otherwise, nil is returned. If there is no

current model then a warning is printed and nil is returned.

Note that a chunk-type is always listed as one of its own subtypes.

Examples:

These examples assume that the chunk-types shown in the chunk-type examples exist.

> (chunk-type-subtypes visual-location)
(VISUAL-LOCATION)

> (chunk-type-subtypes-fct 'motor-command)
(PREPARE PUNCH PRESS-KEY POINT-HAND-AT-KEY PECK-RECOIL PECK MOVE-CURSOR HAND-TO-HOME HAND-
TO-MOUSE CLICK-MOUSE ...)

> (chunk-type-subtypes-fct 'sub-goal)
(SUB-GOAL)

> (chunk-type-subtypes goal)
(SUB-GOAL GOAL)

> (chunk-type-subtypes non-goal)
NIL

E> (chunk-type-subtypes-fct 'goal)
#|wWarning: get-chunk-type called with no current model. |#
NIL

chunk-type-supertypes

Syntax:

chunk-type-supertypes chunk-type-name -> [ (supertype*) | nil ]
chunk-type-supertypes-fct chunk-type-name -> [ (supertype*) | nil ]

Arguments and Values:

chunk-type-name ::= a value which should be a symbol that names a chunk-type
supertype ::= a symbol that names a chunk-type which is a supertype of chunk-type-name

Description:

58



chunk-type-supertypes returns a list of the names of the chunk-types which are supertypes of chunk-
type-name if chunk-type-name names a valid chunk-type in the current model. The list of names will
be in order such that the subtype appears before its supertype for all chunk-types in the list.

Otherwise, nil is returned. If there is no current model then a warning is printed and nil is returned.

Note that a chunk-type is always listed as one of its own supertypes. Also, if the chunk-type is static
then the only constraint on the ordering is that the chunk-type itself will be the first item on the list

since the other types form a graph instead of a strict linear inheritance sequence.

Examples:

These examples assume that the chunk-types shown in the chunk-type examples exist.

> (chunk-type-supertypes visual-location)
(VISUAL-LOCATION)

> (chunk-type-supertypes goal)
(GOAL)

> (chunk-type-supertypes-fct 'sub-goal)
(SUB-GOAL GOAL)

> (chunk-type-supertypes bad-name)
NIL

E> (chunk-type-supertypes goal)

#|Warning: get-chunk-type called with no current model. |#
NIL

59



Chunk Commands

define-chunks

Syntax:

define-chunks ({[chunk-name | chunk-name doc-string]} isa chunk-type {slot value}*)* -> [chunk-name-list |
nil ]

define-chunks-fct (({[chunk-name | chunk-name doc-string]} isa chunk-type {slot value}*)*) -> [chunk-name-
list | nil ]

Arguments and Values:

chunk-name ::= a symbol that will be the name of the chunk

doc-string ::= a string that will be the documentation for the chunk

chunk-type ::= a symbol that should name an existing chunk-type of the model

slot ::= a symbol that names a valid slot in chunk-type

value ::= any Lisp value which will be the contents of the correspondingly named slot for this chunk
chunk-name-list ::= a list of chunk-name symbols

Description:

The define-chunks command creates a new chunk in the current model for each valid chunk

description list provided and returns a list of the names of the chunks that were created.

Within a chunk description list the chunk name is optional. If a chunk-name is provided, it must not
name an existing chunk in the current model. If a chunk-name is not provided, a new name will be

generated for the chunk, and that name is guaranteed to be unique.
The chunk-type must name a valid chunk type in the current model.

Each slot named must be a valid slot for the chunk-type provided. If a given slot is named more than
once in the definition then the last value it is given (rightmost) will be the one set for the chunk. If a

slot is not specified then it will be set to the default for the chunk-type.

If a value for a slot is a symbol then it is assumed to be the name of a chunk. If there is not already a

chunk by that name, then one is created automatically of the chunk-type chunk.

However, within a call to define-chunks one can use the names of the chunks that are being defined
in the other chunks without having them created as default chunks. Here is an example to clarify

that:

(define-chunks (a isa some-chunk-type slot b)

60



(b isa some-chunk-type slot a))

Because both a and b are being defined in the same call to define-chunks neither will need to be

created automatically of chunk-type chunk.

If the syntax is incorrect or any of the components are invalid in a description list then a warning is
displayed and no chunk is created for that chunk description, but any other valid chunks defined will

still be created.
If there is no current model then a warning is displayed, no chunks are created and nil is returned.

Examples:

> (define-chunks (a isa chunk)
(b isa sound))
(A B)

> (define-chunks-fct '((c "this is chunk c" isa visual-location screen-x 10)
(isa visual-object screen-pos c)))
(C VISUAL-OBJECTO)

1> (define-chunks (d isa press-key key the-key))
#|Warning: Creating chunk THE-KEY of default type chunk |#
(D)

2E> (define-chunks-fct '((the-key isa chunk)))

#|Warning: Invalid chunk definition: (THE-KEY ISA CHUNK) names a chunk which already
exists. |#

NIL

E> (define-chunks (chunk-e isa chunk)
(chunk-f isa invalid-chunk-type)
(chunk-g isa visual-object))
#|Warning: Invalid chunk definition: (CHUNK-F ISA INVALID-CHUNK-TYPE) chunk-type specified
does not exist. |#
(CHUNK-E CHUNK-G)

E> (define-chunks (z isa chunk))
#|Warning: define-chunks called with no current model. |#
NIL

pprint-chunks & pprint-chunks-plus

Syntax:

pprint-chunks chunk-name* -> [chunk-name-list | nil ]
pprint-chunks-fct (chunk-name¥*) -> [chunk-name-list | nil ]
pprint-chunks-plus chunk-name* -> [chunk-name-list | nil ]
pprint-chunks-plus-fct (chunk-name¥*) -> [chunk-name-list | nil ]

Arguments and Values:

chunk-name ::= a symbol that should be the name of a chunk

61



chunk-name-list ::= ([chunk-name | :error ]*)

Description:
The pprint-chunks family of commands are used to have the system print a description of each of the

chunks specified, or all of the chunks in the model if no names are provided. The output is sent to the

current model’s command output stream.

For each chunk specified, on one line it will print the chunk’s name followed by its “true name” if the
chunk’s true name differs from the chunk name itself (see merge-chunks and true-chunk-name below
for more details on true name). If a documentation string was provided for the chunk that is printed
on the next line. Then, isa followed by the chunk’s chunk-type is printed on a line, and after that all

of the slots and values for the chunk are printed on separate lines.

The pprint-chunks-plus command prints all of the chunk’s parameters after the description of the
chunk is printed as described above. The parameters are printed one per line with the name of the
parameter and its current value. Note, that these chunk parameters are the ones that have been added
to the chunks (typically by a module) and may not have any direct significance to the model or
modeler. For example, the declarative memory parameters of chunks used by the declarative module
to compute and record the activation of chunks should be viewed using the declarative module’s sdp
command because the values shown with pprint-chunks-plus are values used internally by the
declarative module and may not adequately reflect the current value of activations as would be shown

by calling the module’s command for doing so (sdp).

These commands return a list with the names of all the chunks that were printed in the same order as
they were specified. If an invalid chunk-name is given nothing is printed for that item and the value

:error is returned in its place in the list.
If there is no current model then a warning is printed and nil is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (pprint-chunks)
GREEN
ISA COLOR

SPEECH
ISA CHUNK

c

"this is chunk c"
ISA VISUAL-LOCATION

62



SCREEN-X 10
SCREEN-Y NIL
DISTANCE NIL
KIND NIL
COLOR NIL
VALUE NIL
SIZE NIL
NEAREST NIL
OBJECTS NIL
USERPROP1 NIL
USERPROP2 NIL
USERPROP3 NIL
USERPROP4 NIL

(GREEN SPEECH C ...)
> (pprint-chunks-fct '(a chunk-e c))
A

ISA CHUNK

CHUNK-E
ISA CHUNK

C

"this is chunk c"
ISA VISUAL-LOCATION
SCREEN-X 10
SCREEN-Y NIL
DISTANCE NIL
KIND NIL
COLOR NIL
VALUE NIL
SIZE NIL
NEAREST NIL
OBJECTS NIL
USERPROP1 NIL
USERPROP2 NIL
USERPROP3 NIL
USERPROP4 NIL

(A CHUNK-E C)
> (pprint-chunks-plus a visual-object@)
ISA CHUNK

--chunk parameters--
SJIS NIL
PERMANENT-NOISE 0.0
SIMILARITIES NIL
REFERENCE-COUNT ©O
REFERENCE-LIST NIL
SOURCE-SPREAD 0
BASE-LEVEL 0
CREATION-TIME ©O
FAN-LIST (A)

FAN 1

ACTIVATION O

VISUAL-OBJECTO
ISA VISUAL-OBJECT
SCREEN-POS C
VALUE NIL
STATUS NIL

63



COLOR NIL

HEIGHT NIL

WIDTH NIL

--chunk parameters--
SJIS NIL
PERMANENT-NOISE 0.0
SIMILARITIES NIL
REFERENCE-COUNT 0O
REFERENCE-LIST NIL
SOURCE-SPREAD 0
BASE-LEVEL 0
CREATION-TIME 0
FAN-LIST (VISUAL-OBJECTO)
FAN 1

ACTIVATION 0O

(A VISUAL-OBJECTO)
E> (pprint-chunks b bad-name chunk-e)
ISA SOUND
KIND NIL
CONTENT NIL
EVENT NIL

CHUNK-E
ISA CHUNK

(B :ERROR CHUNK-E)

E> (pprint-chunks (a b))
#|Warning: pprint-chunks called with no current model. |#
NIL

chunk-p

Syntax:

chunk-p chunk-name? -> [t | nil ]
chunk-p-fct chunk-name? -> [ t | nil ]

Arguments and Values:

chunk-name? ::= a symbol which is being tested to determine if it names a chunk

Description:

The chunk-p command returns t if chunk-name? is a symbol that names a chunk in the current model
and returns nil if it does not. If there is no current model then a warning is printed and nil is returned.
Examples:

These examples assume that chunks named a and b have been created.

> (chunk-p a)

64



T

> (chunk-p not-chunk)
NIL

> (chunk-p-fct 'b)
T

E> (chunk-p-fct 'a)

#|Warning: get-chunk called with no current model. |[#
NIL

chunk-chunk-type

Syntax:

chunk-chunk-type chunk-name -> [ chunk-type-name | nil]
chunk-chunk-type-fct chunk-name -> [ chunk-type-name | nil]

Arguments and Values:

chunk-name ::= a value which should be a symbol that names a chunk
chunk-type-name ::= a symbol which is the name of a chunk-type in the model

Description:

chunk-chunk-type returns the name of the chunk-type of the chunk chunk-name from the current
model if it names a valid chunk. If chunk-name is not the name of a chunk in the current model or

there is no current model then a warning is printed and nil is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (chunk-chunk-type a)
CHUNK

> (chunk-chunk-type-fct 'c)
VISUAL-LOCATION

E> (chunk-chunk-type not-a-chunk)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (chunk-chunk-type a)

#|Warning: get-chunk called with no current model. |#
NIL

chunk-documentation

Syntax:

chunk-documentation chunk-name -> [ doc-string | nil]

65



chunk-documentation-fct chunk-name -> [ doc-string | nil]
Arguments and Values:

chunk-name ::= a value which should be a symbol that names a chunk
doc-string ::= a string of the documentation provided when chunk-name was created

Description:

chunk-documentation returns the documentation string of the chunk chunk-name from the current
model if it names a valid chunk and has a documentation string. If it does not have a documentation
string it returns mil. If chunk-name is not the name of a chunk in the current model or there is no

current model then a warning is printed and nil is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (chunk-documentation c)
"this is chunk c"

> (chunk-documentation a)
NIL

> (chunk-documentation-fct 'c)
"this is chunk c"

E> (chunk-documentation-fct 'not-a-chunk)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (chunk-documentation c)

#|wWarning: get-chunk called with no current model. |#
NIL

chunk-slot-value

Syntax:

chunk-slot-value chunk-name slot-name -> [ slot-value [ t | nil ] | nil ]
chunk-slot-value-fct chunk-name slot-name -> [ slot-value [ t | nil ] | nil ]

Arguments and Values:
chunk-name ::= a symbol which should be the name of a chunk
slot-name ::= a symbol that should be the name of a slot in the chunk chunk-name

slot-value ::= the Lisp value from slot-name in chunk chunk-name

Description:

66



chunk-slot-value returns two values if chunk-name is the valid name of a chunk in the current model
and slot-name is the name of a slot in the chunk-type of chunk-name. The first value is the value in
the slot-name slot of the chunk chunk-name in the current model. The second value will be t if slot-
value is not nil. If the slot is “empty” (has a value of nil) then the second value will be nil if the slot
is empty because the chunk did not have a slot named slot-name at its creation time and has not had
that slot changed since its creation. The second value will be t if the chunk had a slot named slot-
name at its creation or the slot-name slot of the chunk has been explicitly set to the value nil (whether
or not the chunk had such a slot at its creation). Effectively, the second value indicates whether the

chunk truly has such a slot and only matters when one is extending chunk types.

If either parameter is invalid or there is no current model then a warning is printed and nil is the only

value returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (chunk-slot-value c screen-x)
10
T

> (chunk-slot-value-fct 'c 'screen-y)
NIL
T

E> (chunk-slot-value-fct 'a 'not-a-slot-name)

#|Warning: chunk A does not have a slot called NOT-A-SLOT-NAME. |#
NIL

E> (chunk-slot-value not-a-chunk slot)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (chunk-slot-value c screen-x)

#|Warning: get-chunk called with no current model. |#
NIL

set-chunk-slot-value

Syntax:

set-chunk-slot-value chunk-name slot-name slot-value -> [ slot-value | nil ]
set-chunk-slot-value-fct chunk-name slot-name slot-value -> [ slot-value | nil ]

Arguments and Values:
chunk-name ::= a symbol which should be the name of a chunk
slot-name ::= a symbol that should be the name of a slot in the chunk chunk-name

slot-value ::= a Lisp value for slot-name in chunk chunk-name

67



Description:

set-chunk-slot-value is used to set the value of the slot slot-name in the chunk chunk-name in the

current model to the value slot-value. If successful, slot-value is returned.

If slot-value is a symbol and not the name of a current chunk in the current model then it is created as

a new chunk of chunk-type chunk and a warning is displayed.

If either chunk-name or slot-name is invalid or there is no current model then a warning is printed

and nil is returned.

This command is not often used by modelers because the model’s chunks are typically created and
changed by the productions of the model as it runs. However, sometimes it is necessary to
manipulate chunks outside of the model’s control, and it can be important to those creating new

modules for maintaining their internal chunks.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (set-chunk-slot-value ¢ distance 35)
35

> (set-chunk-slot-value-fct 'b 'content "sound")
"sound"

> (set-chunk-slot-value b content new-slot-value)

#|Warning: Creating chunk NEW-SLOT-VALUE of default type chunk |#
NEW-SLOT-VALUE

E> (set-chunk-slot-value not-chunk slot value)

#|Warning: NOT-CHUNK does not name a chunk in the current model. |#
NIL

E> (set-chunk-slot-value-fct 'c 'bad-slot 100)

#|Warning: chunk C does not have a slot called BAD-SLOT. |#

NIL

E> (set-chunk-slot-value b content "value")

#|Warning: get-chunk called with no current model. |#
NIL

mod-chunk

Syntax:

mod-chunk chunk-name {slot-name slot-value }* -> [ chunk-name | nil ]
mod-chunk-fct chunk-name ({slot-name slot-value }*) -> [ chunk-name | nil ]

Arguments and Values:

68



chunk-name ::= a symbol which should be the name of a chunk
slot-name ::= a symbol that should be the name of a slot in the chunk chunk-name
slot-value ::= a Lisp value for the corresponding slot-name in chunk chunk-name

Description:

mod-chunk is used to set the value of multiple slots in the chunk chunk-name of the current model. It

is essentially a short hand for multiple calls to set-chunk-slot-value.

If chunk-name is the name of a chunk in the current model and there are an even number of items
specified thereafter, then those items are considered pair-wise to be the name of a slot in that chunk
and a new value for that slot. All of those slots in the chunk are set to the new values specified and

chunk-name is returned.
Each slot name may only be specified once in the set of slot-names.

If any slot-value is a symbol and not the name of a chunk in the current model then it is created as a

new chunk of chunk-type chunk and a warning is displayed.

If chunk-name does not name a chunk in the current model, there is no current model, there are an
odd number of items provided after the chunk-name, or any of the slot names are invalid or

duplicated then a warning is displayed, no changes are made, and nil is returned.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (mod-chunk c screen-x 20 screen-y 30)
c

> (mod-chunk-fct 'b '(content "sound" kind new-value))
#|Warning: Creating chunk NEW-VALUE of default type chunk |#
B

E> (mod-chunk-fct 'b '(event))
#|Warning: 0dd length modifications list in call to mod-chunk. |#
NIL

E> (mod-chunk ¢ non-slot 10)
#|Warning: Invalid slot name in modifications list. |#
NIL

E> (mod-chunk-fct 'non-chunk '(slot value))
#|Warning: NON-CHUNK does not name a chunk in the current model. [#
NIL

E> (mod-chunk c distance 30)

#|Warning: get-chunk called with no current model. |#
NIL

69



copy-chunk

Syntax:

copy-chunk chunk-name -> [new-name | nil ]
copy-chunk-fct chunk-name -> [new-name | nil ]

Arguments and Values:

chunk-name ::= a symbol which should be the name of a chunk
new-name ::= a symbol which will be a unique name for a new chunk

Description:

copy-chunk creates a copy of the chunk chunk-name in the current model and returns the name of the
newly created chunk. The copy has the same chunk-type as chunk-name and the same values for all
of its slots. The values of the parameters defined for the new chunk will have the default value unless
the parameter was specified with a copy-function, in which case, the value will be the one returned by

that function.

If chunk-name does not name a chunk in the current model or there is no current model then a

warning is displayed and nil is returned.

Examples:

These examples assume that there are chunks named a and b in the current model.

> (copy-chunk b)
B-0

> (copy-chunk-fct 'a)
A-1

E> (copy-chunk not-a-chunk)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (copy-chunk b)

#|Warning: get-chunk called with no current model. |#
NIL

chunk-copied-from

Syntax:

chunk-copied-from chunk-name -> [original-name | nil]
chunk-copied-from-fct chunk-name -> [original-name | nil]

70



Arguments and Values:

chunk-name ::= a symbol which should be the name of a chunk
original-name ::= a symbol which is the name of a chunk

Description:

The chunk-copied-from command is used to return the name of the chunk from which the chunk
chunk-name was created using the copy-chunk command. If chunk-name is the name of a chunk in
the current model, it was created with copy-chunk, it has not been modified since its creation as a
copy and the original chunk has not been modified such that it now differs from the copy (the original
could have been modified but if it is still a match using equal-chunk it is still considered the same)
then the name of the chunk from which chunk-name was copied is returned. If it was not created
using copy-chunk, it has since been modified, or the original chunk has been modified in such a way

that the two now differ then nil is returned.

If chunk-name does not name a chunk in the current model or there is no current model then a

warning is displayed and nil is returned.

This command is rarely used by modelers because the model’s chunks are typically created and
changed by the productions of the model as it runs. However, sometimes it is necessary to
manipulate chunks outside of the model’s control. It can be important to those creating new modules
where it can be used to determine if a chunk passed in as part of a request is a copy of a chunk which
the module had placed into a buffer i.e. the request is using a copy of a chunk for which the module

has created the original.

Examples:

These examples assume that the copy-chunk examples have been executed and that a chunk named c

exists.

> (chunk-copied-from b-0)
B

\%

(chunk-copied-from-fct 'a-1)
A

> (chunk-copied-from c)
NIL

E> (chunk-copied-from not-a-chunk)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

71



E> (chunk-copied-from b-0)
#|Warning: get-chunk called with no current model. |[#
NIL

chunks

Syntax:

chunks -> [ (chunk-name?*) | nil ]

Arguments and Values:

chunk-name ::= the name of a chunk in the current model
Description:

The chunks command returns a list of the names of all the chunks defined in the current model in no

particular order.

If there is no current model then a warning is printed and nil is returned.

Examples:

> (chunks)
(GREEN CYAN SPEECH C DARK-CYAN RED-COLOR B-0 OVAL ...)

E> (chunks)
#|Warning: chunks called with no current model. |[#
NIL

delete-chunk

Syntax:

delete-chunk chunk-name -> [ chunk-name | nil ]
delete-chunk-fct chunk-name -> [ chunk-name | nil ]

Arguments and Values:
chunk-name ::= a symbol that should be the name of a chunk
Description:

delete-chunk removes the chunk named chunk-name from the set of chunks in the current model. If
chunk-name is the name of a chunk in the current model then after that chunk is deleted chunk-name

is returned.

72



If chunk-name does not name a chunk in the current model or there is no current model then a

warning is printed and nil is returned.

Note: there is no additional clean-up done in conjunction with deleting the chunk. Thus, if it is used
as a slot value in another chunk or currently residing in a buffer undefined consequences could arise.
delete-chunk should be used rarely and only when it is certain that the chunk being deleted is not

referenced elsewhere.

Examples:

These examples assume that chunks named b-0 and a-1 exist.

> (delete-chunk b-0)
B-0

1> (delete-chunk-fct 'a-1)
A-1

2E> (delete-chunk a-1)

#|Warning: A-1 does not name a chunk in the current model. |#
NIL

E> (delete-chunk b)

#|Warning: get-chunk called with no current model. |#
NIL

purge-chunk

Syntax:

purge-chunk chunk-name -> [ t | nil ]
purge-chunk-fct chunk-name -> [ t | nil ]

Arguments and Values:
chunk-name ::= a symbol that should be the name of a chunk
Description:

Purge-chunk removes the chunk named chunk-name from the set of chunks in the current model
using delete-chunk and releases the name of that chunk using the release-name command as
described under the naming module. If chunk-name is the name of a chunk in the current model and

its name was released then t is returned.

If chunk-name does not name a chunk in the current model or there is no current model then a

warning is printed and nil is returned.

73



If the chunk is deleted, but the name is not released nil is returned without a warning being printed.

As with delete-chunk, there is no additional clean-up done in conjunction with purging the chunk.
Thus, if it is used as a slot value in another chunk or currently residing in a buffer undefined

consequences could arise.

Because purge-chunk also attempts to unintern the name of the chunk it should only be used for
chunks for which the name was automatically generated by the system or explicitly generated with
new-name. This is not going to be a command used by most modelers. However, in situations where
(computer) memory usage is important in long running models or models which generate a lot of

temporary chunks explicitly freeing some of that space may be necessary.

Examples:

1> (define-chunks (cl1 isa chunk)
(isa chunk))
(C1 CHUNKO)

2> (purge-chunk chunko)
T

3> (purge-chunk-fct 'c1)
NIL

E> (purge-chunk bad-name)
#|Warning: BAD-NAME does not name a chunk in the current model. |#
NIL

E> (purge-chunk-fct 'free)

#|Warning: get-chunk called with no current model. |#
#|Warning: get-chunk called with no current model. |#
NIL

merge-chunks

Syntax:

merge-chunks chunk-name-1 chunk-name-2 -> [ chunk-name-1 | nil ]
merge-chunks-fct chunk-name-1 chunk-name-2 -> [ chunk-name-1 | nil ]

Arguments and Values:

chunk-name-1 ::= a symbol that should be the name of a chunk
chunk-name-2 ::= a symbol that should be the name of a chunk

Description:

74



If the chunks named by chunk-name-1 and chunk-name-2 are of the same chunk-type and have all of
the same values for their slots, then both chunks are replaced by a single chunk. See equal-chunks
below for a more thorough definition of what it means for two chunks to have the same values for
their slots — the named chunks must return t if passed to equal-chunks in order to be merged.
Effectively, the two chunks are merged into one chunk. The “true name” of the merged chunk will

be chunk-name-1, but references to either name will still be valid.

If the chunks are merged, then any additional chunk parameters that have been added to the chunks
will remain those that existed for chunk-name-1 unless there is a merge-function defined for the

parameter.

If either chunk is later deleted, both of the chunks will become unavailable i.e. deleting any one of a

set of merged chunks deletes all of those merged chunks.

If the chunks have already been merged previously, then no actions are taken and chunk-name-1 is

returned.
If the chunks are successfully merged, then chunk-name-1 is returned.

If the chunks do not match on chunk-type or any slot value then no merging occurs and nil is

returned.

If either name does not name a chunk in the current model or there is no current model then a

warning is displayed and nil is returned.

The merge-chunks command is primarily for use by the declarative memory module, and it is not
expected to be used elsewhere but is available if one finds such a need. As with delete-chunk, it
should be used carefully to avoid circumstances were chunks to which other modules already have

references are merged which could result in unexpected consequences.

Examples:

These examples assume that the chunks created in the examples for define-chunks exist.

> (merge-chunks a a-1)
A

> (merge-chunks-fct 'a 'chunk-e)
A

> (merge-chunks a b)
NIL

75



E> (merge-chunks not-a-chunk a)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (merge-chunks b b-0)

#|Warning: get-chunk called with no current model. |[#

#|Warning: get-chunk called with no current model. |#
NIL

create-chunk-alias

Syntax:

create-chunk-alias chunk-name alias -> [ alias | nil ]
create-chunk-alias-fct chunk-name alias -> [alias | nil ]

Arguments and Values:

chunk-name ::= a symbol that should be the name of a chunk
alias ::= a symbol that should not be the name of a chunk

Description:

If the chunk specified by chunk-name exists in the current model and the symbol provided as alias is
not the name of a chunk in the current model then alias will be created as a reference to the chunk
chunk-name. This works essentially the same as if a chunk named alias had been merged with the

chunk chunk-name.
If the alias is successfully created, then alias is returned.

If chunk-name does not name a chunk in the current model, alias is not a symbol, alias is already the
name of a chunk in the model, or there is no current model then a warning is displayed and nil is

returned.

Examples:

1> (chunk-type test slot)
TEST

2> (define-chunks (a isa test slot a)
(b isa test slot b)
(c isa test slot c))
(A BC)

3> (create-chunk-alias a new-a)
NEW-A

4> (pprint-chunks new-a)

NEW-A (A)
ISA TEST

76



SLOT A
(NEW-A)

5> (create-chunk-alias-fct 'b 'my-b)

MY-B

6E> (create-chunk-alias c my-b)

#|Warning: MY-B is already the name of a chunk in the current model and cannot be used as
an alias. |#

NIL

E> (create-chunk-alias-fct 'not-a-chunk 'new-d)

#|Warning: NOT-A-CHUNK is not the name of a chunk in the current model. |#

NIL

E> (create-chunk-alias x new-Xx)

#|Warning: create-chunk-alias called with no current model. |#
NIL

true-chunk-name

Syntax:

true-chunk-name chunk-name -> [ true-name | chunk-name ]
true-chunk-name-fct chunk-name -> [ true-name | chunk-name ]

Arguments and Values:

chunk-name ::= a Lisp value
true-name ::= a symbol that is the name of a chunk in the current model

Description:

true-chunk-name is used to find the “true name” of a chunk. The true name of a chunk which has not
been merged with another chunk is its own name. The true name of a chunk that has been merged
with another chunk is the true name of the chunk that was returned from a merging of that chunk with

another.

If chunk-name is the name of a chunk in the current model then its true name is returned. If chunk-

name is any other value, then chunk-name is returned.

If there is no current model then a warning is printed and chunk-name is returned.

Examples:

1> (define-chunks (x1 isa chunk)
(x2 isa chunk)
(x3 isa chunk))
(X1 X2 X3)

77



2> (true-chunk-name x1)
X1

3> (true-chunk-name-fct 'x2)
X2

4> (merge-chunks x2 x1)
X2

5> (true-chunk-name x1)
X2

6> (true-chunk-name x2)
X2

7> (merge-chunks x3 x2)
X3

8> (true-chunk-name-fct 'x1)
X3

9> (true-chunk-name-fct 'x2)
X3

10> (pprint-chunks x1 x2 x3)
X1 (X3)
ISA CHUNK

X2 (X3)
ISA CHUNK

X3
ISA CHUNK

(X1 X2 X3)

> (true-chunk-name "not-a-chunk")
"not-a-chunk"

> (true-chunk-name-fct 'not-a-chunk)
NOT-A-CHUNK

E> (true-chunk-name a)
#|Warning: get-chunk called with no current model. |[#
A

eq-chunks

Syntax:

eq-chunks chunk-name-1 chunk-name-2 -> equal-result
eqg-chunks-fct chunk-name-1 chunk-name-2 -> equal-result

Arguments and Values:
chunk-name-1 ::= a symbol that should be the name of a chunk

chunk-name-2 ::= a symbol that should be the name of a chunk
equal-result ::= a generalized boolean indicating whether the chunks are the same

Description:

78



Eg-chunks is used to determine if the chunks named by chunk-name-1 and chunk-name-2 are the
exact same chunk in the current model. They will be the same chunk if chunk-name-1 and chunk-
name-2 are the same symbol or if the two named chunks have been merged. If they are the same

chunk, then a true value is returned. Otherwise, nil will be returned.

If either name does not name a chunk or there is no current model, then a warning is printed and nil is

returned.

Examples:

1> (define-chunks (c1 isa chunk)
(c2 isa chunk)
(c3 isa visual-location screen-x 10)
(c4 isa visual-location screen-x 10)
(c5 isa visual-location screen-x 20))
(C1 C2 C3 C4 C5)

2> (eq-chunks c1 c1)
T

3> (eq-chunks c1 c2)
NIL

4> (merge-chunks c1 c2)
Cci

5> (eq-chunks-fct 'cl 'c2)
T

> (eq-chunks-fct 'c3 'c4)
NIL

> (eq-chunks c3 c5)
NIL

E> (eq-chunks not-a-chunk x1)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (eq-chunks-fct 'x1 'x2)

#|Warning: get-chunk called with no current model. |#

#|Warning: get-chunk called with no current model. |#
NIL

equal-chunks

equal-chunks chunk-name-1 chunk-name-2 -> equal-result
equal-chunks-fct chunk-name-1 chunk-name-2 -> equal-result

Arguments and Values:

chunk-name-1 ::= a symbol that should be the name of a chunk

79



chunk-name-2 ::= a symbol that should be the name of a chunk
equal-result ::= a generalized boolean indicating whether the chunks are equal

Description:

The equal-chunks command can be used to determine if the chunks named by chunk-name-1 and
chunk-name-2 are equivalent chunks in the current model. They will be equivalent if they are eq-
chunks (as described above) or if they have the same chunk-type and for all of the slots in that chunk-
type the values of those slots in the two chunks are the same as determined by the chunk-slot-equal
function. If the two chunks are equivalent, then a true value is returned. Otherwise, nil will be

returned.

If either name does not name a chunk or there is no current model, then a warning is printed and nil is

returned.

Examples:

1> (define-chunks (cl1 isa chunk)
(c2 isa chunk)
(c3 isa visual-location screen-x 10)
(c4 isa visual-location screen-x 10)
(c5 isa visual-location screen-x 20))
(C1 Cc2 C3 Cc4 C5)

2> (equal-chunks c1 c2)
T

3> (equal-chunks c2 c3)
NIL

4> (equal-chunks-fct 'c3 'c4)
T

5> (equal-chunks-fct 'c4 'ch)
NIL

E> (equal-chunks not-a-chunk a)

#|Warning: NOT-A-CHUNK does not name a chunk in the current model. |#
NIL

E> (equal-chunks c1 c2)

#|Warning: get-chunk called with no current model. |#

#|Warning: get-chunk called with no current model. |[#
NIL

chunk-slot-equal

chunk-slot-equal val-1 val-2 -> equal-result

Arguments and Values:

80



val-1 ::= any value
val-2 ::= any value
equal-result ::= a generalized boolean indicating whether the chunks are equal

Description:

The chunk-slot-equal command is used to determine if two values are considered equivalent as the

contents of slots in chunks. The values will be equivalent if one of the following is true:

* the values are eq

* both values are symbols which name chunks in the current model and those chunks return true
from eq-chunks
* both values are strings and those strings return true from string-equal

* if the values are not both chunk names or not both strings and they return true from equalp

If the two values are equivalent, then a true value is returned. Otherwise, nil will be returned.

Examples:

> (chunk-slot-equal 1 1)

T
> (chunk-slot-equal 1 1.5)

NIL

> (chunk-slot-equal "Stringl" "strING1")

T

> (chunk-slot-equal 'not-a-chunk 'not-a-chunk)
T

> (chunk-slot-equal 'not-a-chunk :not-a-chunk)
NIL

1> (define-chunks (cl1 isa chunk)
(c2 isa chunk))

(c1 c2)

2> (chunk-slot-equal 'cl 'c2)

NIL

3> (merge-chunks c1 c2)

c1

4> (chunk-slot-equal 'c1l 'c2)

T

normalize-chunk-names
normalize-chunk-names { unintern } -> nil
Arguments and Values:

unintern ::= a generalized boolean indicating whether to delete the merged chunks and release the
names

81



Description:

The normalize-chunk-names command will iterate through all chunks in the current model and
replace all chunk references in slots with the true name of that chunk. That may be useful for
debugging purposes and the naming module has a parameter (:ncnar) which can trigger this call

automatically.

In addition, if the unintern parameter is true then all chunks which have been merged with other
chunks (those for which their name is not the chunk’s true name) will be deleted from the model and

the chunk name will be released using release-name.

The command will always return nil. If there is no current model, then a warning will be printed

indicating that.

Notes: This command may take a long time to run if the model has a large number of chunks. Also,
the unintern option is generally not recommended because it may cause problems for modules which
have stored internal references to those temporary names. However, in some extreme circumstances
(a very long continuous run or a model which does a lot of buffer manipulations over a long run) a
model can generate so many chunk name symbols than it can become unable to continue running (the
Lisp heap or the physical memory of the machine is exhausted) thus calling normalize-chunk-names
periodically with the unintern option would be necessary to continue running. If you are
encountering such situations, please let me know about it because there may be other options or

changes that could be made to the underlying system.

Examples:

To show the command in use, there must be a chunk which has been merged with another and also
used in a slot value.

1> (chunk-type goal previous next)

GOAL

2> (define-chunks (gl isa goal previous nil next g2)
(g2 isa goal previous gl next nil))

(G1 G2)

3> (copy-chunk g1)

G1-0

4> (set-chunk-slot-value g2 next gi1-0)

G1-0

5> (merge-chunks g1 g1-0)

G1

6> (pprint-chunks)

G2
ISA GOAL

82



PREVIOUS G1
NEXT G1-0

G1-0 (G1)
ISA GOAL
PREVIOUS NIL
NEXT G2

G1
ISA GOAL
PREVIOUS NIL
NEXT G2

(.. G2 G1-0 G1)

Now, here are the results of calling normalize-chunk-names after that both with and without the
unintern parameter:

7> (normalize-chunk-names t)
NIL
8> (pprint-chunks)

G2
ISA GOAL
PREVIOUS G1
NEXT G1

G1
ISA GOAL
PREVIOUS NIL
NEXT G2

(.. G2 G1)

7> (normalize-chunk-names)
NIL
8> (pprint-chunks)

G2
ISA GOAL
PREVIOUS G1
NEXT G1

G1-0 (G1)
ISA GOAL
PREVIOUS NIL
NEXT G2

G1
ISA GOAL
PREVIOUS NIL
NEXT G2

(.. G2 G1-0 G1)

E> (normalize-chunk-names)
#|Warning: No current model in which to normalize chunk names. |#
NIL

Special Chunk Functions



There are three additional functions which can be used, but should be done so with extreme care:
fast-chunk-slot-value-fct, fast-set-chunk-slot-value-fct, and fast-mod-chunk-fct. They are each
equivalent to the corresponding function without the “fast-” prefix. However, the “fast” versions do
not do any of the validity checks on the slot-names in order to save time. Thus, if they are passed
invalid slot-names they may still set such values and thus make the chunk invalid with respect to its
chunk-type (this is not the same as the provided mechanism for extending a chunk described in the
dynamic pattern matching section of the procedural module). These commands should only be used
when the values have been verified before making the call via some other means and when the time

required for the duplicate testing is unacceptable.

84



General Parameters

General parameters are the primary means of configuring the operation of ACT-R both from a
usability standpoint and at the level of controlling the performance of a model. They can be used to
control how much output is shown when a model runs or to adjust how long it takes a model to
retrieve a chunk from its declarative memory as well as many other things. Each module in the
system can make available any number of general parameters that are relevant to its operation. The
specific parameters of each module will be described in that module’s section. In this section, the
common aspects of those parameters will be described along with the command that is used to set or

show them.

The general parameters are each referenced by a name which is a Lisp keyword e.g. :v or :trace-
detail, and can be set to some value which is meaningful to the module that owns the parameter.
Each one has a default value specified by the owning module and often there are limits as to what
values can be given to a particular parameter. Attempting to set an invalid value will result in a
warning and no change in the parameter. In most cases the parameters are independent between
models i.e. two concurrent models could have different values for the same general parameter.
However, there can be exceptions to that. For example, a module that allows models to connect to
some external simulation might provide parameters to specify where to connect to that simulation,
but may require that all models connect to the same simulation. None of the provided modules
operate that way, but it is worth noting that modules could be added which have parameters that are

linked between models.

One final thing to note about general parameters is that it is possible for modules other than the
parameter’s owning module to monitor the parameter setting and possibly modify the parameter. The
details of doing that are covered in the module creation sections. Because of that one should be
aware that it is possible for parameters to start with values other than their specified default after a
model is reset or to be set to a value different than one the user requests if a monitoring module
changes it. An example of the first situation (a starting value other than the default) exists in the
main ACT-R system with the :do-not-harvest parameter. The procedural module owns that
parameter and specifies a default value of nil, but the goal module will change that parameter at reset
time to include the goal buffer. It is also the case that if one starts the ACT-R Environment then
several of the tracing and hook parameters will be set automatically to values which allow the
Environment to operate. There are no modules in the provided set which modify the values a user

specifies, but an example where such a situation could be used might be a module which provides

85



support for modeling alertness or sleepiness. It could automatically adjust the parameters that a user
specifies for controlling other modules to take into account the current alertness setting. Of course it
does not have to work that way, but it is a possibility which modelers and module writers should

know about.

Commands

sgp
Syntax:

sgp {[ param-name*| param-value-pair*]} -> [ nil | ([param-value | :bad-parameter-name | :invalid-value]*) ]
sgp-fct ({[ param-name*| param-value-pair*]}) -> [ nil | ([param-value | :bad-parameter-name |
:invalid-value]*) ]

Arguments and Values:

param-name ::= a keyword which names a parameter

param-value-pair ::= param-name new-param-value

new-param-value ::= a Lisp value to which the preceding param-name is to be set
param-value ::= the current value of a param-name

Description:

sgp is used to set or get the value of the parameters from the modules of the current model.

If no parameters are provided, all of the current model's parameters are printed to the model’s
command output stream. They are organized alphabetically by module name and by parameter name
within a module and nil is returned. For each parameter, its name and current value is printed
followed by the default value and any documentation provided by the module that owns the

parameter.

If all of the parameters passed to sgp are keywords, then it is a request for the current values of those
general parameters named in the current model. Those parameters are printed and a list of their
values in the order requested is returned. If any of the names are not of valid parameters then a
warning is displayed and the keyword :bad-parameter-name is returned for that position in the list.
Note: because the test to determine that a call to sgp is a request for parameter values is that all the
values passed to sgp are keywords, a module should never have a parameter accept a keyword as a

possible value because it will not be possible to set such a parameter value on its own.

86



If there are any non-keyword parameters in the call to sgp and the total number of elements is even,
then they are assumed to be pairs of a parameter name and a parameter value. Each of those
parameter values will be passed to the corresponding parameter’s owning module and all monitoring
modules. The return value will be the current settings of those parameters in the order given (the
values may or may not be the same as the values passed in to set them depending on the module)
unless a parameter value was not of the appropriate type as required by the module. In that case, a

warning is printed and the value returned in that position will be the keyword :invalid-value.

If there are non-keywords passed to sgp and the number of items is odd, or if there is no current

model at the time of the call, then a warning is displayed and nil is returned.

Examples:

:DIGIT-DETECT-DELAY 0.3 default: 0.3 Lag between onset and detectability for digits
:DIGIT-DURATION 0.6 default: 0.6 : Default duration for digit sounds.
:DIGIT-RECODE-DELAY 0.5 default: 0.5 : Recoding delay for digit sound content.
:HEAR-NEWEST-ONLY NIL default: NIL : Whether to stuff only the newest unattended

audio-event from the audicon into the aural-location buffer.

:SOUND-DECAY-TIME 3.0 default: 3.0 : The amount of time after a sound has finished
it takes for the sound to be deleted from the audicon

:TONE-DETECT-DELAY ©0.05 default: 0.05 : Lag between sound onset and detectability for
tones

:TONE-RECODE-DELAY 0.285 default: 0.285 : Recoding delay for tone sound content.

> (sgp :v :1f)

:V T (default T) : Verbose controls model output
:LF 1.0 (default 1.0) : Latency Factor

(T 1.0)

> (sgp-fct '(:v nil :1f 4.5))
(NIL 4.5)

E> (sgp-fct '(:v t :1f nil))
#|Warning: Parameter :LF cannot take value NIL because it must be a positive number. |#
(T :INVALID-VALUE)

E> (sgp :not-a-parameter 10)
#|Warning: Parameter :NOT-A-PARAMETER is not the name of an available parameter |#
( :BAD-PARAMETER-NAME)

E> (sgp :esc t :v)
#|Warning: 0dd number of parameters and values passed to sgp. |#
NIL

E> (sgp)
#|Warning: sgp called with no current model. |#
NIL

87



get-parameter-default-value

Syntax:

get-parameter-default-value param-name -> [ param-default | :zbad-parameter-name ]
Arguments and Values:

param-name ::= a keyword which should name a parameter
param-default ::= the default value specified for param-name when it was defined

Description:

The get-parameter-default-value command is used to get the default value that a parameter was given
when it was defined. If param-name is the name of a general parameter then the default value
specified for that parameter is returned. If param-name does not name a general parameter then a

warning is printed and :bad-parameter-name is returned.

Examples:

> (get-parameter-default-value :v)

E> (get-parameter-default-value :not-a-param)
#|Warning: Invalid parameter name :NOT-A-PARAM in call to get-parameter-default-value. |#
:BAD-PARAMETER-NAME

with-parameters

Syntax:

with-parameters parameter-1list form* -> [ result | nil ]
with-parameters-fct parameter-list form* -> [ result | nil ]

Arguments and Values:

parameter-list ::= ({param-name value}*)

param-name ::= a keyword which should name a parameter

value ::= a Lisp value to which the preceding parameter should temporarily be set
form ::= a valid Lisp expression to evaluate

result ::= the value returned from the last form evaluated

Description:

88



The with-parameters commands are used to temporarily set some parameters in the current model of
the current meta-process and then execute some commands. If all of the param-name values
provided name valid parameters then each will be set to the corresponding value given before
executing the forms. After those forms have been evaluated each of those parameters will be set back
to the value it had previously and the result of the last form evaluated will be returned. The forms are
evaluated in an unwind-protect so that the restoring of the parameters occurs even if the forms result

in an error.

If any of the param-name values do not name a valid parameter or there is no current model or
current meta-process then a warning will be printed, the forms will not be evaluated, and nil is

returned.

The difference between with-parameters and with-parameters-fct is not quite the same as it is for
other commands. In this case both are macros, but with-parameters-fct evaluates the items on the
parameter-list and with-parameters does not. Thus the parameter-list for with-parameters will look
similar to what one would provide to sgp whereas the parameter-list for with-parameters-fct may

contain expressions and variables which need to be evaluated.

Examples:

This example sequence assumes that the count model from unit 1 of the tutorial is loaded.

1> (reset)

DEFAULT
2> (run .05)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.050 DECLARATIVE START-RETRIEVAL
0.050 PROCEDURAL CONFLICT-RESOLUTION
0.050 ------ Stopped because time limit reached
0.05
13
NIL
3> (with-parameters (:v nil)
(run .05))
0.05
8
NIL
4> (with-parameters-fct (:trace-detail 'low)
(run .05))
0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT
2
0.150  ------ Stopped because time limit reached
0.05
6

89



NIL
5> (run .05)

0.200 DECLARATIVE RETRIEVED-CHUNK D
0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL D
0.200 PROCEDURAL CONFLICT-RESOLUTION
0.200 PROCEDURAL PRODUCTION-SELECTED INCREMENT
0.200 PROCEDURAL BUFFER-READ-ACTION GOAL
0.200 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
0.200  ------ Stopped because time limit reached
0.05
-
NIL

E> (with-parameters (:not-valid 10)
(run .05))
#|Warning: :NOT-VALID is not the name of a parameter. with-parameters body ignored. |#
NIL
E> (with-parameters-fct (:v)
(run .05))
#|Warning: 0dd length parameters list in call to with-parameters. The body is ignored. |#
NIL
E> (with-parameters (:v t)
(run 1))

#|Warning: with-parameters called with no current model. |#
NIL

System Parameters

System parameters are similar to general parameters, but they are only used for configuring the
operation of the ACT-R software itself. They do not have to be connected to any particular module
or model and changing one will affect all models. They also retain their settings across a reset or
clear-all therefore they will generally only need to be set once if one needs to use them and probably

will not be included in a model definition.

Commands

ssp

Syntax:

ssp {[ param-name*| param-value-pair*]} -> [ nil | ([param-value | :bad-parameter-name | :invalid-value]*) ]
ssp-fct ({[ param-name*| param-value-pair*]}) -> [ nil | ([param-value | :bad-parameter-name |
:invalid-value]*) ]

Arguments and Values:
param-name ::= a keyword which names a parameter
param-value-pair ::= param-name new-param-value

new-param-value ::= a Lisp value to which the preceding param-name is to be set
param-value ::= the current value of a param-name

90



Description:

The ssp command is used to set or get the value of the system parameters.

If no parameters are provided, all of the current system parameters are printed to *standard-output*
and nil is returned. For each parameter, its name and current value is printed followed by the default

value and any documentation it has.

If all of the parameters passed to ssp are keywords, then it is a request for the current values of those
parameters. Those parameters are printed and a list of their values in the order requested is returned.
If any of the names are not of valid parameters then a warning is displayed and the keyword :bad-

parameter-name is returned for that position in the list.

If there are any non-keyword parameters in the call to ssp and the total number of elements is even,
then they are assumed to be pairs of a parameter name and a parameter value. Each of those
parameter values will be set to the provided value. The return value will be the current settings of
those parameters in the order given unless a parameter value was not of the appropriate type. In that

case, a warning is printed and the value returned in that position will be the keyword :invalid-value.

If there are non-keywords passed to ssp and the number of items is odd then a warning is displayed

and nil is returned.

Examples:

> (ssp)

:MCTS NIL default: NIL : initial size of a ...
:DEFAULT-ENVIRONMENT -PORT 2621 default: 2621 : Default port for ...
:NEW-STATIC-TYPE-NAME NIL default: NIL : Function that is called ...
:MCTRT NIL default: NIL : rehash-threshold of a ...
:CLOSE-EXP-WINDOWS-ON-RESET NIL default: NIL : Whether the AGI closes ...
:SHOW-STATIC-SUBTYPE-NAMES NIL default: NIL : Whether chunks of a ...

:DEFAULT-ENVIRONMENT-HOST "127.0.0.1" default: "127.0.0.1" : Default address for
NIL

> (ssp :default-environment-port)
(2621)

> (ssp :default-environment-port 242)
(242)

E> (ssp :default-environment-port 'x)

#|Warning: System parameter :DEFAULT-ENVIRONMENT-PORT cannot take value (QUOTE X) because
it must be positive number. |[#

(: INVALID-VALUE)

E> (ssp :bad-name)
( :BAD-PARAMETER-NAME)

91



E> (ssp :default-environment-port 100 :mctrt)
#|Warning: 0dd number of parameters and values passed to ssp.
NIL

| #

92



Printing and output

Many of the commands in ACT-R result in output being printed. There is a printing module which
can be used to control where and when certain things are printed, and that is described in detail in a
separate section. For now the general aspects of the output will be described as well as the

commands that are used to generate the output.

There are three basic types of output that ACT-R generates: model output, command output, and
warnings. They are generated by different output functions described below and it is up to module
writers to use the appropriate ones for any output which they create so as to conform to what is

expected.

Model Output

Model output is essentially all the things that are printed by a running model. The trace of the model
is considered model output as are various internal module specific traces and notices. The default is
to send the model output to the Lisp stream *standard-output*, but there is a parameter available

which allows one to send the output elsewhere or disable it.

Command Output

Command output is what gets printed when one calls one of the ACT-R commands, for example the
parameter listing when one calls sgp. By default this is also sent to the *standard-output* stream, and
it is controlled by a separate parameter from model output. Thus, one could have model output going
one place and command output going elsewhere if desired. Often, one does not need or want the
printed output from an ACT-R command because only the returned value is important. In those

situations, there is a command that can be used to temporarily disable command output.

Warnings

Warnings from ACT-R are always enclosed inside of a Lisp comment block (between the characters
#| and |#) and start with “Warning:”. The reason they are inside a comment block is so they do not
create a problem if someone is using Lisp to read an output file generated by a model trace which
might contain warnings. It also distinguishes them from any other warnings that may occur within
the Lisp. There are two general classes of warnings, each created with a different command. The
first is referred to as model warnings. These are things like “undefined chunk FOO being created of

default type chunk.” They inform the modeler of something that was assumed or may be unusual

93



within a model. They are generally just hints or suggestions and can often be ignored. In fact, there is
a parameter switch to actually suppress such warnings if desired (though if the model is not working
as one would expect turning the model warnings back on and reading them carefully is probably a
good first thing to look at). The other type is just referred to as a warning, and is generated when a
command receives invalid parameters or a more serious issue has occurred e.g. the “... called with no
current model” warning. These are usually more important issues and cannot be turned off with a
simple switch. Warnings are sent to the Lisp stream *error-output®* and model warnings are sent to
the stream *error-output®* as well as to the current model’s model output stream if it differs from

*error-output™.

Below are the commands that are used by the system for outputting information and which are
available for use if one wants their model or experiments using ACT-R to print in the ways described
above. Those adding new modules to the system should use the appropriate commands for any

output that their module generates.
Commands

model-output

Syntax:

model-output control-string {args*} -> nil

Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

Description:

model-output is used to print output to the current model’s model output stream, which defaults to
*standard-output* and is controlled by the printing module. It passes the provided control-string and
args to format for output followed by a new line if model output is enabled for the current model. It
does not test the control-string or args for correctness, so any problems will likely trigger an error or

warning from the format function.
If there is no current model a warning is printed.

It always returns nil.

94



Examples:

> (model-output "This is ~A the ACT-R ~d model-output command" "output from" 6)
This is output from the ACT-R 6 model-output command

NIL

E> (model-output "This is ~A the ACT-R ~d model-output command" "output from" 6)

#|Warning: get-module called with no current model. |#
NIL

meta-p-output

Syntax:
meta-p-output control-string {args*} -> nil
Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

Description:

meta-p-output is used to print output to all of the models in the current meta-process. It uses each
model’s model output stream as if model-output were used, but only prints once to a given stream in
the event that more than one model is using the same stream for model output. It does not test the
control-string or args for correctness, so any problems will likely trigger an error or warning from the

format function.
If there is no current meta-process a warning is printed.
It always returns nil.

meta-p-output is currently used for actually printing the trace because there can be multiple models
running concurrently. It is not likely that users or module writers will have need for meta-p-output
because it is above the level of a model or module, but it is described because its results are seen

when using simultaneous multiple models.

One thing to note about meta-p-output is that it will evaluate the args separately for each stream to
which the output is written. If there are no output streams (all models have :v set to nil for example)
then the args are not evaluated. Thus, if there are any actions with side effects in the args the results

could differ when the number of streams to which output is written changes.

95



Examples:

> (meta-p-output "This is from ~s" "meta-p-output")
This is from "meta-p-output"

NIL

E> (meta-p-output "This is from ~s" "meta-p-output")

#|Warning: No current meta-process in call to meta-p-output |#
NIL

command-output

Syntax:
command-output control-string {args*} -> nil
Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

Description:

command-output is used to print output to the current model’s command output stream, which
defaults to *standard-output* and is controlled by the printing module. It passes the provided control-
string and args to format for output followed by a new line if command output is enabled for the
current model. It does not test the control-string or args for correctness, so any problems will likely

trigger an error or warning from the format function.
If there is no current model a warning is printed.
It always returns nil.

Command-output is generally for use by things that print in response to being called outside of a
model run, like the display of parameters from sgp or the chunk printing from pprint-chunks and can

be turned off by the modeler using a parameter or the no-output command.

Examples:

> (command-output "A command-output ~s" 'example)
A command-output EXAMPLE
NIL

> (command-output "A command-output ~s" 'example)

#|Warning: get-module called with no current model. |#
NIL

96



no-output

Syntax:

no-output {forms*} -> [ result | nil ]
Arguments and Values:

forms ::= a Lisp form to evaluate
result ::= the return value from the last form evaluated

Description:
no-output is used to disable the command output stream of the current model while evaluating the
forms provided. It returns the value returned by the last form evaluated.

If there is no current model a warning is printed and nil is returned.

no-output can be useful if one wants to get the results from some other ACT-R command without
having to see any of its output and without needing to explicitly disable and then possibly re-enable

the command output parameter.

Examples:

> (no-output (pprint-chunks ))
(EXTERNAL LIGHT-GRAY INTERNAL DIGIT CURRENT FULL FREE BLACK ...)

> (no-output (sgp-fct '(:v :1f)))
(T 1.0)

E> (no-output (sgp-fct '(:v :1f)))
#|Warning: get-module called with no current model. |#
NIL

capture-model-output

Syntax:

capture-model-output {forms*} -> [ output-string | nil ]
Arguments and Values:

forms ::= a Lisp form to evaluate
result ::= a string containing all the model output generated by the forms

Description:

97



Capture-model-output is used to save a model’s output to a string and return it. It sets both the :v and
:cmdt parameters to a string-output stream before evaluating the forms provided. After evaluating the
forms those parameters are returned to the values they had when the command started. It returns the

string generated by the string-output stream.
If there is no current model a warning is printed and nil is returned.

Examples:

> (capture-model-output (pprint-chunks free busy))
"FREE
ISA CHUNK

BUSY
ISA CHUNK

> (capture-model-output (model-output "Model...") (command-output "Command..."))
"Model. ..
Command. ..

E> (capture-model-output (pprint-chunks))
#|Warning: get-module called with no current model. |#
NIL

print-warning

Syntax:

print-warning control-string {args*} -> [ result | nil ]

Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

result ::= a string containing the output

Description:

print-warning is used to print a warning message to *error-output®. It passes the provided control-
string and args to format for output after printing “#| Warning:” and followed by “[#” and a new line.
It does not test the control-string or args for correctness, so any problems will likely trigger an error

or warning from the format function.

If *error-output* is nil then the output string from the call to format is returned, otherwise it returns

nil.

98



print-warning is generally for use in printing notices of problems or errors that occurred within a

module or command.

Examples:

> (print-warning "This is a warning from ACT-R ~a" "!!")
#|Warning: This is a warning from ACT-R !! |#

NIL

model-warning

Syntax:
model-warning control-string {args*} -> nil
Arguments and Values:

control-string ::= a Lisp format control (a format string or function as returned by the formatter macro)
args ::= arguments as required by the control-string provided

Description:

model-warning is used to print a warning to the current model’s model output stream and to
*standard-error* if it is a different stream. It passes the provided control-string and args to format for
output after printing “#| Warning:” and followed by “|#” and a new line if model output is enabled for
the current model and model-warnings are not disabled. It does not test the control-string or args for

correctness, so any problems will likely trigger an error or warning from the format function.

If there is no current model a warning is printed. If there is more than one model currently defined

then the warning will also include the name of the model in which the warning was generated.
It always returns nil.

Model-warning is generally for use when the model causes a problem within a module or a less
serious situation has occurred which the modeler might want to be informed about but may often be

safely ignore.

Examples:

> (model-warning "This may not be what you wanted: ~s" 'bad-value)
#|Warning: This may not be what you wanted: BAD-VALUE |#
NIL

99



> (with-model bar (model-warning "There is more than one model defined."))
#|Warning (in model BAR): There is more than one model defined. |#

NIL

E> (model-warning "This may not be what you wanted: ~s" 'bad-value)

#|Warning: get-module called with no current model. |#
NIL

suppress-warnings

Syntax:
suppress-warnings {form*} -> result
Arguments and Values:

form ::= a Lisp form to evaluate
result ::= the return value from the last form evaluated

Description:

Suppress-warnings is used to turn off all ACT-R warnings which would normally be shown while

evaluating the forms provided. It returns the value returned by the last form evaluated.

Note: suppress-warnings may also stop the output of Lisp warnings and errors because it binds
*error-output* to a null stream during the evaluation of the forms. Because of that, suppress-
warnings is only recommended for use in situations where one is certain that the code is correct and

the warnings can be ignored.

Examples:

1> (progn (add-dm (a isa visual-object value b)) (sgp :1f .5))

#|Warning: Creating chunk B of default type chunk |#

#|Warning: Changing declarative parameters with chunks in dm not supported. [#
#|Warning: Results may not be what one expects. |#

(0.5)

2> (reset)
DEFAULT

3> (suppress-warnings (add-dm (a isa visual-object value b)) (sgp :1f .5))
(0.5)

10



Running the system

Running the system means executing the events that are on the queue of the current meta-process.
Those events may lead to other events being scheduled and that will continue until the condition
specified for the command used to run the system is met. There are several commands for running
the system which specify various stopping conditions as well as allowing users to specify arbitrary

end conditions.

The system can run in either a simulated time frame where the events are processed as fast as
possible or in “real time” where the execution of the events is synchronized with the passing of time
from some other source. Generally, real time is associated with the actual passage of time and the
model is constrained to that, but it is possible to synchronize it with other external time sources and

that is covered in another section. For now, we will focus mostly on simulated time running.

When running in simulated time the time stamps on the events control the advancement of the clock
in the meta-process. When a meta-process is created or whenever it is reset the current time is set to
0.0. The event with the lowest time stamp is always the next one executed and if that time is greater
than the current time the clock is updated. This allows the system to run much faster than real time
for most models. The important thing to remember is that the timing of the events is produced by the
modules which instantiate the ACT-R theory and thus the predictions do not depend on how the

model is run or the source of the clock.

An important thing to note is that it is a meta-process which is run. All of the models that are
included in that meta-process will be running simultaneously. The same commands are used to run

the system regardless of how many models or meta-processes are defined.
Commands

run

Syntax:

run run-time {:real-time real-time?} -> [ nil | time-passed event-count break? ]

Arguments and Values:

run-time ::= a number greater than 0 indicating the number of seconds to run

real-time? ::= a generalized boolean to indicate whether to run in real time (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run
event-count ::= a number indicating how many events were executed during this run

10



break? ::= [ t| nil ] indicating whether the run terminated due to a break event
Description:

run will run the current meta-process until there are either no events remaining to execute, run-time
seconds have passed, or a break event is executed. If the real-time? keyword parameter is provided

with a non-nil value then the model will be run in real time.

If run-time is not a number greater than 0, or there is no current meta-process then a warning is

printed and nil is returned.

If there is a meta-process to run, then when one of the end conditions has been met, run will output a

line in the trace to indicate which condition terminated the run and it will return three values.

The first value is the number of seconds that passed for the model during this run. The second is a
count of the number of events that were executed (which could be greater than the number of lines
shown in the trace because some events may have no output), and the last indicates whether or not the

trial was terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

This is the primary function used for running the system and the one you are most likely to encounter

when looking at model files.

Examples:

For this example the count model from unit 1 of the ACT-R tutorial is the only model that is loaded.

> (run 10)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.300 PROCEDURAL CLEAR-BUFFER GOAL
0.300 PROCEDURAL CONFLICT-RESOLUTION
0.300  ------ Stopped because no events left to process
0.3
46
NIL
> (run .1 :real-time t)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.050 DECLARATIVE START-RETRIEVAL

10



0.050 PROCEDURAL CONFLICT-RESOLUTION
0.100 DECLARATIVE RETRIEVED-CHUNK C
0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL C
0.100 PROCEDURAL CONFLICT-RESOLUTION
0.100 PROCEDURAL PRODUCTION-SELECTED INCREMENT
0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
0.100 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
0.160  ------ Stopped because time limit reached
0.1
19
NIL
> (run 10)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.050 DECLARATIVE START-RETRIEVAL
0.050 PROCEDURAL CONFLICT-RESOLUTION
0.075  ------ BREAK-EVENT
0.075
13
T
E> (run 0)
#|Warning: run-time must be a number greater than zero. |#
NIL

E> (run 'foo)

#|Warning: run-time must be a number greater than zero. |#
NIL

E> (run 10)

#|Warning: run called with no current meta-process. |#
NIL

run-full-time

Syntax:
run-full-time run-time {:real-time real-time?} -> [ nil | time-passed event-count break? ]

Arguments and Values:

run-time ::= a number greater than 0 indicating the number of seconds to run

real-time? ::= a generalized boolean to indicate whether to run in real time (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run
event-count ::= a number indicating how many events were executed during this run

break? ::= [ t| nil ] indicating whether the run terminated due to a break event

Description:

run-full-time will run the current meta-process until either run-time seconds have passed or a break

event is executed. This differs from the run command because unless there is a break event run-full-

10



time will always run for the full run-time specified. If the real-time? keyword parameter is provided

with a non-nil value then the model will be run in real time.

If run-time is not a number greater than 0, or there is no current meta-process then a warning is

printed and nil is returned.

If there is a meta-process to run, then when one of the end conditions has been met, run-full-time will

output a line in the trace to indicate which condition terminated the run and it will return three values.

The first value is the number of seconds that passed for the model. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the trial was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

This is also a commonly used function for running models and it is useful when fixed time sequences

are desired.

Examples:

For this example the count model from unit 1 of the ACT-R tutorial is the only model that is loaded.

> (run-full-time 1.0)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.300 PROCEDURAL CONFLICT-RESOLUTION
1.000  ------ Stopped because time limit reached
1.0
47
NIL

> (run-full-time 2.0)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.300 PROCEDURAL CLEAR-BUFFER GOAL
0.300 PROCEDURAL CONFLICT-RESOLUTION
0.550  ------ BREAK-EVENT

0.55

47

T

E> (run-full-time -1)
#|Warning: run-time must be a number greater than zero. |#
NIL

10



E> (run-full-time "2.0")

#|Warning: run-time must be a number greater than zero. |#
NIL

E> (run-full-time 1.0)

#|Warning: run-full-time called with no current meta-process. |#
NIL

run-until-time

Syntax:
run-until-time end-time {:real-time real-time?} -> [ nil | time-passed event-count break? ]
Arguments and Values:

end-time ::= a number greater than 0 indicating the explicit time at which the run should stop
real-time? ::= a generalized boolean to indicate whether to run in real time (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run
event-count ::= a number indicating how many events were executed during this run

break? ::= [ t| nil ] indicating whether the run terminated due to a break event

Description:

run-until-time will run the current meta-process until either the specified end-time is reached
(including if the current time is greater than the specified time) or a break event is executed. This
differs from the run and run-full-time commands because an explicit time is specified instead of a
duration time. If the real-time? keyword parameter is provided with a non-nil value then the model

will be run in real time.

If end-time is not a number greater than 0, or there is no current meta-process then a warning is

printed and nil is returned.

If there is a meta-process to run, then when one of the end conditions has been met, run-until-time
will output a line in the trace to indicate which condition terminated the run and it will return three

values.

The first value is the number of seconds that passed for the model. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the trial was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.
Examples:

10



For this example the count model from unit 1 of the ACT-R tutorial is the only model that is loaded.

1> (run-until-time .125)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.050 DECLARATIVE START-RETRIEVAL
0.050 PROCEDURAL CONFLICT-RESOLUTION
0.100 DECLARATIVE RETRIEVED-CHUNK C
0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL C
0.100 PROCEDURAL CONFLICT-RESOLUTION
0.100 PROCEDURAL PRODUCTION-SELECTED INCREMENT
0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
0.100 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
0.125  ------ Stopped because time limit reached
0.125
20
NIL
2> (run-until-time .100)
0.125  ------ Stopped because end time already passed
(0]
(0]
NIL
3> (run-until-time 10.0)
0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT
2
0.150 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.150 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.150 DECLARATIVE START-RETRIEVAL
0.300 PROCEDURAL CONFLICT-RESOLUTION
10.000  ------ Stopped because time limit reached
9.875
28
NIL
> (run-until-time .5)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.150 PROCEDURAL CONFLICT-RESOLUTION
0.200  ------ BREAK-EVENT
0.2
26
T

E> (run-until-time -10)

#|Warning: end-time must be a number greater than zero. |#
NIL

E> (run-until-time 1)

10



#|Warning: run-until-time called with no current meta-process. |#
NIL

run-until-condition

Syntax:
run-until-condition condition {:real-time real-time?} -> [ nil | time-passed event-count break? ]

Arguments and Values:

condition ::= a function or the name of a function that takes no parameters

real-time? ::= a generalized boolean to indicate whether to run in real time (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run
event-count ::= a number indicating how many events were executed during this run

break? ::= [ t| nil ] indicating whether the run terminated due to a break event

Description:

run-until-condition will run the current meta-process until either the provided condition function
returns non-nil, there are no events left to process, or a break event is executed. The condition
function will be called before every event is executed and as soon as it returns non-nil the run is
terminated. If the real-time? keyword parameter is provided with a non-nil value then the model will

be run in real time.

If condition is not a function or the name of a function, or there is no current meta-process then a

warning is printed and nil is returned.

If there is a meta-process to run, then when one of the end conditions has been met, run-until-
condition will output a line in the trace to indicate which condition terminated the run and it will

return three values.

The first value is the number of seconds that passed for the model. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the trial was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

Examples:

For this example the count model from unit 1 of the ACT-R tutorial is the only model that is loaded.

10



> (run-until-condition (lambda () nil))

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.300 PROCEDURAL CLEAR-BUFFER GOAL
0.300 PROCEDURAL CONFLICT-RESOLUTION
0.300  ------ Stopped because no events to process
0.3
46
NIL
> (run-until-condition (lambda () nil))
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.250 PROCEDURAL PRODUCTION-SELECTED STOP
0.250 PROCEDURAL BUFFER-READ-ACTION GOAL
0.275  ------ BREAK-EVENT
0.275
42
T

1> (defvar *count* 0)
*COUNT™

2> (defun stop-at-10 ()
(> (incf *count*) 10))

STOP-AT-10
3> (run-until-condition 'stop-at-10)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.050  ------ Stopped because condition is true
0.05
10
NIL

E> (run-until-condition "not-a-function")
#|Warning: condition must be a function. |#
NIL

E> (run-until-condition (lambda () nil))
#|Warning: run-until-condition called with no current meta-process. |#
NIL

run-n-events

Syntax:
run-n-events num-events {:real-time real-time?} -> [ nil | time-passed event-count break? ]

Arguments and Values:



num-events ::= a number greater than 0 indicating the number of events to run

real-time? ::= a generalized boolean to indicate whether to run in real time (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run
event-count ::= a number indicating how many events were executed during this run

break? ::= [ t| nil ] indicating whether the run terminated due to a break event

Description:

run-n-events will run the current meta-process until either num-events events have been processed,
there are no events remaining, or a break event is executed. If the real-time? keyword parameter is

provided with a non-nil value then the model will be run in real time.

If num-events is not a number greater than 0, or there is no current meta-process then a warning is

printed and nil is returned.

If there is a meta-process to run, then when one of the end conditions has been met, run-n-events will

output a line in the trace to indicate which condition terminated the run and it will return three values.

The first value is the number of seconds that passed for the model. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the

trace because some events may have no output), and the last indicates whether or not the trial was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

Examples:

For this example the count model from unit 1 of the ACT-R tutorial is the only model that is loaded.

> (run-n-events 10)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.050  ------ Stopped because event limit reached
0.05
10
NIL

> (run-n-events 100)

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION

0.000 PROCEDURAL PRODUCTION-SELECTED START

0.000 PROCEDURAL BUFFER-READ-ACTION GOAL

0.300 PROCEDURAL CLEAR-BUFFER GOAL

10



0.300 PROCEDURAL CONFLICT-RESOLUTION
0.300  ------ Stopped because no events to process
0.3
46
NIL
E> (run-n-events 'a)
#|Warning: event-count must be a number greater than zero. |#
NIL
E> (run-n-events 10)

#|Warning: run-n-events called with no current meta-process. |#
NIL

run-step

Syntax:
run-step -> [ nil | time-passed event-count break? ]

Arguments and Values:

time-passed ::= a number indicating the number of seconds in model time which passed during the run
event-count ::= a number indicating how many events were executed during this run
break? ::= [ t| nil ] indicating whether the run terminated due to a break event

Description:

run-step will run the current meta-process one event at a time. For each event a summary of the
event is printed to *standard-output* and the user is prompted to respond as to whether that event
should be executed, deleted, or the run terminated. The user can also show various debugging
information before deciding what to do with the current event. The response is read from *standard-
input* and should be one of the characters “e” for execute, “d” for delete, “a” for abort or “q” for quit
“a” and “q” have the same effect) for determining how to handle the event or “s” for showing the
current event queue, “w” to show the events on the waiting queue, or “b” to show the current buffer
contents for the debugging information. It will continue to run the model until the user requests it to
stop, there are no events remaining, or a break event is executed. Using run-step cannot run the

model in real time.
If there is no current meta-process then a warning is printed and nil is returned.

If there is a meta-process to run, then when one of the end conditions has been met, run-step will

output a line in the trace to indicate which condition terminated the run and it will return three values.

11



The first value is the number of seconds that passed for the model. The second is a count of the
number of events that were executed (which could be greater than the number of lines shown in the
trace because some events may have no output), and the last indicates whether or not the trial was

terminated by a break event. If it was, then the third value will be t otherwise it will be nil.

run-step can be a useful function for debugging a model because it allows one to walk through the

events one at a time and stop to inspect the state of the system before or after any one.

Examples:

For this example the count model from unit 1 of the ACT-R tutorial is the only model that is loaded.

> CG-USER(76): (run-step)

Next Event: 0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
[Albort (or [q]uit)
[D]elete

[S]how event queue
[W]aiting events
[BJuffer contents

[E]xecute
e
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
Next Event: 0.000 PROCEDURAL CONFLICT-RESOLUTION
[Albort (or [q]uit)
[D]elete

[S]how event queue
[W]aiting events
[B]Juffer contents
[E]xecute

S

Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION

0.000 GOAL #<Function CLEAR-DELAYED-GOAL>
Next Event: 0.000 PROCEDURAL CONFLICT-RESOLUTION
[Albort (or [q]uit)
[D]elete

[S]how event queue
[W]aiting events
[B]uffer contents

[E]lxecute

w

Events waiting to be scheduled:

Next Event: 0.000 PROCEDURAL CONFLICT-RESOLUTION
[Albort (or [q]uit)

[D]elete

[S]how event queue
[W]aiting events
[B]Juffer contents
[E]lxecute

b

RETRIEVAL: empty
IMAGINAL: empty
MANUAL: empty
GOAL:
FIRST-GOAL-0

11



ISA COUNT-FROM
START 2

END 4

COUNT NIL

IMAGINAL-ACTION: empty
VOCAL: empty

AURAL: empty
PRODUCTION: empty
VISUAL-LOCATION: empty
AURAL-LOCATION: empty
VISUAL: empty

Next Event: 0.000 PROCEDURAL
[Albort (or [q]uit)
[D]elete

[S]how event queue
[W]aiting events
[B]uffer contents
[E]lxecute

e

0.000 PROCEDURAL
Next Event: 0.000 PROCEDURAL
[Albort (or [q]uit)
[D]elete
[S]how event queue
[W]aiting events
[B]uffer contents
[E]lxecute
e

0.000 PROCEDURAL
Next Event: 0.000 PROCEDURAL
[Albort (or [q]uit)
[D]elete
[S]how event queue
[W]aiting events
[B]uffer contents
[E]lxecute

q

0.0
3
NIL

E> (run-step)

CONFLICT-RESOLUTION

CONFLICT-RESOLUTION

PRODUCTION-SELECTED START

PRODUCTION-SELECTED START
START

Stepping stopped

#|Warning: run-step called with no current meta-process. |#

NIL

11



Scheduling Events

The event system that drives ACT-R models is also available to the modeler for use in writing
experiments or “driver code” for the models. In fact, because ACT-R relies on the events to trigger
actions such as conflict-resolution, this is the preferred mechanism for creating experiments or
making other run-time changes. It is also essential when adding new modules to schedule events to
affect any changes which the module has on buffers as well as when changing its internal state or

affecting outside actions.

When writing experiments for a model, one useful approach is to have the model’s actions trigger the
events that make changes in such a way that one only needs to call one of the ACT-R “run” functions
to execute both the model and the task. That has the benefit of not introducing any discrepancies into
the model timing relative to the task and also allows for the task to be run using the provided stepping
tools or continued after a break in the model. That is not always practical for a simple model/task
and often one may want to use a run, stop, change, run again style. When using the run-stop style, it
is still important to schedule any direct effects that one makes to buffers or chunks so that the model

properly notes the changes.

In general, most of the module commands will schedule some event as a response, but many of the
general commands which perform similar actions may not. For example, mod-chunk (being a
general command) does not generate an event, but mod-focus (a command specific to the goal

module) does.

Details of events

Each event has several attributes associated with it that are specified when the event is created with
one of the scheduling functions provided. Most of the time the user will not need to work with the
events directly, but there are some situations where access to the details of an event may be useful
(for instance the event hooks allow one to add functions which see each event before or after it is

executed). Here are the attributes which an event has

time - The simulation time at which the event will occur. All times are rounded to the
millisecond when the event is created.

priority - When multiple events are scheduled to occur at the same time they are ordered by
their priorities. The priority is either a number or one of the keywords :max or :min. An
event with a priority of :max will occur before any event at the same time which has a

11



priority other than :max. An event with a priority of :min will occur after any event at the
same time which has a priority other than :min. An event with a numeric priority will be
executed before any other events at the same time which have a lower numeric priority i.e.
numeric priorities are ordered from highest to lowest with no bounds on the numbers given.
Events which have both the same time and same priority do not have any guarantee as to
ordering.

action - The function that will be called when this event is executed.

parameters - The list of values which will be passed to the action function when the event is
executed.

model - The name of the model in which the event was generated.

module - The name of the module which generated the event or the keyword :nene if no
module was specified when the event was created.

destination - If this action is to be sent to a specific module, then that module’s name can be
given as the destination and the instance of that module will be passed as the first parameter to
the action. Using this is can be simpler and more informative than just making the instance of
the module the first element in the parameters list.

details - The details can be a string which will be output in the trace for the event. If details
are specified that is all that is printed after the time, model and module. If the details are not
specified then the action and parameters are printed in the trace.

output - The output controls under which trace-detail levels the event will be displayed. It
can have a value of t, high, medium, low, or nil. A value of t or high means it will be
displayed only for the high trace detail setting and nil means not to show it at all. Medium
means that it should be shown under both medium and high trace details and a value of low
means it will be shown for any trace detail setting. The output value effectively specifies the
lowest detail setting for which the output will be displayed.

The specific implementation of an event is not part of the API for ACT-R (one should not assume

anything about the structure or object that is returned as an event). To get at the detailed information

a set of accessors are provided. Because all of the accessors operate the same way they are all

presented in one description. Note that the accessors are not intended to be used to change a value of

an event only to read the value that it has - even though the specific implementation may allow one to

use them with setf to change a value that is not a recommended practice and could result in

unexpected consequences within the model.

Event Accessors

Syntax:

evt-time event -> time

11



evt-priority event -> priority
evt-action event -> action
evt-params event -> parameters
evt-model event -> model
evt-module event -> module
evt-destination event -> destination
evt-details event -> details
evt-output event -> output

Arguments and Values:

event ::= an ACT-R event
time, priority, action, parameters, model, module, destination, details, output ::= the corresponding attribute
of event

Description:

Each of the event accessors returns the corresponding attribute from the event specified. There is no
error checking to make sure that event is a valid ACT-R event. If it is not a valid event, then a Lisp

error is likely to occur with the current implementation of events.

Examples:

> (let ((event (schedule-event 30 'model-output :params '('"some text"))))
(format t "~S~%" (evt-time event))
(format t "~S~%" (evt-action event))
(format t "~S~%" (evt-module event))
(format t "~S~%" (evt-params event)))

30.0

MODEL -OUTPUT
:NONE

("some text")
NIL

E> (evt-time 'not-an-event)

Error: Non-structure argument NOT-AN-EVENT passed to ref of structure
slot 1

[condition type: SIMPLE-ERROR]

General Event Commands
format-event

Syntax:

format-event event -> [event-string | nil ]
Arguments and Values:

event ::= an ACT-R event
event-string ::= a string that contains the text that would be printed for this event during a trace

11



Description:

format-event can be used to get a string with the representation of what the provided event will look

like in the trace when it is executed. If event is not a valid ACT-R event then nil is returned.

This would likely be used with some sort of stepping tool or data logger which was tied into the event

hooks to be able to record or display the event independently of the trace.

Examples:

> (let ((event (schedule-event 30 'model-output :params '("some text"))))
(format-event event))

" 30.000 NONE MODEL-OUTPUT some text "

E> (format-event 'not-an-event)
NIL

event-displayed-p

Syntax:

event-displayed-p event -> [t | nil]
Arguments and Values:

event ::= an ACT-R event
Description:

event-displayed-p can be used to determine whether or not an event would be printed given the
current setting of the trace detail parameter and any potential trace filter settings of the model in
which the event was generated. If event would be printed with the current settings of that model’s
parameters, then t is returned and if not then nil is returned. If event is not an ACT-R event then nil is

returned.

This command might be useful when working with the event hooks or for developing an interactive

stepper or tracing tool.

Examples:

> (let ((event (schedule-event 30 'model-output :params '("some text") :output 'medium)))
(no-output (sgp :trace-detail high))
(format t "trace-detail high output medium: ~S~%" (event-displayed-p event))
(no-output (sgp :trace-detail medium))
(format t "trace-detail medium output medium: ~S~%" (event-displayed-p event))
(no-output (sgp :trace-detail low))

11



(format t "trace-detail low output medium: ~S~%" (event-displayed-p event)))
trace-detail high output medium: T
trace-detail medium output medium: T
trace-detail low output medium: NIL
NIL

E> (event-displayed-p 'not-an-event)
NIL

Scheduling Commands

Events can be generated using a variety of scheduling functions described here, as well as
automatically by certain module commands. There are three different types of events that can be
generated: normal (or model events), maintenance events, and break events. Model events are things
that are generated by the “cognitive” modules or outside actions which the model may need to detect
(in particular, the conflict resolution mechanism of the procedural module is sensitive only to model
events). Maintenance events are generated by the non-theory parts of the system or things which are
not of importance to the model (for instance an event which signals the time at what a particular run
is going to stop). Practically, the only difference between model and maintenance events is in
whether events that are waiting to be scheduled consider any event or only model events (they are
generated with the same functions). The break events are a special type of maintenance event in that
whenever a break event is executed the current run is terminated. Break events are generated with a

separate set of functions because they do not perform any actions.

When an event’s action is executed the current model will be set to the model which generated the
event (if there is one). When working with a single model that does not make a difference, but in the
context of multiple models it means that the action function does not need to use with-model or make

any explicit checks to ensure that it is working in the proper context.

schedule-event

Syntax:
schedule-event time action {event-descriptors} -> [ actr-event | nil ]
Arguments and Values:

time ::= a number representing an absolute time for the event in seconds or milliseconds
action ::= a function name or function which specifies the action to be evaluated
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:module module-value |

:destination destination-value |

:priority priority-value |

11



:params params-value |
:time-in-ms time-units |
:maintenance maintenance-value |
:details details-value |
:output output-value]
module-value ::= a symbol which names the module which is scheduling the event (default :none)
destination-value ::= a symbol which names a module (default nil)
priority-value ::= [ :max | :min | a number] (default 0)
params-value ::= a list of values to pass to the action (default nil)
time-units ::= a generalized boolean indicating whether the time value is seconds or milliseconds
(default is nil)
maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)
details-value ::= a string to output in the trace or nil (default nil)
output-value ::= [t | high | medium | low | nil] (default t)
actr-event ::= the actual event used by the meta-process

Description:

schedule-event creates a new event using the supplied parameters for its corresponding attributes and
the current model will be used for its model. It will then be added to the event queue of the current

meta-process to occur at the specific time provided and the event will be returned.

If there are any events waiting to be scheduled they are checked to see if this new event allows them
to be scheduled.

If any of the parameters are invalid or there is no current model or current meta-process then a

warning is printed, no event is scheduled, and nil is returned.

Examples:

>(schedule-event 10 'goal-focus-fct :priority :min :params '(new-goal-chunk) :output nil)
#S(ACT-R-EVENT ...)

> (schedule-event 45 (lambda (module) (do-something module)) :maintenance t
:destination :some-module :details "Do Something")
#S(ACT-R-MAINTENANCE-EVENT ...)

> (mp-show-queue)

Events in the queue:
10.000 NONE GOAL-FOCUS NEW-GOAL-CHUNK
45.000 NONE Do Something

E> (schedule-event 'bad-time (lambda ()))

#|Warning: Time must be non-negative number. |#

NIL

E> (schedule-event 0 'bad-function-name)

#|Warning: Can't schedule BAD-FUNCTION-NAME not a function or function name. |#
NIL

E> (schedule-event 10 'goal-focus :priority :min :params '(new-goal-chunk) :output nil)

11



#|Warning: Can't schedule GOAL-FOCUS because it is a macro and not a function. |#
NIL

E> (schedule-event 0 (lambda ()) :priority 'value)
#|Warning: Priority must be a number or :min or :max. |#
NIL

E> (schedule-event 0 (lambda (x)) :params 10)
#|Warning: params must be a list. |#
NIL

E> (schedule-event 0 'pprint)
#|Warning: schedule-event called with no current model. |#
NIL

schedule-event-relative

Syntax:
schedule-event-relative delta-time action {event-descriptors} -> [ actr-event | nil ]
Arguments and Values:

delta-time ::= a number representing how many seconds or milliseconds to delay before executing the
event
action ::= a function name or function which specifies the action to be evaluated
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:module module-value |
:destination destination-value |
:priority priority-value |
:params params-value |
:time-in-ms time-units |
:maintenance maintenance-value |
:details details-value |
:output output-value]
module-value ::= a symbol which names the module which is scheduling the event (default :none)
destination-value ::= a symbol which names a module (default nil)
priority-value ::= [ :max | :min | a number] (default 0)
params-value ::= a list of values to pass to the action (default nil)
time-units ::= a generalized boolean indicating whether the time value is seconds or milliseconds
(default is nil)
maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)
details-value ::= a string to output in the trace or nil (default nil)
output-value ::= [t | high | medium | low | nil] (default t)
actr-event ::= the actual event used by the meta-process

Description:

schedule-event-relative creates a new event using the supplied parameters for its corresponding

attributes and the current model will be used for its model. It will then be added to the event queue of

11



the current meta-process to occur delta-time seconds (or milliseconds if :time-in-ms is specified as

true) from the current time and the event will be returned.

If there are any events waiting to be scheduled they are checked to see if this new event allows them
to be scheduled.

If any of the parameters are invalid or there is no current model or current meta-process then a

warning is printed, no event is scheduled, and nil is returned.

Examples:

see schedule-event for related examples

schedule-event-after-module

Syntax:
schedule-event-after-module after-module action {event-descriptors} -> [ actr-event | nil ] [t | nil | :abort]
Arguments and Values:

after-module ::= a symbol which names a module
action ::= a function name or function which specifies the action to be evaluated
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:module module-value |
:destination destination-value |
:params params-value |
:maintenance maintenance-value |
:details details-value |
:output output-value |
:delay delay-value |
:include-maintenance include-maintenance-value |
:dynamic dynamic-value]
module-value ::= a symbol which names the module which is scheduling the event (default :none)
destination-value ::= a symbol which names a module (default nil)
params-value ::= a list of values to pass to the action (default nil)
maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)
details-value ::= a string to output in the trace or nil (default nil)
output-value ::= [t | high | medium | low | nil] (default t)
delay-value ::= [ t | nil | :abort ] (default t)
include-maintenance-value ::= a generalized boolean indicating whether to consider maintenance events
when determining whether to schedule this event (default nil)
dynamic-value ::= generalized boolean indicating whether to allow rescheduling under real time mode
(default nil)
actr-event ::= the actual event used by the meta-process

12



Description:

schedule-event-after-module creates a new event using the supplied parameters for its corresponding

attributes and the current model for its model.

If there is an event currently in the event queue with the module name of after-module and the same
model as the current model and either include-maintenance-value is t or the event is not a
maintenance event, then this new event is placed into the event queue at the time of the next such
matching event (lowest time) with a priority of :min. If there are any events waiting to be scheduled

they are checked to see if this new event allows them to be scheduled.

If there is no event in the event queue that matches on model, module and of the appropriate type,

then the value of delay-value determines what happens to the new event.

If delay-value is t then the new event is placed into the set of waiting events to be scheduled after an

event which matches the conditions necessary to schedule this new event.

If delay-value is nil then the new event is added to the event queue for immediate execution. Its time

will be set to the current time and its priority will be :max.

If delay-value is :abort then the new event is discarded without being scheduled or placed onto the

waiting queue.

The setting of dynamic-value does not matter under normal circumstances, but may be useful if a
custom clock is provided for real time operations. See the Configuring Real Time Operations section

for details of how it works.

schedule-event-after-module returns two values. If there is no current model or current meta-process

or any of the parameters are invalid, then no event is scheduled and both values are nil.

If an event is scheduled then the first value will be the event and the second value will be t if the

event is in the waiting queue or nil if it is in the event queue.

If the event is aborted, the first value will be nil and the second value will be :abort.

Examples:

12



1> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION
1

2> (schedule-event-after-module 'procedural (lambda ()) :details "has a matching event")
#S(ACT-R-EVENT ..)
NIL

3> (mp-show-queue)
Events in the queue:
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 NONE has a matching event
2

4> (schedule-event-after-module :vision (lambda ()) :details "no event so wait" :delay t)
#S(ACT-R-EVENT ..)
T

5> (mp-show-queue)
Events in the queue:
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 NONE has a matching event
2

6> (mp-show-waiting)
Events waiting to be scheduled:

NIL NONE no event so wait Waiting for: (MODULE VISION NIL)
1
7> (schedule-event-after-module :motor (lambda ()) :details "no event so go now" :delay
nil)
#S(ACT-R-EVENT ..)
NIL

> (mp-show-queue)
Events in the queue:

0.000  NONE no event so go now
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 NONE has a matching event

3

8> (schedule-event-after-module :audio (lambda ()) :details "aborted" :delay :abort)
" ABoRT

E> (schedule-event-after-module 'bad-module-name (lambda ()))

#|Warning: after-module must name a module. |#

NIL
NIL

schedule-event-after-change

Syntax:
schedule-event-after-change action {event-descriptors} -> [ actr-event | nil ] [ t | nil | :abort]
Arguments and Values:

action ::= a function name or function which specifies the action to be evaluated
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:module module-value |

12



:destination destination-value |
:params params-value |
:maintenance maintenance-value |
:details details-value |
:output output-value|
:delay delay-value |
:include-maintenance include-maintenance-value |
:dynamic dynamic-value]
module-value ::= a symbol which names the module which is scheduling the event (default :none)
destination-value ::= a symbol which names a module (default nil)
priority-value ::= [ :max | :min | a number] (default 0)
params-value ::= a list of values to pass to the action (default nil)
maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)
details-value ::= a string to output in the trace or nil (default nil)
output-value ::= [t | high | medium | low | nil] (default t)
delay-value ::= [ t | nil | :abort ] (default t)
include-maintenance-value ::= a generalized boolean indicating whether to consider maintenance events
when determining when to schedule this event (default nil)
dynamic-value ::= generalized boolean indicating whether to allow rescheduling under real time mode
(default nil)
actr-event ::= the actual event used by the meta-process

Description:

schedule-event-after-change creates a new event using the supplied parameters for its corresponding

attributes and the current model for its model.

If there is any event currently in the event queue with the same model as the current model and either
include-maintenance-value is t or the event is not a maintenance event, then this new event is placed
into the event queue at the time of the next such matching event (lowest time) with a priority of :min.
If there are any events waiting to be scheduled they are checked to see if this new event allows them
to be scheduled.

If there is no event in the event queue that matches on model and is of the appropriate type, then the

value of delay-value determines what happens to the new event.

If delay-value is t then the new event is placed into the set of waiting events to be scheduled after an

event which matches the conditions necessary to schedule this new event.

If delay-value is nil then the new event is added to the event queue for immediate execution. Its time

will be set to the current time and its priority will be :max.

12



If delay-value is :abort then the new event is discarded without being scheduled or placed onto the

waiting queue.

The setting of dynamic-value does not matter under normal circumstances, but may be useful if a
custom clock is provided for real time operations. See the Configuring Real Time Operations section

for details of how it works.

schedule-event-after-change returns two values. If there is no current model or current meta-process
or any of the parameters are invalid, then no event is scheduled and both values are nil. If an event is
scheduled then the first value will be the event and the second value will be t if the event is in the
waiting queue or nil if it is in the event queue. If the event is aborted, the first value will be nil and

the second value will be :abort.

Examples:

see schedule-even-after-module for related examples

schedule-periodic-event

Syntax:
schedule-periodic-event period action {event-descriptors} -> [ actr-event | nil ]
Arguments and Values:

period ::= a number indicating how many seconds or milliseconds after which this action should be
evaluated again
action ::= a function name or function which specifies the action to be evaluated
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:module module-value |
:destination destination-value |
:priority priority-value |
:params params-value |
:time-in-ms time-units |
:maintenance maintenance-value |
:details details-value |
:output output-value|
:initial-delay initial-delay-value]
module-value ::= a symbol which names the module which is scheduling the event (default :none)
destination-value ::= a symbol which names a module (default nil)
priority-value ::= [ :max | :min | a number] (default 0)
params-value ::= a list of values to pass to the action (default nil)
time-units ::= a generalized boolean indicating whether the time value is seconds or milliseconds

12



(default is nil)
maintenance-value ::= generalized boolean indicating whether this is a maintenance event (default nil)
details-value ::= a string to output in the trace or nil (default nil)
output-value ::= [t | high | medium | low | nil] (default t)
initial-delay-value ::= a number indicating how many seconds or milliseconds before the first such
event (default 0)
actr-event ::= the actual event used by the meta-process

Description:

schedule-periodic-event creates a new event with a time that is equal to the current time plus initial-
delay and using the other supplied parameters for its corresponding attributes and the current model
for its model which is then added to the event queue of the current meta-process. After that event
occurs a new event will automatically be scheduled to occur period seconds (or milliseconds if :time-
in-ms is specified as true) after that time with the same parameters as the initial one. That
rescheduling will continue every period seconds (or milliseconds) until the event this function

returned is deleted.

If there are any events waiting to be scheduled they are checked to see if this new event allows them

to be scheduled, and every time that it is rescheduled there will be a check of the waiting events.

If any of the parameters are invalid or there is no current model or current meta-process then a

warning is printed, no event is scheduled, and nil is returned.
The scheduled event is returned when successfully created and scheduled.

Note that there are actually two events generated for each occurrence of the event described. The
first is a maintenance event with the priority provided. It schedules the actual event described with
the parameters specified with a priority of :max (so that it should be the next event to execute) and

also schedules the next periodic event at the appropriate delay.

Examples:

1> (schedule-periodic-event 1 (lambda ()
(model-output "Periodic event"))
:initial-delay .5)
#S(ACT-R-PERIODIC-EVENT :TIME 0.5 ..)

2> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION

0.500 NONE Periodic-Action Unnamed function 1
2
3> (run 3)

12



0.000 PROCEDURAL CONFLICT-RESOLUTION
Periodic event

0.500 PROCEDURAL CONFLICT-RESOLUTION
Periodic event
1.500 PROCEDURAL CONFLICT-RESOLUTION
Periodic event
2.500 PROCEDURAL CONFLICT-RESOLUTION
3.000  ------ Stopped because time limit reached
3
10
NIL

E> (schedule-periodic-event 'a (lambda ()))
#|Warning: period must be greater than 0. |#
NIL

schedule-break

Syntax:
schedule-break time {event-descriptors} -> [ actr-event | nil ]
Arguments and Values:

time ::= a number representing an absolute time for the event in seconds
event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:details details-value | :priority priority-value]
details-value ::= a string to output in the trace or nil (defaults to nil)
priority-value ::= [ :max | :min | a number] (defaults to :max)

actr-event ::= the actual event used by the meta-process

Description:

schedule-break creates a new break event at the specified time with the priority-value and details-

value provided. The model of the event will be nil (a break event does not need to exist within a

specific model), the module is set to :none, and the output for that event is set to low. A break event

does not have an action and is only used to stop the scheduler. That new event is then added to the

event queue of the current meta-process.

If any of the parameters are invalid or there is no current meta-process then a warning is printed, no

event is scheduled, and nil is returned.

The scheduled event is returned when successfully created and scheduled.

Examples:

1> (schedule-break 12.5 :details "Stop the system now")
#S(ACT-R-BREAK-EVENT ..)

2> (mp-show-queue)



Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION

12.500  ------ BREAK-EVENT Stop the system now
2

E> (schedule-break 'bad-time)

#|Warning: Time must be non-negative number. |#

NIL

E> (schedule-break 10 :priority 'bad-priority)
#|Warning: Priority must be a number or :min or :max. |#
NIL

E> (schedule-break 10)

#|Warning: schedule-break called with no current meta-process. |#
NIL

schedule-break-relative

Syntax:
schedule-break-relative delta-time {event-descriptors} -> [ actr-event | nil ]

Arguments and Values:

delta-time ::= a number representing how many seconds to delay before executing the event

event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair
event-key-value-pair ::= [:details details-value | :priority priority-value]
details-value ::= a string to output in the trace or nil (defaults to nil)
priority-value ::= [ :max | :min | a number] (defaults to :max)
actr-event ::= the actual event used by the meta-process

Description:

schedule-break-relative creates a new break event delta-time seconds from the current time with the

priority-value and details-value provided. The model of the event will be nil (a break event does not

need to exist within a specific model), the module is set to :none, and the output for that event is set

to low. A break event does not have an action and is only used to stop the scheduler. That new event

is then added to the event queue of the current meta-process.

If any of the parameters are invalid or there is no current meta-process then a warning is printed, no

event is scheduled, and nil is returned.

The scheduled event is returned when successfully created and scheduled.

Examples:

see schedule-break for related examples



schedule-break-after-module

Syntax:
schedule-break-after-module after-module {event-descriptors} -> [ actr-event | nil ]
Arguments and Values:

after-module ::= a symbol which names a module

event-descriptors ::= 0 or 1 instance of each possible event-key-value-pair

event-key-value-pair ::= [:details details-value | :delay delay-value | :dynamic dynamic-value]

details-value ::= a string to output in the trace or nil (defaults to nil)

delay-value ::= [ t | nil | :abort ] (defaults to t)

dynamic-value ::= generalized boolean indicating whether to allow rescheduling under real time mode
(defaults to nil)

actr-event ::= the actual event used by the meta-process

Description:

schedule-break-after-module creates a new event using the supplied parameters for its corresponding

attributes which will be scheduled to occur after the next event of the specified module.

If there is an event currently in the event queue with the module name of after-module for any model
then this new break event is placed into the event queue at the time of the next such matching event
(lowest time) with a priority of :min. If there are any events waiting to be scheduled they are

checked to see if this new event allows them to be scheduled.

If there is no event in the event queue that matches on module, then the value of delay-value

determines what happens to the new break event.

If delay-value is t then the new break event is placed into the set of waiting events to be scheduled

after an event which matches the conditions necessary to schedule this new event.

If delay-value is nil then the new break event is added to the event queue for immediate execution.

Its time will be set to the current time and its priority will be :max.

If delay-value is :abort then the new break event is discarded without being scheduled or placed onto

the waiting queue.

12



The setting of dynamic-value does not matter under normal circumstances, but may be useful if a
custom clock is provided for real time operations. See the Configuring Real Time Operations section

for details of how it works.

schedule-break-after-module returns two values. If there is no current meta-process or any of the
parameters are invalid, then no event is scheduled and both values are nil. If an event is scheduled
then the first value will be the event and the second value will be t if the event is in the waiting queue
or nil if it is in the event queue. If the event is aborted, the first value will be nil and the second value

will be :abort.

Examples:

1> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION
1

2> (schedule-break-after-module 'procedural :details "after procedural")
#S(ACT-R-BREAK-EVENT ..)
NIL

3> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION

0.000  ------ BREAK-EVENT after procedural
2

4> (schedule-break-after-module :vision :details "waiting for vision")
#S(ACT-R-BREAK-EVENT ..)
T

5> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION

0.000  ------ BREAK-EVENT after procedural
2
6> (mp-show-waiting)
Events waiting to be scheduled:

NIL  ------ BREAK-EVENT waiting for vision Waiting for: (MODULE VISION T)

1

7> (schedule-break-after-module :vision :details "not waiting for vision" :delay nil)
#S(ACT-R-BREAK-EVENT ..)
NIL

8> (mp-show-queue)
Events in the queue:

0.000  ------ BREAK-EVENT not waiting for vision
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000  ------ BREAK-EVENT after procedural

3

9> (mp-show-waiting)
Events waiting to be scheduled:
NIL  ------ BREAK-EVENT waiting for vision Waiting for: (MODULE VISION T)
1
10> (schedule-break-after-module :vision :delay :abort :details "aborted")
NIL

12



:ABORT

11> (mp-show-queue)
Events in the queue:

0.000  ------ BREAK-EVENT not waiting for vision
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000  ------ BREAK-EVENT after procedural

3

12> (mp-show-waiting )
Events waiting to be scheduled:

NIL  ------ BREAK-EVENT waiting for vision Waiting for: (MODULE VISION T)
1

13> (schedule-event 3 (lambda ()) :module :vision)
#S(ACT-R-EVENT ..)

14> (mp-show-queue)
Events in the queue:

0.000  ------ BREAK-EVENT not waiting for vision
0.000 PROCEDURAL CONFLICT-RESOLUTION

0.000  ------ BREAK-EVENT after procedural

3.000  VISION RUN

3.000  ------ BREAK-EVENT waiting for vision

5

15> (mp-show-waiting)
Events waiting to be scheduled:
0

schedule-break-after-all

Syntax:
schedule-break-after-all {:details details-value} -> [ actr-event | nil ]
Arguments and Values:

details-value ::= a string to output in the trace or nil (defaults to nil)
actr-event ::= the actual event used by the meta-process

Description:

schedule-break-after-all creates a new break event with the provided details. The time for this new
event is the greatest time of any event currently in the event queue of the current meta-process and its
priority is :min. It will be inserted into the event queue such that it will occur after all of the events

currently scheduled.

If there is no current meta-process then a warning is printed, no event is scheduled, and nil is

returned.
The scheduled event is returned when successfully created and scheduled.

Examples:

13



1> (mp-show-queue)

Events in the queue:
0.000 PROCEDURAL CONFLICT-RESOLUTION
12.000 NONE a future action

2

2> (schedule-break-after-all :details "at the end")
#S(ACT-R-BREAK-EVENT ..)

3> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION
12.000 NONE a future action
12.000  ------ BREAK-EVENT at the end

3
E> (schedule-break-after-all)

#|Warning: schedule-break called with no current meta-process. |#
NIL

delete-event

Syntax:

delete-event actr-event -> [t | nil]

Arguments and Values:

actr-event ::= an actual ACT-R event as returned by one of the scheduling functions
Description:

If actr-event is an event which is currently in either the main event queue or the waiting queue of the

current meta-process then delete-event removes that event from the queue that it is in and returns t.

If there is no current meta-process or the item is not in either event queue no action is taken and nil is

returned.

Examples:

1> (schedule-break 10)
#S(ACT-R-BREAK-EVENT ..)

2> (defvar *event* *)
*EVENT*

3> (mp-show-queue)

Events in the queue:
0.000 PROCEDURAL CONFLICT-RESOLUTION
10.000  ------ BREAK-EVENT

2

4> (delete-event *event*)

13



T

5> (mp-show-queue)
Events in the queue:

0.000 PROCEDURAL CONFLICT-RESOLUTION
1

6> (delete-event *event*)
NIL

E> (delete-event 'not-an-event)

#|Warning: NOT-AN-EVENT is not a valid event. |#
NIL

Event Hooks

In addition to being able to schedule events it is possible to add functions which can monitor the
events as they are executed. One can add what is called an event hook function which will be passed
each event either before or after it is executed. The event hook can be used for recording information
about what has happened in the model (for instance if one wanted to add an alternate tracing
mechanism) or for checking for particular events to occur for data collection or other purposes. The
hook function should not modify the event that is passed to it, and as noted above, the API does not
provide any mechanism for doing so. When created, the hook functions are added to the current
meta-process and persist across a reset. They are only removed if they are explicitly deleted with the
delete-event-hook command described below, the meta-process in which they were created is itself

deleted, or with a call to clear-all.

Event Hook Commands

add-pre-event-hook

Syntax:
add-pre-event-hook hook-fn {warn-for-duplicate} -> [ hook-id | nil ]
Arguments and Values:
hook-fn ::= a function or the name of a function which takes one parameter
hook-id ::= a number which is the reference for the hook function that was added
warn-for-duplicate ::= a generalized boolean which indicates whether or not to show a warning if
the same function is attempted to be put on the event hook again
Description:
If hook-fn is a function or the name of a function which is not already in the set of pre-event hooks

for the current meta-process then it will be added to that set. That function will be called before each

13



event is evaluated and it will be passed that event as its only parameter. The hook function will
remain in the pre-event hook set for that meta-process until it is either explicitly removed or until a

clear-all occurs.

If the hook function is added to the set, then a unique hook-id is returned which can be used to

explicitly remove that function from the set of pre-event hook functions.

If hook-fn is invalid or there is no current meta-process then a warning is printed and nil is returned.
If hook-fn is already in the set of pre-event hook functions then nil is also returned and a warning is

printed unless warn-for-duplicate is provided as nil.

Examples:

This example assumes that the count model from unit 1 of the tutorial is loaded.

1> (defun show-event (event)
(format t "Hook sees event with module: ~S~%" (evt-module event)))
SHOW-EVENT

2> (add-pre-event-hook 'show-event)
(0]

3> (run .05)
Hook sees event with module: GOAL

0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
Hook sees event with module: PROCEDURAL

0.000 PROCEDURAL CONFLICT-RESOLUTION
Hook sees event with module: PROCEDURAL

0.000 PROCEDURAL PRODUCTION-SELECTED START

Hook sees event with module: PROCEDURAL
Hook sees event with module: PROCEDURAL
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
Hook sees event with module: GOAL
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL PRODUCTION-FIRED START
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
Hook sees event with module: DECLARATIVE

0.050 DECLARATIVE START-RETRIEVAL
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL CONFLICT-RESOLUTION
Hook sees event with module: NIL

0.050  ------ Stopped because time limit reached
0.05
12
NIL

4E> (add-pre-event-hook 'show-event)
#|Warning: SHOW-EVENT is already on the pre-event-hook list not added again [#
NIL

5> (add-pre-event-hook 'show-event nil)
NIL

13



E> (add-pre-event-hook 'show-event)

#|Warning: add-pre-event-hook called with no current meta-process |#
NIL

E> (add-pre-event-hook 'bad-function-name)

#|Warning: parameter BAD-FUNCTION-NAME to add-pre-event-hook is not a function |#
NIL

add-post-event-hook

Syntax:
add-post-event-hook hook-fn {warn-for-duplicate} -> [ hook-id | nil ]
Arguments and Values:

hook-fn ::= a function or the name of a function which takes one parameter

hook-id ::= a number which is the reference for the hook function that was added

warn-for-duplicate ::= a generalized boolean which indicates whether or not to show a warning if
the same function is attempted to be put on the event hook again

Description:

If hook-fn is a function or the name of a function which is not already in the set of post-event hooks
for the current meta-process then it will be added to that set. That function will be called after each
event is evaluated and it will be passed that event as its only parameter. The hook function will
remain in the post-event hook set for that meta-process until it is either explicitly removed or until a

clear-all occurs.

If the hook function is added to the set, then a unique hook-id is returned which can be used to

explicitly remove that function from the set of post-event hook functions.

If hook-fn is invalid or there is no current meta-process then a warning is printed and nil is returned.
If hook-fn is already in the set of post-event hook functions then nil is also returned and a warning is
printed unless warn-for-duplicate is provided as nil.

Examples:

This example assumes that the count model from unit 1 of the tutorial is loaded.
1> (defun show-event (event)

(format t "Hook sees event with module: ~S~%" (evt-module event)))
SHOW-EVENT

2> (add-post-event-hook 'show-event)
1

3> (run .05)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL

13



Hook sees event with module: GOAL

0.000 PROCEDURAL CONFLICT-RESOLUTION
Hook sees event with module: PROCEDURAL
0.000 PROCEDURAL PRODUCTION-SELECTED START

Hook sees event with module: PROCEDURAL
Hook sees event with module: PROCEDURAL
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
Hook sees event with module: PROCEDURAL
Hook sees event with module: GOAL

0.050 PROCEDURAL PRODUCTION-FIRED START
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
Hook sees event with module: PROCEDURAL

0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
Hook sees event with module: PROCEDURAL

0.050 DECLARATIVE START-RETRIEVAL
Hook sees event with module: DECLARATIVE

0.050 PROCEDURAL CONFLICT-RESOLUTION

Hook sees event with module: PROCEDURAL
Hook sees event with module: NIL
0.050  ------ Stopped because time limit reached
0.05
12
NIL
4E> (add-post-event-hook 'show-event)
#|Warning: SHOW-EVENT is already on the post-event-hook list not added again |#
NIL

5> (add-post-event-hook 'show-event nil)
NIL

E> (add-post-event-hook 'not-a-function)
#|Warning: parameter NOT-A-FUNCTION to add-post-event-hook is not a function |#
NIL

E> (add-post-event-hook 'show-event)
#|Warning: add-post-event-hook called with no current meta-process |#
NIL

delete-event-hook

Syntax:
delete-event-hook hook-id -> [ hook-fn | nil]
Arguments and Values:

hook-id ::= a hook function id returned by one of the add event hook functions
hook-fn ::= the function or function name that was removed from the event hook

Description:

If the event hook function associated with hook-id is still a member of the set of event hooks in the
current meta-process then it is removed from the set of hook functions and the function or function

name that was used to create the event hook is returned.

13



If hook-id does not correspond to the id of an event hook or the event has already been removed from
the set of event hooks then nil is returned. If there is no current meta-process, then a warning is

printed and nil is returned.

Examples:

This example assumes that the event hook shown in the example for add-pre-event-hook exists

1> (delete-event-hook 0)
SHOW-EVENT

2> (delete-event-hook 0)
NIL

E> (delete-event-hook 'hook)
NIL

E> (delete-event-hook 0)

#|Warning: delete-event-hook called with no current meta-process |#
NIL

13



About the Included Modules

The modules that are included with ACT-R fall into three general categories. The first is system or
control modules which are not based on the theory and only serve to provide functionality to the
software. The second category is the modules which instantiate the cognitive components of the
theory, and the third is the set of modules which provide the perceptual and motor actions which
allow the models to interact with an environment. The latter two both serve to instantiate the current
theory and the only reason for distinguishing between the two is that the perceptual and motor
modules have an additional interface for interacting with the world whereas the purely cognitive

modules do not.

The following sections will describe the details of the modules that are included with the current
system. For each module the operation of the module will be described, any parameters that the
module has will be shown, if the module has any buffers their uses will be covered, and any

commands which the module provides will be documented.

The basic system modules will be described first. Then the cognitive modules will be described, and

after some description of their interface to the world the perceptual and motor modules will be

described.

13



Printing module

The printing module controls what the system prints and where it goes. This module provides several
parameters to configure the output. The commands available for outputting information are
described in the Printing and Output section above. Because it is a system module it has no buffer or

impact on modeling results.

Parameters

:cbct

The copy buffer chunk trace parameter. This parameter controls whether or not an event will be

shown in the trace indicating that a buffer has made a copy of a chunk. It can take a value of t or nil.
The default is nil.

If it is set to t then an event like this will be shown in the trace each time a buffer makes a copy of a
chunk:

0.135 BUFFER Buffer VISUAL copied chunk TEXTO to TEXTO-0

It indicates which buffer made the copy along with the name of the original chunk and the name of

the copy. Those events will be shown with the high and medium trace detail settings.

:cmdt

The command trace parameter controls where the command output (as described in the Printing and

Output section) is displayed.

The possible values for :cmdt are:

nil — this turns off all command output for this model

* t-send command output to the *standard-output* stream

* astream — command output is sent to that stream

* a pathname — the specified file is opened and output is appended to it

* astring — if the string denotes a valid pathname, then it is used as a pathname above

13



The default value is t.

If a file is used, it will be opened when the parameter is set and closed when either the parameter is
changed or the model is deleted. Note that for file output the actual output to the file may be buffered
in the Lisp before being written. Thus, that output file should not be opened or read until the model
is done with its output. Resetting or deleting the model will signal that it is done as will setting the

:cmdt parameter to some other value.

:model-warnings

The model-warnings parameter controls whether or not model warnings (as described in the Printing

and Output section) are displayed. It can be set to t or nil.
The default value is t.
If it is set to t, then the model warnings are shown and if it is set to nil then they are not.

:show-all-slots

The show all slots parameter is used to determine how to print chunks for which the chunk-type has

been extended. It can take a value of t or nil.
The default is nil.

If it is set to nil, then only the original slots of the chunk-type and the extended slots for which a
value have been provided are displayed when the chunk is printed. If it is set to t then all of the slots
for the chunk-type are displayed for the chunk even if it does not have a value for an extended slot. It
will show as having a value of nil for an “unfilled” extended slot, but that is not quite correct because
there is a difference between having a value of nil to indicate a slot is empty and not having a value at

all for the extended slot (because the chunk is not to be changed once it enters declarative memory).

Generally, this parameter should be left at the default of nil to avoid confusion about what is
happening because that reflects how the mechanisms are intended, but there may be debugging

situations where one wants to see all of the available slots for a chunk.

:trace-detail

13



The trace detail parameter controls which events are shown in the model’s trace. It can be set to one

of the values: high, medium, or low. The default value is medium.

If it is set to high, then all events which have a non-nil output setting are displayed. If it is set to
medium then only those events with a medium or low output setting are shown, and if it is set to

low, then only those events with a low output setting are shown.

:trace-filter

The trace filter parameter allows one more detailed control over which events are displayed in the

trace. It can be set to a function, function name, or nil.
The default is nil.

If it is set to a function, then that function should take one parameter. For each event that occurs that
function will be called with the event as its parameter. If the function returns nil then that event will
not be displayed in the trace. Otherwise, the trace-detail level will be used to determine whether or

not to display the event.

There is one filter function available with the system called production-firing-only. If that is set as the

value of :trace-filter it will restrict the printed trace to only the production-fired events.

v

The verbose parameter. The :v parameter controls where the model output (as described in the

Printing and Output section) is displayed. The trace of the model is included in model output.

The possible values for :v are:

* nil - this turns off all model output for this model

* t-send model output to the *standard-output* stream

* astream — model output is sent to that stream

* a pathname — the specified file is opened and output is appended to it

* astring — if the string denotes a valid pathname, then it is used as a pathname above

The default value is t.

If a file is used, it will be opened when the parameter is set and closed when either the parameter is
changed or the model is deleted. Note that for file output the actual output to the file may be buffered

in the Lisp before being written. Thus, that output file should not be opened or read until the model

14



is done with its output. Resetting or deleting the model will signal that it is done as will setting the :v

parameter to some other value.

14



Naming Module

The naming module provides the system with all of the symbols that it generates for the names of
things. It guarantees that the system does not duplicate names within a model and that the name
returned does not already name a chunk (chunks are the predominant item for which names are
created by the system). It also allows for the uninterning of those symbols that were generated when
the model is reset or deleted if they are not also in use in other models. This is preferable to the use
of gentemp or gensym because those do not have a means of automatically cleaning up the symbol

once it is no longer needed.

The names are generated by appending an increasing counter to the end of the provided name prefix
(each prefix has its own counter). An additional benefit of the naming module is that the counters are
reset to 0 when the model is reset. Thus, a deterministic model will always result in the same
sequence of names being created when it is run after being reset, which can be very useful for
debugging a model. Because the random module allows one to set the seed for the pseudo-random
numbers the model generates, one can temporarily make a stochastic model deterministic for

debugging.

Parameters

Jncnar

The normalize chunk names after run parameter. The :ncnar parameter controls whether the model
will call normalize-chunk-names after every call to one of the model running functions. If it is set to t
then normalize-chunk-names will be called (without specifying the unintern parameter). If it is set to
the value delete then normalize-chunk-names will be called with the unintern parameter true. If it is

set to nil then normalize-chunk-names will not be called.

Having normalize-chunk-names called can be useful for debugging, but if the model generates a lot
of chunks it may take a significant amount of time to complete. Thus for models that generate a lot
of chunks, or for which there are several calls to model running functions this parameter should be set

to nil to improve performance.

The value of delete is provided as an option for extreme cases where the model is exhausting the
computer memory and unable to run. Setting it to delete is not recommended for general use because

some modules may have internal references to the chunk names which will be made invalid when the

14



uninterning option is used. Extra caution should therefore be used when specifying a value of delete

for :ncnar.
The default value is t.

:dcnn

The dynamic chunk name normalizing parameter. The :dcnn parameter works in conjunction with
the :ncnar parameter to normalize chunk names. If :ncnar is set to t or delete then :dcnn controls
whether the model will normalize the chunk names while the model runs in addition to normalizing at
the end of the run. If :dcnn is set to t then the chunk names stored in slots of chunks will be
automatically updated whenever chunks are merged such that all chunks hold only the true chunk
names of chunks in their slots. It essentially spreads the normalizing out during the run instead of
performing it all at the end, but it will not delete any chunks until the end of the run if :ncnar is set to
do so. This may be more efficient for some models and may also make debugging easier when a
model breaks or while stepping through a run. If :ncnar is set to nil then the setting of the :dcnn

parameter has no effect on the system.
The default value is t.

:dcsc-hook

The dynamic chunk slot change hook parameter. The :dcsc-hook parameter provides a way for
modules or other code to be notified if a chunk is dynamically changed as a result of chunk
normalizing. This parameter can be set with a function which takes one parameter and any number
of such functions may be set. The reported value of this parameter is a list of all functions which
have been set. Whenever a chunk is modified by normalizing, after the normalizing has changed a
slot value, each of the functions set for this parameter will be called with the name of the chunk that
had a slot modified through normalizing. The hook functions will be called every time a chunk

changes due to normalizing regardless of how the normalizing occurred.
If the parameter is set to nil then all functions are removed from the conflict-set-hook.
The default value is nil.

:short-copy-names

14



The :short-copy-name parameter controls how chunk names are created when a chunk is copied. The
most common place for this to occur is when a chunk is placed into a buffer and it gets copied
automatically. If the parameter is set to nil then the copy will have a hyphen and a number appended
to it. The number is typically 0, but if that would conflict with another name it will be incremented
until it is “safe” (see the new-name command below). If this parameter is set to t then instead of
adding a new hyphen and number when copying a chunk which is itself a copy only the number will

be incremented as needed.

Assuming there are no conflicts, with this parameter set to nil if a chunk named “chunk” is copied it
will be named chunk-0 and if chunk-0 is copied that new chunk will be named chunk-0-0. If this
parameter is set to t then copying chunk will still result in chunk-0, but copying chunk-0 will result in
the name chunk-1. In either case, if a chunk named chunk-0 is created explicitly by the model (it is

not a copy of a chunk named chunk) then a copy of that chunk will be named chunk-0-0.

This parameter only really matters if copies of chunks are being made from copies — either directly or
through the actions of modules like declarative or vision which may reuse copies of chunks. Its
setting should not affect how the model operates with the standard modules because they do not rely

on specific chunk names.

The default value is nil.

Commands
new-name

Syntax:

new-name {prefix} -> [ name-symbol | nil ]
new-name-fct {prefix} -> [ name-symbol | nil ]

Arguments and Values:

prefix ::= if provided should be a string or symbol (defaults to “CHUNK?” if not given)
name-symbol ::= a symbol created by appending a number onto the prefix

Description:

new-name is used to generate unique name symbols (which have been interned) within a model,

similar to the Lisp function gentemp. Unlike gentemp, it does not guarantee that the symbol does not

14



already exist. What it does guarantee is that it is was not previously returned by new-name within the

current run of the model and that it is not currently used to name a chunk in the current model.

When the module is deleted or reset it clears its name space and uninterns any symbols it has
generated which are no longer "necessary". By necessary, it means that no instance of the naming
module has generated such a name, nor was that symbol interned prior to new-name generating it for

the first time.
If there is no current model then a warning is printed and nil is returned.

Anywhere a model would use gentemp, new-name should probably be used instead to guarantee the
automatic cleanup upon reset or model deletion. Note that it is typically not necessary to generate a
name for a new chunk because omitting a name in the call to define-chunks results in the chunk

getting a name generated by new-name automatically.

Examples:

> (new-name)
CHUNKO

> (new-name temp)
TEMPO

1> (new-name-fct 'fact)
FACTO

2> (new-name-fct "FACT")
FACT1

1> (new-name "temp")
TEMP1

2> (define-chunks (temp2 isa chunk))
(TEMP2)

3> (new-name "temp")
TEMP3

E> (new-name)

#|Warning: get-module called with no current model. |#
#|Warning: No naming module available cannot create new name. |#
NIL

release-name

Syntax:

release-name name -> [t | nil ]
release-name-fct name -> [t | nil |

14



Arguments and Values:
name ::= should be a symbol which was generated by new-name
Description:

release-name can be used to possibly unintern symbols which have been generated by new-name.
This is the same process which occurs on a reset or deletion of the naming module for symbols
generated by new-name, but in some circumstances one may want to perform such a cleanup without
resetting. Thus, if the symbol given in name was generated by the new-name command and no
instance of the naming module other than the one in the current model has generated such a name and

that symbol was not interned prior to new-name generating it for the first time then it is uninterned.
If the symbol is uninterned, then t is returned otherwise nil is returned.
If there is no current model then a warning is printed and nil is returned.

Generally, this command is not necessary because a reset or clear-all will automatically clear out the
symbols. However, if one is generating an extremely large number of temporary names with new-
name it can lead to issues with the size of the symbol table in Lisp and explicitly removing names

prior to a reset may be useful.

Examples:

1> (find-symbol "CHUNKO")
NIL
NIL

2> (new-name )
CHUNKO

3> 'chunk1
CHUNK1

4> (find-symbol "CHUNK1")
CHUNK1

:INTERNAL

5> (new-name)

CHUNK1

6> (release-name-fct 'chunko)
T

7> (release-name chunkl)
NIL

8> (release-name-fct 'chunko)
NIL

E> (release-name chunk@)
#|Warning: get-module called with no current model. |#

14



#|Warning: No naming module available cannot release name CHUNKO. |#
NIL

new-symbol

Syntax:

new-symbol {prefix} -> [ new-symbol | nil ]
new-symbol-fct {prefix} -> [ new-symbol | nil ]

Arguments and Values:

prefix ::= if provided should be a string or symbol (defaults to “CHUNK?” if not given)
new-symbol ::= a newly interned symbol created by appending a number onto the prefix

Description:

new-symbol is used to generate and intern a unique symbol, similar to the Lisp function gentemp and
the new-name command. Like gentemp, it guarantees that the symbol does not already exist. Unlike

the command new-name, it does not guarantee that the numbering is reset with the model.
When the module is deleted or reset all new-symbols created are uninterned.
If there is no current model then a warning is printed and nil is returned.

new-symbol should only be used when one needs a completely new symbol and the name of that
symbol is not meaningful to the model (for instance something that might show up in the trace should

use new-name).

Examples:

> (new-symbol )
CHUNK-0

1> (new-symbol "temp")
TEMP-0

2> (new-symbol-fct 'temp)
TEMP-1

3> (let (temp-2 temp-3))
NIL

4> (new-symbol temp)
TEMP-4

E> (new-symbol)

#|Warning: get-module called with no current model. |#

#|Warning: No naming module available cannot create new symbol. |#
NIL

14



Random module

The random module provides a consistent pseudorandom number generator for the system. It is not
dependent on the Lisp random function or the Lisp *random-state* global variable. This makes it
consistent across all instances of ACT-R regardless of the Lisp application or OS being used. This is
very useful for teaching because it guarantees the output of the tutorial material will be the same for
all users. It also makes models and modules easier to debug and verify because the random state can
be set with an ACT-R parameter for testing. It also serves to protect the model from any potential

weaknesses in the random function of a particular Lisp.

The particular pseudorandom number generator chosen is the Mersenne Twister (as implemented by

the mt19937ar.c code) because it is designed for Monte-Carlo simulations. Details can be found at:

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

That algorithm is used by CMUCL and Allegro Common Lisp for the Lisp random function already.
However, because their internal representations of state differ it is still necessary to use the specific

random module implementation for consistency of ACT-R across systems.

Parameters
:randomize-time

This parameter can be set to t, nil, or an integer. It is used by the randomize-time command to
determine the range in which a specified time will be randomized. The randomize-time command is
used mainly by the perceptual and motor modules to add noise to the action times (see the randomize-

time command below for more details).

The default value is nil which means not to randomize the times. A value of t is the same as setting

the value to 3.

:seed

This is the current seed for the pseudorandom number generator. It must be a list of two numbers.
The first is used to initialize the array used by the Mersenne Twister algorithm and the second is an
offset from that starting point where the model should start (or where it currently is if the value is

read after the model has been run). Thus, if one is specifying a seed explicitly, the second number

14


http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

should probably be kept “small” because that many pseudorandom numbers will be generated when

the parameter is set to get to the offset point.

There is no default value for the seed parameter. When the module is created in a model it generates
a new seed based on the current result of get-internal-real-time. Resetting the model does not return
the seed to that point — the random module will continue generating new pseudorandom numbers

from the point where it last left off.

Commands

act-r-random

Syntax:
act-r-random /imit -> [ value | nil ]
Arguments and Values:

limit ::= a positive number (either an integer or floating point)
value ::= a pseudorandom number which is non-negative and less than limit

Description:

act-r-random will operate like random as defined in the ANSI Lisp specification, except without the
optional parameter for a random-state. It uses the seed value from the current model to generate the
next random number. Thus unless models explicitly set the same seed value each model will have a

different sequence of pseudorandom numbers returned by act-r-random.

It returns a pseudorandom number that is a non-negative number less than limit and of the same type
as limit. An approximately uniform choice distribution is used. If limit is an integer, then each of the

possible results occurs with (approximate) probability 1/limit.
If an invalid value is passed to act-r-random then a warning is printed and nil is returned.

If there is no current model a warning will be printed and a pseudorandom number generated from a

special instance of the random module will be returned.

Examples:

1> (sgp :seed)
:SEED (94875970549 0) (default NO-DEFAULT) : Current seed of the random number generator
((94875970549 0))

14



2> (act-r-random 100)
46

3> (act-r-random 34.5)
11.947622

4> (act-r-random 1000)
679

5> (act-r-random 0.5)
0.31684825

6> (sgp :seed (94875970549 1))
((94875970549 1))

7> (act-r-random 34.5)
11.947622

8> (act-r-random 1000)
679

9> (act-r-random 0.5)
0.31684825

E> (act-r-random 'a)
#|Warning: Act-r-random called with an invalid value A |#
NIL

E> (act-r-random 2)
#|Warning: get-module called with no current model. |#
0

act-r-noise

Syntax:

act-r-noise s -> [ value | nil ]
Arguments and Values:

s ::= a non-negative number
value ::= a pseudorandom number generated as described below

Description:
act-r-noise generates a value from a logistic distribution (approximation of a normal distribution)

with a mean of 0 and an s value as given. It does this using the act-r-random function. The s value is
related to the variance of the distribution, 62 by this equation:

If s is invalid a warning is printed and nil is returned.

15



If there is no current model a warning will be printed and a pseudorandom number generated from a

special instance of the random module will be returned (as indicated by act-r-random).

Examples:

\

(act-r-noise 0)
0.0

\%

(act-r-noise .5)
.15807568

(o]

\

(act-r-noise .5)
.4271247

[y

E> (act-r-noise 'a)

#|Warning: Act-r-noise called with an invalid s A |#
NIL

E> (act-r-noise .5)

#|wWarning: get-module called with no current model. |#
-1.131652

randomize-time

Syntax:
randomize-time time -> [ time | rand-time ]
Arguments and Values:

time ::= should be a number
rand-time ::= a randomized time value based as described below

Description:

randomize-time is used to return a number randomly chosen from a uniform distribution around the
provided time. It depends on the setting of the :randomize-time parameter in the current model. If
the parameter is set to nil then no randomization is done by the randomize-time command and time is

returned.

If the :randomize-time parameter is a number or t (which means use the default number 3) then a

number randomly chosen from the uniform distribution in the range of:

n—1 . n+1
%me* ,time * E

n n [

where n is the value of :randomize-time, will be returned.

15



If time is not a number or there is no current model, then a warning is printed and time is returned.

Examples:

1> (sgp :randomize-time nil)
(NIL)

2> (randomize-time 10)
10

1> (sgp :randomize-time t)
(T)

2> (randomize-time 50)
65.277435

3> (randomize-time 50.0)
58.443718

1> (sgp :randomize-time 100)
(100)

2> (randomize-time 100)
100.1965

3> (randomize-time 100)
99.349

E> (randomize-time 'a)
#|Warning: Invalid value passed to randomize-time: A |#
A

E> (randomize-time 10)
#|Warning: get-module called with no current model. |#
10

15



Buffer trace module

The buffer trace module records the actions which occur through the buffers while a model runs and
can report that information in a text display (an alternative to the standard trace) or return a list of

Lisp structures which encode the actions that took place.

The module has no buffer of its own. It has five parameters that control the tracing and a command

for retrieving the trace information.

Here is an example of the buffer trace using the demo2 model from the tutorial:

> (do-experiment)

.000
.025
.050
.075
.100
.125
.150
.175
.185
.210
.235
.260
.285
.310
.335
.360
.385
.410
.435
.460
.485
.510
.535
.560
.585
.610
.635
.660
.685
.710
.735
.760
.770
. 795
.820
.835
.860
.885
.910
.935
.960
.985
.985

[oNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoRoNo]

myn

PRODUCTION
+FIND-UNATTEN+
Kok ok ok ok ok ok Kk Kk k kK ok
+ATTEND-LETTE+
Kok ok ok ok ok ok kK ok ok ok Kk
Kok ok ok ok ok ok KKk k ok Kk

+ENCODE-LETTE+

khkkkhkhkkhkkkhkkhkkx

+ RESPOND +

kkkkkkkkkkkkk*x
kkkkkkhkkkkkkkk*kx

VISUAL-LOCATION
LOCO

LOC1

m mmmmmmmm

|E

VISUAL

+MOVE-ATTENTI+

khkkkhkkkkhkkkkKk*
khkkkhkkkkhkkkk*

kkkkkkhkkhkkhkkhkkhkkkk*x

TEXT1

kkkkkkhkkhkkhkkkkkk*x
khkkkhkkkkhkkkkk*
khkkkhkkkkkhkkkkx*

kkkkkkkkhkkhkkkkk*x

Stopped because no events left to process

These are the parameters that were set to achieve that:

MANUAL

+ PRESS-KEY +

khkhkhkhkkkhkhkkk
kkkkkkhkkhkkhkkkkkk*x
kkkkkkkhkkkkkkk*k
khkkkhkkkkhkkkkKk*
kkkkkkkhkkhkkhkkkkk*x
kkkkkkkkhkkhkkkkk*x
khkkkhkkkkkkkk*k*
khkkhkhkhkkhkkkhkhkkx
kkkkkkkhkkhkkhkkkkk*x
kkkkkkhkkkhkkkkkk*x
khkkhkhkhkkhkkhkhkkx
khkhkhkhkkkhkhkkk
kkkkkkkkkkkkk*k
kkkkkkkkkkkkk*k
kkkkkkhkkhkkhkkkkkk*x
kkkkkkhkkhkkhkkhkkkkk*x
khkkkhkkkkhkkkKk*
khkkkhkkkkhkkhkk*
kkkkkkkhkkhkkhkkkkk*x
kkkkkkkhkkhkkhkkkkk*x
khkkhkhkhkhkkhkkhkkx

khkkhkhkhkkhkkhkhkkx

15



(sgp :buffer-trace t :buffer-trace-step .025 :traced-buffers (production goal visual-
location visual manual))

The details of the parameters are described below.

The following information is recorded at each event of the model and then aggregated over all events

at a given time on a buffer by buffer basis:

*  Whether the buffer’s module is busy

»  Whether the buffer’s module is in an error state
=  Whether the buffer is full

= If the buffer is cleared

= If the chunk in the buffer is modified

= If a request is sent to the module

= If a new chunk is set in the buffer

For the first 5, if the stated condition is true during any event at the current time the buffer record will
indicate it as t. For requests, only the last request at the given time is recorded and the information
that is recorded is the chunk-type of the request or the details string of the event if it has one. If a
chunk is set into the buffer, then the name of that chunk is recorded, and as with requests, only the

last setting at a specific time is recorded.

The buffer trace attempts to show all of that information in a textual format. At each time step of the
model i.e. each time that would be shown in the regular trace, and at extra time steps if needed to
meet the :trace-step setting, there will be one line of trace printed. At the start of the line will be the
time of the summary and for each buffer traced there will be a column of information in the trace (the
columns are separated by the vertical bar character ‘|’). In a column for a buffer, the first character
will be "E" if the module is in an error state or a space otherwise. The second character will be a "."
if there is currently a chunk in the buffer or a space if it is empty. The rest of the column will show

one of the following things in their order of priority (truncated to maintain the column width):

= If there is a new chunk set in the buffer the name of that chunk

= [f there is a request the request is shown between two "+" characters
= If the buffer is modified it will show a series of "=" characters

= If the buffer is cleared it will show a series of "-" characters

» If the module is busy it will show a series of "*" characters

= otherwise it will be filled with spaces.

The graphic tracing tools of the ACT-R Environment rely on the buffer trace module to generate the
data it uses as does the BOLD computation module.

Parameters

15



:buffer-trace

If the :buffer-trace parameter is set to t, then the normal event trace is disabled and the buffer trace is

printed instead. The default value for this parameter is nil.

:buffer-trace-hook

This parameter allows the modeler to have access to the buffer trace summaries “on the fly”. It
defaults to nil, but if it is set to a function which takes one parameter then that function will be called
with every buffer-record structure (as described in the get-current-buffer-trace command below) at
the time they are available. They are made available when the clock changes, if :buffer-trace-step is

set to a time and that amount of time has passed since the last update, or when the run terminates.

:buffer-trace-step

If :buffer-trace-step is set to a number it specifies the maximum amount of time that is allowed to
elapse before creating a new buffer summary. Note however that there may be smaller time steps
that correspond to model actions. The default value is nil which means to only create the records
when there are events i.e. there is no minimum or maximum time guaranteed between the buffer

summaries.

:save-buffer-trace

This parameter controls whether the buffer trace information is recorded for later recovery by the get-
current-buffer-trace command (described below). It defaults to nil, which means do not record the
information. If it is set to t, then the buffer trace module will record the summary data so that it can
be retrieved for later use. This parameter does not alter the printed trace i.e. if :buffer-trace is nil
and :save-buffer-trace is t then the standard event trace will be printed even though the buffer trace

data is being collected by the module.

:traced-buffers

This can be set to a list of buffers which are to be traced. It has a default value of t, which means to
trace all buffers. Only those buffers specified on this list will have their data recorded. The order of
the buffers in this list is the order they will be printed in the output. If it is set to t all buffers will be
displayed in alphabetical order.

Commands

15



get-current-buffer-trace

Syntax:
get-current-buffer-trace {clear} -> (buffer-record*)
Arguments and Values:

buffer-record ::= a structure which is defined like this:

(defstruct buffer-record ms-time buffers)

In the buffer-record structure the ms-time slot is a number indicating the model time at which the

summary was recorded in milliseconds and the buffers slot is a list of buffer-summary structures.

buffer-summary ::= a structure which is defined like this:

(defstruct buffer-summary name cleared busy busy->free error
error->clear full modified request chunk-name notes)

In the buffer-summary structure the name slot holds the name of the buffer for which this is a record.
The cleared, busy, busy->free, error, error->clear, full, and modified slots are flags which will be
either t or nil to indicate if the named condition was true during that time. The request slot will hold
either the chunk-type of the request or the document string of the event (if it had one) for the last
request made at the recorded time or nil if there was no request made through the buffer at that time.
The chunk-name slot will hold the name of the last chunk which was placed into the buffer at the
specified time, or nil if there was no chunk placed into the buffer at that time. The notes slot will
contain the last note added to the buffer using the add-buffer-trace-notes command, or nil if no notes

have been added to the buffer.

Description:

The get-current-buffer-trace command takes no parameters. It returns a list of the buffer-record
structures which have been collected since the save-buffer-trace parameter was set to t in the current
model. If the :save-buffer-trace parameter was not set it will return nil. If there is no current model

then the command will print a warning and return nil.

This command, along with the :buffer-trace-hook parameter, are provided as a mechanism for
modelers to collect buffer/module activity without needing to engineer special purpose hooks or

make any module modifications for such purpose. This data is what is used by the graphic tracing

15



tools in the ACT-R Environment as well by the code which produces BOLD predictions from model

runs.

Examples:

This example uses the demo2 model as was shown in the buffer trace above with the :save-buffer-
trace parameter also set to t.

> (pprint (get-current-buffer-trace))

(#S(BUFFER-RECORD :TIME-STAMP 0.0
:BUFFERS (#S(BUFFER-SUMMARY :NAME PRODUCTION

:CLEARED NIL
:BUSY T
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
:FULL NIL
:MODIFIED NIL
:REQUEST "FIND-UNATTENDED-LETTER"
:CHUNK-NAME NIL
:NOTES NIL)

#S(BUFFER-SUMMARY :NAME GOAL
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
FULL T
:MODIFIED NIL
:REQUEST NIL
:CHUNK-NAME "GOAL"
:NOTES NIL)

#S(BUFFER-SUMMARY :NAME VISUAL-LOCATION
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
FULL T
:MODIFIED NIL
:REQUEST NIL
:CHUNK-NAME "LOCO"
:NOTES NIL)

#S(BUFFER-SUMMARY :NAME VISUAL
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
:FULL NIL
:MODIFIED NIL
:REQUEST NIL
:CHUNK-NAME NIL
:NOTES NIL)

#S(BUFFER-SUMMARY :NAME MANUAL
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
:FULL NIL

15



#S(BUFFER-RECORD :TIME-STAMP 0.025
:BUFFERS (#S(BUFFER-SUMMARY

#S (BUFFER-SUMMARY

#S (BUFFER-SUMMARY

#S (BUFFER-SUMMARY

#S (BUFFER-SUMMARY

E> (get-current-buffer-trace)

:MODIFIED NIL
:REQUEST NIL
: CHUNK-NAME NIL
:NOTES NIL)))

:NAME PRODUCTION
:CLEARED NIL
:BUSY T
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
!FULL NIL
:MODIFIED NIL
:REQUEST NIL

: CHUNK-NAME NIL
:NOTES NIL)

:NAME GOAL
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
'FULL T

:MODIFIED NIL
:REQUEST NIL

: CHUNK-NAME NIL
:NOTES NIL)

:NAME VISUAL-LOCATION
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
'FULL T

:MODIFIED NIL
:REQUEST NIL

: CHUNK-NAME NIL
:NOTES NIL)

:NAME VISUAL
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
!FULL NIL
:MODIFIED NIL
:REQUEST NIL

: CHUNK-NAME NIL
:NOTES NIL)

:NAME MANUAL
:CLEARED NIL
:BUSY NIL
:BUSY->FREE NIL
:ERROR NIL
:ERROR->CLEAR NIL
!FULL NIL
:MODIFIED NIL
:REQUEST NIL

: CHUNK-NAME NIL
:NOTES NIL)))

#|Warning: get-module called with no current model. |#

NIL

15



add-buffer-trace-notes

Syntax:

add-buffer-trace-notes buffer notes -> [notes | nil]
Arguments and Values:

buffer ::= a symbol which should be the name of a buffer
notes ::= any data which one wants to have stored in the buffer trace

Description:

The add-buffer-trace-notes command takes two parameters. The first is a symbol which should name
a buffer and the second is some data to store in the buffer trace of the current model in the current
meta-process at the current time. If buffer is the name of a buffer in the current model then notes will
be recorded in the buffer-summary for the named buffer at the current time and notes will be
returned. If there is no current model or buffer does not name a valid buffer then the command will

print a warning and return nil.

Any notes which are added will also be displayed in the graphic tracing tools of the environment
when one places the mouse over an event and notes have been added to that buffer during that event’s

duration.
Examples:

> (add-buffer-trace-notes 'goal "save this string")
"save this string"

E> (add-buffer-trace-notes 'not-a-buffer 10)
#|Warning: NOT-A-BUFFER does not name a buffer in the current model no notes added. |#
NIL

E> (add-buffer-trace-notes 'goal "no model")

#|Warning: No current model so cannot add notes. |#
NIL

15



Central Parameters Module

This module maintains three parameters of the system and provides no other model relevant
components. These parameters are used by more than one of the cognitive modules to control how
they operate. Thus, they need to exist outside of any one of them in particular, and may also be

referred to by new modules as well.

Technically, this module is not automatically loaded by ACT-R because it is provided in the support
directory of the distribution and thus only loaded when needed. Therefore, any module or other file
which uses the parameters in this module should ensure that it is available by making a require-

compiled call to be safe:

(require-compiled "CENTRAL-PARAMETERS" "ACT-R6:support;central-parameters")

Since the declarative and procedural modules also currently require it that is not actually necessary,

but still recommended if one is using these parameters when defining a new module.

This module does provide a way for other modules to register that they are using its :esc parameter
and note which of their parameters rely on :esc being set to t. It will signal a warning if :esc is nil at

the start of a model run if those registered parameters have been changed.

This section will only provide the basic details of the parameters. See the specific modules’ sections

for the exact details of how these parameters modify their operations.

This module has no buffer.

Parameters
er

This is the Enable Randomness parameter. It specifies how deterministically modules should
operate. It can be set to t which means act non-deterministically or nil which means act
deterministically. The default value is nil. For the provided modules this specifies what methods
should be used to break “ties” during conflict resolution and memory retrievals. Generally, this has
more impact when :esc is nil because if the subsymbolic parameters are enables there are not often

ties for those operations.

16



<esc

This is the Enable Subsymbolic Computations parameter. It specifies whether modules should work
in a purely symbolic fashion or whether they should use their full subsymbolic processing. The
default value is nil which means that modules should be purely symbolic. If it is set to t, then
modules should use whatever subsymbolic computations they provide (for example utility for
production selection in the procedural module and activation for chunk selection from the declarative

module).
:ol

This is the Optimized Learning parameter. It specifies whether modules should use their full
computational forms of subsymbolic quantities or use some simplified approximation. Currently, it is
only used by the declarative system to control the base-level learning equation, but other modules
could also check it as a guide. It can be set to t, which means use the optimized (or simplified) form
of the computation, nil, which means use the full computation, or a positive number, which can be

used as a parameter specifying how much optimization to apply. The default value is t.

System Parameters
:starting-parameters

The starting-parameters parameter allows one to set parameters which will be applied at the start of
all models that are defined. It can be set to a list of parameter values which are valid for passing to
sgp-fct and those parameter values will be set before the code in a model definition is evaluated. If
this parameter is set in a .lisp file that is placed into the user-loads directory then those settings will

always be made, and that is the recommended use for this parameter.

To be completely safe, one should also make sure that the central-parameters module is loaded using

this call before setting the parameter:

(require-compiled "CENTRAL-PARAMETERS" "ACT-R6:support;central-parameters")

particularly if it is being done within the context of a module or extension that is loaded prior to the
user-loads directory being processed. However, since the declarative and procedural modules also

use the central-parameters module it should always be available even without explicitly requiring it.

Commands

16



register-subsymbolic-parameters

Syntax:

register-subsymbolic-parameters { param*} -> nil
Arguments and Values:

param ::= a keyword which should name a valid parameter
Description:

The register-subsymbolic-parameters command is used to indicate when a module’s parameters
depend on the :esc parameter being set to t. When a model first starts running (time 0) if :esc is set
to nil and any of the parameters which have been registered in this way have a value other than their

default value a warning will be printed like this:

#|Warning: Subsymbolic parameters have been set but :esc is currently nil. |#

This command only needs to be called once for a given parameter. It does not need to go into the

creation or reset functions of a module, and should be called directly after the module definition.
It always returns nil.
Examples:

> (register-subsymbolic-parameters :ul :alpha)
NIL

16



The Procedural System

The procedural system implements the procedural cognitive module of the theory. The procedural
system is implemented as three separate modules in the code. Those three modules are the
procedural module, the utility module and the production-compilation module. The procedural
module handles the productions’ specification and matching at the symbolic level and the conflict
resolution among productions which relies on the utility module. The utility module handles the
computation of the subsymbolic quantity Utility for the productions and maintains the parameters and
history information necessary to do so. Finally, the production-compilation module is responsible for
the learning of new productions by the model when it is enabled. Each of those modules is described

in detail below.

16



Procedural Module

The procedural module implements the procedural memory system. It provides the commands for
specifying productions, a pattern matcher that works in conjunction with the utility module to choose
which production to fire, and tools for inspecting and debugging the productions of a model. This
module holds a central role in the system because the productions coordinate the interaction between

all of the other modules of the theory.

Productions specify a set of conditions to match against the current contents of the buffers and the
states of the modules along with a set of actions to take when the conditions are met. Those actions
will then modify the contents of the buffers and make requests of the modules. See the ACT-R

tutorial for more details on specifying and using productions.

Conflict Resolution

Only one production can be selected and fired at any time. The process by which the next production
to fire is chosen is called conflict resolution. When conflict resolution occurs all productions have
their conditions checked to determine which ones match the current state. The conditions specify a
conjunction of tests which must all be true for the production to match (see the p command below
and tutorial unit 1 for more information on how the matches occur). Among those that match, the one
that has the highest utility value will be chosen (see the utility module for details on the utility
calculations). If there is a tie for the highest utility value then the setting of the :er parameter (in the
central parameters module) determines how that tie is broken. If :er is t then the tie is broken
randomly. If :er is nil then a deterministic process is used such that the same production will be
chosen for that model each time the same tie condition occurs. However, that process is not specified
as part of the procedural module’s definition because it is not intended to be a process which one

relies on for production ordering or model control.

The procedural module will automatically schedule conflict-resolution events. The first one is
scheduled at time O and a new one is scheduled after each production fires. If no production is
selected during a conflict-resolution event then a new conflict-resolution event is scheduled to occur
after the next change occurs. A change in this context is any other non-maintenance event. The

module also schedules production-selected and production-fired events as a result of conflict

16



resolution. Those events will indicate the specific production which was selected and fired and will

look like this in the trace:

0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.050 PROCEDURAL PRODUCTION-FIRED START

There is also a procedural module request event scheduled after the production-selected event. That
event will not be shown in the trace and serves to indicate that the procedural module has started an
action for purposes of the buffer trace module (the event itself performs no actions). Several other
events are scheduled as a result of the production selection and production firing processes. Those

will be described under the production creation commands (p and p*) below.

The production-fired event is scheduled based on the production’s specified action time. That
defaults to 50ms, but is controlled by parameters (see the utility module). In addition, if one sets
the :vpft parameter to t then that time has noise added to it using the randomize-time command (see

the random module).

Parameters
:conflict-set-hook

This parameter allows one to specify functions which can intervene in the production selection
process. This parameter can be set with a function which takes one parameter and any number of
such functions may be set (the reported value of this parameter is a list of all functions which have
been set). During conflict-resolution, after all productions have been matched and have had their
utilities calculated, a list of the productions which matched in order of utility (highest first — thus the
car of the list is the production which will normally be selected) will be passed to each of the

functions on the conflict-set-hook list. The return value of the hook function is used as follows:

» If it is the name of a production in the conflict set then that production will be the one selected
regardless of the normal conflict resolution mechanism.

= [f it is a string, no production will be selected and a warning will be output to the trace
indicating that conflict resolution was canceled and the string returned will be provided as a
reason in that warning. The next conflict resolution event will be scheduled to occur after the
default action time (see the :dat parameter in the utility module).

= If it is nil then the normal conflict resolution mechanism is used.

16



» If it is anything else, a warning will be output and the default mechanism will be used.

If multiple hook functions are set and more than one returns a non-nil value a warning will be
displayed and the result of one of those non-nil values will be used. Which one gets used is picked
by an unspecified mechanism. No assumptions should be made as to which will be applied and it
may vary from run to run. In general one should not have more than one conflict-set-hook function

returning non-nil.

If the parameter is set to nil then all functions are removed from the conflict-set-hook.

crt

The Conflict Resolution Trace parameter can be used to include the details of the conflict resolution
process in the trace. If it is set to t then after each conflict-resolution event, for each production, it
will print out either that the production matches the current state or that it fails to match along with

the first condition which failed to match (the information shown by the whynot command).

:cst

The Conflict Set Trace parameter can be used to print the details of the productions in the conflict set
during conflict resolution. If it is set to t then after each conflict-resolution event the current
instantiation of each production that matches is printed in the command trace. The instantiation of a
production is the production text with the variables replaced by the specific values they have based
on the current buffer contents. Note that since this output goes to the command trace if one wants to
capture it in a file or other stream along with the model trace it will require setting both the :v and

:cmdt parameters to that file/stream.
:cycle-hook

This parameter allows one to specify functions to be called automatically when productions fire.
This parameter can be set with a function which takes one parameter and any number of such
functions may be set (the reported value of this parameter is a list of all functions which have been
set). During the production-fired event each of the functions on the cycle-hook list will be called
with the name of the production that is firing as the parameter. The return values of those functions
are ignored. If the parameter is set to nil then all functions are removed from the cycle-hook. A
function should only be set once. If a specific function is specified more than once as a value for the

cycle-hook a warning will be displayed and a value of nil will be returned as the current value.

16



:do-not-harvest

This parameter controls the strict harvesting mechanism of the productions. By default all buffers are
subjected to the strict harvesting practice, but buffers can be exempted from that by specifying them

with the :do-not-harvest parameter. The parameter is set one buffer at a time:

(sgp :do-not-harvest goal :do-not-harvest visual)

but it returns a list of all buffers which have been set as the current value. If it is set to nil then all
buffers will be subjected to strict harvesting. A particular buffer should only be set once and if it is

specified again a warning will be displayed and nil will be returned as the current value.

:lhst

The Left Hand Side Trace parameter controls whether the matching conditions from the selected
production are shown in the trace. If this parameter is set to t (which is the default) and the :trace-
detail parameter is set to high then the matching conditions are displayed. If this parameter is set to

nil or the :trace-detail is medium or low, then such events are not shown.

‘pPpm

The Procedural Partial Matching parameter controls whether productions are allowed to be selected
and fired even if they are not a perfect match to the buffers’ current contents. If this parameter is set
to a number then production matching is allowed to occur for buffer tests which are not a perfect
match to the chunk in the buffer. The default value is nil which means productions will only match

when the buffer tests are exact matches.

If the procedural partial matching is enabled, then slots tested for equality (slots without a modifier
and those with an explicit = modifier) in buffer tests of productions may be considered a match even
if the value is not chunk-equal to the current value in the slot of the chunk in the buffer. The partial
match will occur if there is a similarity value between the value specified for the slot in the
production and the value currently in that slot of the buffer and that similarity is greater than the

maximum similarity difference as returned from the declarative module’s similarity command.

A production which is not a perfect match will have its utility value decremented for purposes of

determining which production to fire, but the production’s utility parameters and the learning of

16



utility are not affected by that decrementing. The default decrement will be that for each slot which
is not a perfect match the matching utility of the production will be adjusted by adding the similarity
difference (a negative value) between the specification and the current buffer chunk's slot value
multiplied by the value of the :ppm parameter. Thus, when the procedural partial matching is
enabled the utility used to determine whether production i should be selected among those that match

would be:
U, (t)=U,(t) +e+ > ppm*similarity(s;,v;)
]

Ui(t) is the production’s current true utility value

€ is the noise which may be added to the utility

j is the set of slots for which production i had a partial match
s;is the specification for the slot j in production i

v;is the value in the slot j of the chunk in the buffer

Alternatively, one can use the :ppm-hook parameter to specify a function for computing a custom
penalty for mismatched production tests. In that case the expression used in the summation above is

specified by the user.

:ppm-hook

The Procedural Partial Matching Hook parameter allows one to specify a function that will compute
the utility offset added to a production which does not match the current state exactly when the
procedural partial matching is enabled. The default value for the parameter is nil which results in
the offset being computed as described for the :ppm parameter. However, if the parameter is set to a
function then that function will be passed a production name and a list of mismatch lists, one for each
mismatch which occurred while testing the named production. A mismatch list will be a 5 element
list consisting of: a buffer name, a slot name, the specified slot value, the actual value in the slot of
the chunk in the buffer, and the reported similarity between those two items. If the hook function
returns a number that will be added to the production's utility, any other return value will result in the

default calculation being added.

:rhst

The Right Hand Side Trace parameter controls whether the actions from the fired production are
shown in the trace. If this parameter is set to t (which is the default) and the :trace-detail parameter is

set to high then the production’s actions are displayed. If this parameter is set to nil or the :trace-

16



detail is medium or low, then such events are not shown. Note that this only controls the direct
actions made by the procedural module. Whether any events generated by other modules as a result

of those actions are displayed is controlled by those modules.
:style-warnings

The style warnings parameter controls whether the procedural module reports warnings about
possible production issues which do not prevent the production from being created, like requests to a
buffer without querying it in the conditions, multiple requests to the same buffer, or multiple
conditions using the same buffer. Style warnings also indicate possible issues among the
productions, like requesting a chunk-type which is never tested in the conditions or setting/modifying
slots which are never tested. If the parameter is t (the default value) then additional warnings may be
displayed when the model is defined and reset using the model-warning command. If it is set to nil

then those additional warnings will not be displayed.

:use-tree

The use tree parameter controls whether a decision tree is created to use during production matching.
If the parameter is nil (the default value) then each production is tested individually to determine if it
matches (basically the way ACT-R has always worked). If :use-tree is set to t, then when the model
is loaded a decision tree is created based on the constant tests used in the productions and that tree is
consulted first in production matching to potentially reduce the set of productions that need to be
tested further. This should result in a faster model run time, but does have an initial tree creation cost
and requires additional memory to store the tree. That additional time and space used are typically

insignificant relative to what it takes to run a model, but in some situations may become a factor.

This new feature is still undergoing testing and refinement. So, if you use it and find any significant

problems please let me know.
:vpft

The Variable Production Firing Time parameter controls whether the time of a production’s firing is
constant or variable. If the parameter is nil (the default value) then each production takes its
specified action time exactly each time it fires. If :vpft is t, then the randomize-time command is
used to randomize the production’s action time. Note that randomize-time depends on the setting of

the :randomize-time parameter and if it is nil then there will be no randomization.

16



Production buffer

The procedural module has a buffer called production. It exists for the purpose of allowing the
module to have its state tracked. It never has any chunks placed into it and practically speaking it
does not accept any requests. There is no reason to use the production buffer other than for tracking

the state of the procedural module (for instance via the buffer-trace module).

Activation spread parameter: :production-activation
Default value: 0.0

Queries

The production buffer only responds to the default queries.

‘State busy’ will be t when a production is firing (the time between the production-selected and

production-fired events). It will be nil at all other times.
‘State free’ will be nil when a production is firing and t at all other times.

‘State error’ will always be nil.

Requests

Isa any-valid-chunk-type
{slot value}*

The module will accept any chunk-type as a request without a warning or error, but the request is

completely ignored — no actions are performed regardless of the chunk-type or slots specified.

Commands
p/define-p

Syntax:

p production-definition -> [p-name | nil]

p-fct (production-definition) -> [p-name | nil]
define-p production-definition -> [p-name | nil]
define-p-fct (production-definition) -> [p-name | nil]

Arguments and Values:

17



production-definition ::= p-name {doc-string} condition* ==> action*

p-name ::= a symbol that serves as the name of the production for reference
doc-string ::= a string which can be used to document the production

condition ::= [buffer-test | query | eval | binding | multiple-value-binding]

action ::= [buffer-modification | request | buffer-clearing | modification-request | buffer-overwrite | eval |
binding | multiple-value-binding | output | !stop!]

buffer-test ::= =buffer-name> isa chunk-type slot-test*

buffer-name ::= a symbol which is the name of a buffer

chunk-type ::= a symbol which is the name of a chunk-type in the model
slot-test ::= {slot-modifier} slot-name slot-value

slot-modifier ::=[=|-| <| >| <=]| >=]

slot-name ::= a symbol which names a possible slot in the specified chunk-type
slot-value ::= a variable or any Lisp value

query ::= ?buffer-name> query-test*

query-test ::= {-} queried-item query-value

queried-item ::= a symbol which names a valid query for the specified buffer
query-value ::= a bound-variable or any Lisp value

buffer-modification ::= =buffer-name> slot-value-pair*

slot-value-pair ::= slot-name bound-slot-value

bound-slot-value ::= a bound variable or any Lisp value

request ::= +buffer-name> [direct-value | isa chunk-type request-spec*]
request-spec ::= {slot-modifier} [slot-name | request-parameter] slot-value
request-parameter ::= a Lisp keyword naming a request parameter provided by the buffer specified
direct-value ::= a variable or Lisp symbol

buffer-clearing ::= -buffer-name>
modification-request ::= +buffer-name> slot-value-pair*
buffer-overwrite ::= =buffer-name> direct-value

variable ::= a symbol which starts with the character =

eval ::= [leval! | !safe-eval!] form

binding ::= [!bind! | !safe-bind!] variable form

multiple-value-binding ::= !mv-bind! (variable®) form

output ::= !output! [ output-value | ( format-string format-args*) | (output-value*)]

output-value ::= any Lisp value or a bound-variable

format-string ::= a Lisp string which may contain format specific parameter processing character
format-args ::= any Lisp values, including bound-variables, which will be processed by the preceding
format-string

bound-variable ::= a variable which is used in the buffer-test conditions of the production (including a
variable which names the buffer that is tested in a buffer-test or dynamic-buffer-test) or is bound with
an explicit binding in the production

form ::= a valid Lisp form

Here is an example production that assumes the goal, declarative, imaginal, and visual modules as

described elsewhere in this document are available, that this chunk-type has been defined:

(chunk-type goal-type slotl value test buffer state step)

17



and that there are functions defined called check-value, get-a-state, and record-results.

This production is purely for demonstration — it does not represent any particular usage from a real

model.

(p example-production "a production showing all syntactic elements"
=goal>
isa goal-type
state start
test =test
< value 4
value =value
- slotl =test
slotl =last-loc
buffer =check
?visual>
state =check
buffer empty
=visual-location>
isa visual-location
>= screen-x =value
<= screen-x 100
> screen-y =value
< screen-y =max-value
value =current-value
=imaginal>
isa visual-object

leval! (check-value =value)
Ibind! =max-value (+ =value 100)
Imv-bind! (=quotient =remainder) (floor =max-value)
==>
Isafe-bind! =new-state (get-a-state)
=goal>
state =new-state
value =quotient
step continue
+retrieval>
isa visual-location
:recently-retrieved nil
< screen-x =max-value
- value =current-value
color blue
+visual-location> =last-loc
+imaginal>
status done
=visual> =imaginal
loutput! (Moving to state =new-state with max-value of =max-value)
Isafe-eval! (record-results =check 75 =quotient =remainder)
Istop!
)

Description:

The p family of commands is used to create the productions for a model. p and p* are the primary

commands for creating standard and dynamic pattern matching productions respectively. The

17



“define-” commands are provided as a convenience for those using the MCL editor and operate like

the corresponding command without the “define-".

A production must be given a name and can be given an optional documentation string. Then it
contains a set of conditions to be tested and a set of actions to be executed when the production is
fired. If the specification of the production is syntactically correct, then that production is entered
into the procedural memory of the current model, as maintained by the procedural module, and the

production’s name is returned.

If the name given for a production is already used by a production in the procedural memory of the
current model then a warning is printed, the old production is removed, and it is replaced with the

newly defined production.

If there is an error in parsing the production then one or more warnings will be output indicating what

was wrong, no new production is entered into the procedural memory, and nil is returned.
Within a production there are many possible components and each will be described in detail below.
Variables

Productions contain variables to allow for more general matching and actions. The variables are

€K_—_»

symbols which start with an character e.g. =slot, =answer, =goal. The variables are only relevant
within the context of a single production and serve two purposes. The first is to compare two or more
values, and the other is to copy a value from a condition into an action or specific query. A single
variable may be used for both purposes within a production i.e. it could compare two slots to
determine that they are the same and then copy that value into a request action. One thing to note
about variables in a production is that they cannot be used to directly compare that two slots are
empty (have the value nil) thus any positive test which involves a variable will automatically fail if

the slot being tested is empty.
Constants

Any symbols used in the production for values which are not variables are assumed to be the names
of chunks. If there is not a chunk with such a name at the time the production is created then a new

chunk, of chunk-type chunk, will automatically be created with that name.

Modifiers

17



When testing slot values in conditions and checking queries in a production there are several
modifiers which can be used: =, -, <, >, <=, and >=. The = modifier is used to check that the value in
the buffer chunk’s slot and the value given in the production are equal (see chunk slot equality
below). If no modifier is provided, then the = modifier is assumed (one generally never sees the =
modifier in a production). The — modifier means to negate the test. In a buffer test that means that the
buffer chunk’s slot does not equal the value specified in the production and for a query it means that
the match should succeed if the specified query returns false. The inequality tests (<, >, <=, and =>)
can only be used when the values are numbers (the test fails if either of the elements being tested is
not a number). If the values are numbers then the test is true if the inequality holds between the value
in the specified slot of the chunk in the buffer and the value specified in the production in that order
i.e. if the test were < slotl 10 then the condition matches if the value in the slotl chunk of the buffer

is less than 10.
Conditions

The conditions of the production are also referred to as the production’s Left Hand Side (LHS). They
are a conjunction of tests which must all be true for the production to be selected. The order in which
the conditions are specified does not matter — there are no ordering constraints and the order in which
the tests are performed will not necessarily be the same as they are specified in the production. Here
is the general description of the conditions that can be tested in a production. When a production is
selected during conflict resolution it will generate an event to indicate each buffer match and buffer

query condition that it contains. They are only shown in the trace if :trace-detail is high and :lhst is t.
buffer-test

The buffer-test is the primary condition used in productions. It is comparing the chunk currently in a
specific buffer to a pattern provided in the production. The slot comparison is done using the same
mechanisms described for the equal-chunks command (note however if the :ppm parameter is set
then imperfect matches may be allowed as described under :ppm). In a production which is selected,
this is referred to as harvesting the chunk in the buffer. Here is an example of a buffer-test:
=goal>

isa goal-chunk

slotl =value

state start
- slot2 =value

17



Every buffer test starts with a variable that names the buffer followed by the ‘>’ character. Thus, this
is testing the chunk in the model’s goal buffer. Then, the buffer-test requires checking the chunk-
type of the chunk with the isa chunk-type. In this case it is checking if it is of the type goal-chunk
which will also match if the chunk is of a sub-type of the chunk-type goal-chunk. Then the slots of
that chunk may be tested. In this case it is testing that the state slot contains the chunk named start,
that the slot1 slot holds some value (it is not empty because as noted above variables will not match

to an empty slot), and that the slot2 slot does not have the same value as the slot1 slot.

In the trace a buffer-test will show up as a buffer-read-action event like this:

0.000 PROCEDURAL BUFFER-READ-ACTION GOAL

indicating which buffer was tested by the production.

When testing the slots in a buffer test there is an additional constraint that the chunk actually have
such a slot to successfully match. That matters for the dynamic productions (described under the p*
command) and when using chunk subtyping because a buffer test may include slots which are valid

for any subtype of the type specified.

query

A query is one or more tests of a buffer or module. There are several default queries which may be
made of any buffer/module and a module may provide many more queries to which it will respond.
Each query will be respond as either true or false. The production will only match if the result of
each query is true, or if the result is false and the negative test modifier, ‘-’, is used. The queries that
can be specified for every buffer/module are:

buffer empty

buffer full

buffer requested

buffer unrequested

state free

state busy

state error

error t
error nil

The first four are tests of the buffer itself and the module is not contacted to determine the status.

The rest, and any others which a module provides, are tests which are relayed to the module to get its

17



response. For the first four, the semantics of the queries are the same for all buffers and are as

follows:

buffer full: is true only if there is currently any chunk in the buffer

buffer empty: is true only if there is not a chunk currently in the buffer

buffer requested: is true only if there currently is a chunk in the buffer and the module has
indicated that it was put there as a result of a request to the module (note: that the default call
to set-buffer-chunk is to indicate that it is requested so commands which put chunks into
buffers other than as a request must indicate they are not requested for this to be meaningful)
buffer unrequested: is true only if there currently is a chunk in the buffer and it has been

marked as not having been put there as a result of a request to the module

The other queries are dependent on the how the module responds to them and thus one needs to check

the particular module description to determine how they are used. Generally, they have the following

semantics, but some modules may not follow this convention:

state free: is true if the module is ready for new requests

state busy: is true if the module is currently handling a request

state error: is true if the last request resulted in some sort of error

error t: this is the same as a test of state error (that is the query which will be sent to the
module). This is provided as a shorthand notation to possibly make the production easier to
read

error nil: this is the same as a query for “— state error” thus checking that the module is not
currently reporting that “state error” is true and again is a shorthand notation in the production

syntax

Here is an example query to the goal buffer:

?goal>

state free
buffer full
- state error

A query starts with a symbol composed of a ‘?’, the name of the buffer being queried, and the symbol

>’_ This query is testing that the goal module is currently reporting as state free, there is currently a

chunk in the goal buffer, and that the goal module is not currently reporting an error.

In the trace each buffer queried by the selected production will show up as a query-buffer-action:

17



0.450 PROCEDURAL QUERY-BUFFER-ACTION GOAL

eval

The !eval! condition is provided to allow the modeler to add any arbitrary conditions to the LHS of a
production or to perform some side effects (like data collection or model tracking information). In
the testing of the production’s conditions the form provided to evaluate will be called during conflict
resolution. If the result of the evaluation is nil, then the production cannot be selected, but any other
return value will allow the production to continue with the pattern matching of the LHS. Using !eval!
is something that should be considered carefully when modeling. Generally, they should be used for
abstracting away components of the model or task which are unnecessary for the current modeling or
for performing non-model related operations because the actions performed by a !eval! are not

necessarily based on the principles of the ACT-R theory.

Here is an example of a call to !eval!:

leval! (special-test =varl =var2 start)

This would pass three parameters to the function called special-test. Those parameters will be the
current bindings for the =varl and =var2 variables in the production and the symbol start. If that
function returns a non-nil value then this production can continue in conflict resolution, but if it

returns nil then it will be removed from the current conflict set.

There are actually two forms of the eval condition !eval! and !safe-eval!. Both do the same thing, and
the difference is only meaningful for the production compilation mechanism which is described in a

different section.
binding

The !bind! condition is very similar to the !eval! condition. However, with !bind! the return value of
the evaluation is saved in a variable of the production which can then be used just as any other
variable i.e. to test chunk slots or be copied into the actions of the production. As with !eval! the
value must be non-nil for the production to continue in the conflict set. Here is an example of a !
bind!:

Ibind! =test-value (convert-value =var)

17



This will pass the current binding of the =var variable to the function convert-value and then bind the

result to the =test-value variable in the production.

Just like !eval!, there is also a second binding condition !safe-bind! which operates exactly like the !
bind! condition for conflict resolution purposes, but has a difference with respect to how production

compilation occurs.

It is also possible to bind multiple return values in a single test with the !mv-bind! condition. This
works the same as 'bind! except a list of variables is specified and each is bound to the corresponding
return value from the evaluation. If there are fewer return values than variables to be bound the
production will not match, and if any of the variables specified results in a binding to nil then the

production will also not match. Here is an example of Imv-bind!:

Imv-bind! (=valuel =value2) (split-values =var)

Actions

When a production fires it executes all of its actions, which are also referred to as its Right Hand Side
(RHS). Those actions are executed in a specific order regardless of how they are specified within the
production definition. Other than the eval, output, and bind actions, all of the actions are handled as
individual events at the time of the production’s firing. The ordering of those events is fixed by using
the priority in the scheduling of the events. Those events will be shown in the trace if :trace-detail is

high and :rhst is t. The ordering of the actions, along with their specific priorities, is as follows:

1. All eval, output and bind calls occur during the production-fired event and the other events
are then created with the priorities specified

All mod-buffer actions [priority 100]

All buffer overwrite actions [priority 90]

All module requests and module modification requests [priority 50]

All buffer clearings [priority 10]

SRR S

A Istop! action generates a break event [priority :min]

In general the production actions fall into three categories: cognitive actions performed directly by

the production (any that begin with an = or -), actions that are passed off to another module to handle

17



(those that begin with a +), and debugging/modeler extension actions (those that begin with an !).

The different actions possible are described in the following sections.
buffer modification

A buffer modification action is used to directly change the slot values of a chunk in a buffer. This is
done directly by the production and works the same for every buffer (the buffer’s module is not
contacted about the change). It is essentially the same as using the mod-chunk command on the
chunk in the buffer. Here is an example of a buffer modification:

=goal>

state next-step
slotl =value

The buffer modification must first name the buffer to be modified by using a symbol composed of the
‘=" character, the name of the buffer and the ‘>’ character. That is followed by pairs of slot names
and new values. Thus, this example will change the state slot of the chunk in the goal buffer to now
contain the chunk next-step and the slotl slot will now hold whatever the variable =value is bound to

in the production.

In order to perform a buffer modification action that buffer must have also been tested with a buffer-

test in the conditions of the production.

The buffer modification actions will show up in the trace as mod-buffer-chunk events indicating the

buffer that is modified:

0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL

buffer-clearing

A buffer clearing action is used to remove a chunk from a buffer. As with buffer modification
actions, this is done directly by the production without consulting the buffer’s module. Note however,
that a module may be monitoring for buffer clearing events independently of the procedural module.
Once the action completes the buffer will be empty. Here is an example that would clear the goal
buffer:

-goal>

17



The action shows up in the trace as a clear-buffer event indicating which buffer was cleared:

0.150 PROCEDURAL CLEAR-BUFFER GOAL

A buffer can be cleared regardless of whether or not it was tested on the production’s LHS. Note that
often one does not need to explicitly clear a buffer because there are two situations which result in

buffers being cleared implicitly (see “Implicit Production Actions” below).
buffer overwrite

A buffer overwrite action is used to copy a specific chunk into a particular buffer. As with the buffer
modification and buffer clearing actions, this is performed directly by the production without
notifying the buffer’s module. This action does not clear the buffer first. Thus, the chunk which was
in the buffer is essentially lost when this action occurs (the declarative module will not store that

chunk in the model’s declarative memory). Here is an example of a buffer overwrite action:

=goal> =value

This will replace the chunk in the goal buffer with the chunk that is bound to the =value variable. It
will show up in the trace as an overwrite-buffer-chunk event indicating the buffer and the chunk

being copied into it:

0.600 PROCEDURAL OVERWRITE-BUFFER-CHUNK GOAL CHUNK-10

If =value is not bound to a valid chunk name in this production’s instantiation, then a warning will be

printed at run time and no change will be made to the buffer:

#|Warning: overwrite-buffer-chunk called with an invalid chunk name BAD-NAME |#

request

A request is a how the production asks another module to perform some action. Syntactically, a
request can be specified for any buffer. However, semantically, what a request actually does is
specific to the module and some modules may not even accept requests through their buffers or may
have a more restrictive syntax than the general syntax available in the production (for instance only
specifying a slot once in the request). Thus, to know what can be requested, how it needs to be

specified, and how that will then be processed one needs to know the details of the modules. A

18



syntactically correct production could make semantically invalid requests which would typically

generate warnings at run time.

In the production, there are two ways to specify the request. It can be done by specifying the details
of the request (similar to how buffer tests are constructed) or by directly specifying a chunk. The
direct specification with a chunk is essentially the same as specifying all the slots and values of that
chunk in the request (example provided below). As far as the module which receives the request is
concerned, there is no difference between the different specifications in the production i.e. the
module has no way to distinguish a direct chunk request from one which was specified by explicit

slot value specifications.

Here is an example of specifying the details of a request:

+retrieval>
isa some-type
slotl =value
- slotl 10
slot2 start
<= count =count
:recently-retrieved nil

Assuming that the model has a chunk-type named some-type which has slots called slot1, slot2, and
count (or those are valid slots of a subtype of some-type) that request would be sent off to the
retrieval buffer’s module for handling. What happens based on that request depends on the module
which gets the request. Note that in addition to the slots which are valid for the chunk-type specified
a buffer may have additional items which can be specified (in this case :recently-retrieved). Those
are referred to as request parameters and always start with a ‘:>. They are specific to the buffer and as
with all other aspects of the request, one should consult the module to determine what request

parameters are available and what purpose they serve.

Here is an example of a direct chunk request:
+retrieval> =value
If =value is bound to a chunk name in the instantiation of the production being fired, then that chunk

is essentially expanded to its slot value pairs to make the request. Thus, if =value were bound to the
chunk A and the chunk A were defined like this:

(chunk-type test-type state slotl slot2)
(define-chunks (a isa test-type state start slot2 10))

18



Then that would be equivalent to specifying this in the production:

+retrieval>
isa test-type
state start
slotl nil
slot2 10

If a variable used in a direct chunk request is not bound to the name of a chunk in the production’s
instantiation, then a warning is printed and no request is made (note that the implicit clearing
described below is still performed even if such a warning is encountered). The warning will look like

this in the trace:

#|wWarning: schedule-module-request called with an invalid chunk-spec NIL |#

A valid request action will show up in the trace as a module-request event specifying the buffer to

which the request was sent:

0.800 PROCEDURAL MODULE-REQUEST GOAL

Typically, that will be followed by events from the module to which the request was made

performing the requested action.

There is one additional note on request actions which may be useful for those implementing new
modules. If a module has a warning function, then whenever a production is selected that has
requests to that module the procedural module will call that module’s warning function at the end of

the conflict-resolution event. See the module creation section for more details.
modification request

A modification request is similar to the request action. It is a way for the production to ask a module
to do something which looks like a buffer modification. As with the buffer modification action, the
buffer to which this request is made must have been used in a buffer test on the production’s LHS.
As with a request, what the module does in response to a modification request is purely up to the
module and most of the modules provided do not even accept such requests. Here is an example of a
modification-request:

+imaginal>

slotl =value
slot2 start

18



This would send those slot and value pairs off to the imaginal buffer’s module to process. A
modification request will show up in the trace as a module-mod-request event specifying the buffer to

which the request is made:

1.000 PROCEDURAL MODULE-MOD-REQUEST IMAGINAL

If a module does not accept modification requests then a warning like this will be displayed when the

production is fired:

#|Warning: Module XXXXX does not support buffer modification requests. |#

eval
The eval action works just like the eval condition except that the return value does not matter.
binding

The binding action works just like the binding condition except that a returned value of nil can be

bound to the variable or variables in the action.
output

The !output! action allows one to embed additional text in the model’s trace. The output will be

shown when the :v parameter is non-nil under any of the :trace-detail setting.

There are three ways to use the output action. It can be used to just print a single value like this:

loutput! =value
loutput! started

In that case the item specified will be output followed by a newline in the trace. If the item is a

variable then it is the binding of the variable which is output.

It can also output several items if they are placed into a list:

loutput! (the value is =value)

18



In that case all of the items will be printed on one line followed by a newline. Again, variables will

be replaced with their current bindings before outputting.

Finally, it can use the Lisp format control mechanisms to output the text. If the first item given in a
list to an !output! action is a string then that string is assumed to be a format specification. It is used
to generate the output text using the remaining arguments in the same way that the Lisp format

command would:

loutput! ("The count is ~6,3f.~%The value is ~a~%" =count =value)

stop

The stop action is used to force the model to stop after firing that production. A stop action is created

with this:

Istop!

A break event will be generated by the stop action that will cause the current run to terminate.
Implicit production Actions

In addition to the events specified in the production there are two situations where a buffer clearing
action will be implicitly executed when the production fires. They are referred to as strict harvesting

and implicit clearing.
strict harvesting

Strict harvesting means that when a production tests a buffer on its LHS (harvests the chunk) it will
automatically clear that buffer as well unless one of two things are done. If a modification is
performed on that buffer (either a procedural modification with an = or a module modification
request with a +) then the buffer will not be cleared. Also, if the buffer has been specified as one
which should not be strict harvested using the :do-not-harvest parameter then it will never be subject

to the strict harvesting policy.

request clearing

18



For each buffer which has a module request on the RHS of a production there is an implicit buffer
clearing action performed on that buffer. There is no mechanism provided for suppressing this

clearing action.

Examples:

For examples of productions in actual models see the tutorial example models.

Here are examples showing the types of warnings generated by productions for implicit chunk
creation, some syntax errors, and lack of a current model. This does not cover all possible syntax
errors or warnings. Only those examples which result in no production being defined are indicated as

eITOIS.

For these examples the following chunk-type is assumed to have been defined:

(chunk-type goal-type slot slot2 state)

1> (p test
"Automatically creating a chunk which is referenced"
=goal>
isa goal-type
state start
==>

)
#|Warning: Creating chunk START of default type chunk [#
TEST
2> (p test

"Redefining the production test"

=goal>

isa goal-type
state start
==>

#|Warning: Production TEST already exists and it is being redefined. |#
TEST

E> (p test
"No current model"
=goal>
isa goal-type
state start
==>

#|wWarning: get-module called with no current model. |#
#|Warning: No procedural modulue found cannot create production. [#

NIL

E> (p test2
"Invalid slot name in condition"
=goal>

isa goal-type
bad-slot start
==>

#|Warning: Invalid slot-name BAD-SLOT in call to define-chunk-spec. [#

18



#|Warning: Invalid syntax in =GOAL> condition. |#
#|Warning: No production defined for (TEST2 "Invalid slot name in condition" =GOAL> ISA
GOAL-TYPE BAD-SLOT START ==>). |#

NIL

E> (p test2
"Invalid buffer name in condition"
=buffer>

isa goal-type
state start
==>

#|Warning: First item on LHS is not a valid command |#

#|Warning: No production defined for (TEST2 "Invalid buffer name in condition" =BUFFER>
ISA GOAL-TYPE STATE START ==>). |#

NIL

E> (p test2
"Invalid buffer in query after a valid buffer test"
=goal>
isa goal-type
?buffer>
buffer empty
==>

#|Warning: Invalid slot-name ?BUFFER> in call to define-chunk-spec. |#

#|Warning: Invalid syntax in =GOAL> condition. |#

#|Warning: No production defined for (TEST2 "Invalid buffer in query after a valid buffer
test" =GOAL> ISA GOAL-TYPE ?BUFFER> BUFFER EMPTY ==>). |#

NIL
E> (p test2
"Buffer not tested on LHS for modification action"
==>
=goal>

state start

#|Warning: Cannot modify buffer GOAL if not matched on LHS. |#

#|Warning: No production defined for (TEST2 "Buffer not tested on LHS for modification
action" ==> =GOAL> STATE START). |#

NIL

E> (p test2
"Invalid buffer modification slot"
=goal>
isa goal-type
==>
=goal>
bad-slot start

)

#|Warning: Invalid buffer modification (=GOAL> BAD-SLOT START). |#

#|Warning: No production defined for (TEST2 "Invalid buffer modification slot" =GOAL> ISA
GOAL-TYPE ==> =GOAL> BAD-SLOT START). |#

NIL

p*/define-p*

Syntax:

p* dynamic-production-definition -> [p-name | nil]

p*-fct (dynamic-production-definition) -> [p-name | nil]
define-p* dynamic-production-definition -> [p-name | nil]
define-p*-fct (dynamic-production-definition) -> [p-name | nil]

18



Arguments and Values:

dynamic-production-definition ::= p-name {doc-string} dynamic-condition* ==> dynamic-action*
p-name ::= a symbol that serves as the name of the production for reference

doc-string ::= a string which can be used to document the production

condition ::= [buffer-test | query | eval | binding | multiple-value-binding]

action ::= [buffer-modification | request | buffer-clearing | modification-request | buffer-overwrite | eval | binding
| multiple-value-binding | output | !stop!]

dynamic-condition ::= [dynamic-buffer-test | condition]

dynamic-action ::= [dynamic-buffer-modification | dynamic-request | dynamic-modification-request | action]
buffer-test ::= =buffer-name> isa chunk-type slot-test*

buffer-name ::= a symbol which is the name of a buffer

chunk-type ::= a symbol which is the name of a chunk-type in the model

slot-test ::= {slot-modifier} slot-name slot-value

slot-modifier ::=[=]-| <| >| <=| >=]

slot-name ::= a symbol which names a possible slot in the specified chunk-type

slot-value ::= a variable or any Lisp value

dynamic-buffer-test ::= =buffer-name> isa chunk-type dynamic-slot-test*

dynamic-slot-test ::= {slot-modifier} [slot-name | variable ] slot-value

query ::= ?buffer-name> query-test*

query-test ::= {-} queried-item query-value

queried-item ::= a symbol which names a valid query for the specified buffer

query-value ::= a bound-variable or any Lisp value

buffer-modification ::= =buffer-name> slot-value-pair*

slot-value-pair ::= slot-name bound-slot-value

bound-slot-value ::= a bound-variable or any Lisp value

request ::= +buffer-name> [direct-value | isa chunk-type request-spec*]

request-spec ::= {slot-modifier} [slot-name | request-parameter] slot-value

request-parameter ::= a Lisp keyword naming a request parameter provided by the buffer specified
direct-value ::= a variable or Lisp symbol

buffer-clearing ::= -buffer-name>

modification-request ::= +buffer-name> slot-value-pair*

buffer-overwrite ::= =buffer-name> direct-value

dynamic-buffer-modification ::= =buffer-name> dynamic-slot-value-pair*

dynamic-slot-value-pair ::= [slot-name | bound-variable] bound-slot-value

dynamic-request ::= +buffer-name> [direct-value | isa chunk-type dynamic-request-spec*]
dynamic-request-spec ::= {slot-modifier} [slot-name | request-parameter | bound-variable] slot-value
dynamic-modification-request ::= +buffer-name> dynamic-slot-value-pair*

variable ::= a symbol which starts with the character =

eval ::= [leval! | Isafe-eval!] form

binding ::= ['bind! | Isafe-bind!] variable form

multiple-value-binding ::= !mv-bind! (variable®) form

output ::= loutput! [ output-value | ( format-string format-args*) | (output-value*)]

output-value ::= any Lisp value or a bound-variable

format-string ::= a Lisp string which may contain format specific parameter processing character

format-args ::= any Lisp values, including a bound-variable, which will be processed by the preceding
format-string

18



bound-variable ::= a variable which is used in a buffer-test condition of the production (including a
variable which names the buffer that is tested in a buffer-test or dynamic-buffer-test) or is bound with an
explicit binding in the production

form ::= a valid Lisp form

Description:

The p* command operates just like the p command but there are two additional things which are

allowed in p* that make it more flexible (referred to as dynamic pattern matching).

The general operation is described under the p command above and only the new functionality will

be described here.

The first extension is that in the buffer tests, buffer modifications, requests, and modification requests

a variable may be used in the slot-name position. Here is an example production showing that:

(p* dynamic-production
=goal>
isa goal-type
slot =slot1l
modify =slot2
=retrieval>
isa fact
=slotl =value
==>
=goal>
=slot2 =value
+retrieval>
isa fact
=slot2 =value

)

There are however two restrictions on how that can be used. First, there is no search performed in the
matching. Thus all variable slot names must be “grounded” by having a binding as either a slot value
in an explicitly named slot or with an explicit bind. This means the dynamic pattern matching cannot
be used to “find a slot which has a specific value” like this:
(p* invalid
=visual-location>
isa visual-location

=slot 150
==>

Also, there is only one level of indirection allowed in the use of variablized slot names. Thus it is not
possible to do something like this:
(p* invalid

=visual-location>
isa visual-location

18



screen-x =val
=val =val2
=val2 300

==>

However, one can go one level deep across multiple buffers:

(p* valid
=goal>
isa visual-location
screen-x =slotil
=slot2 =value
=imaginal>
isa visual-location
screen-y =slot2
=slotl =value
==>

)

The second extension p* enables is an adjustment to how the buffer modification action operates

when variablized slots are used. Here is an example for reference:

(p modify-buffer

=goal>
isa goal-type
slot =slot
==>
=goal>

=slot new-value
)
If the binding of =slot is the name of a slot in the chunk-type goal-type then this action is exactly as it
is described for the p command. However, if the binding of =slot does not name a valid slot in the
goal-type chunk-type then this action will extend the chunk-type to now have a slot of that name and
then modify the value of that slot as would normally be done with the action. That will show up in

the trace with an extending-chunk-type event which shows the chunk-type being extended:

0.300 PROCEDURAL EXTENDING-CHUNK-TYPE GOAL-TYPE

Effectively, this allows one to create the chunk-types dynamically with slots that are meaningful at
the time of the run (instead of needing to name all slots in advance). See the section on extending

chunk-types for more details on what it means to extend the chunk-type.

Examples:

As with the p command only examples of incorrect p* productions will be shown to demonstrate
some of the warnings given. Not all possible syntax errors are presented.

18



For these examples the following chunk-type is assumed to have been defined:

(chunk-type goal-type slot slot2 state)

E> (p* test2
"Ungrounded variablized slot"
=goal>
isa goal-type
=slot start
==>

#|Warning: No production defined for (TEST2 "Ungrounded variablized slot" =GOAL> ISA GOAL-
TYPE =SLOT START ==>) because =SLOT is not bound on the LHS. |#
NIL
E> (p* test2
"Multilevel indirection"

=goal>

isa goal-type
slot2 =slot
=slot =slot2

=slot2 start
==>
#|Warning: No production defined for (TEST2 "Multilevel indirection" =GOAL> ISA GOAL-TYPE
SLOT2 =SLOT =SLOT =SLOT2 =SLOT2 START ==>) because slot-name variable =SLOT2 is not bound
in a constant named slot i.e. there is more than one level of indirection. |#
NIL
E> (p* test2
"Variable used in a query slot"
Ibind! =query (generate-query)
?goal>
=query free
==>
#|Warning: Invalid buffer query (?GOAL> =QUERY FREE). |#
#|Warning: No production defined for (TEST2 "Variable used in a query slot" !BIND! =QUERY

(GENERATE-QUERY) ?GOAL> =QUERY FREE ==>). |#
NIL

all-productions

Syntax:

all-productions -> (production-name®*)

Arguments and Values:

production-name ::= a symbol which names a production in the current model
Description:

The all-productions command takes no parameters. It returns a list of the names of all the
productions defined in the current model. If there is no current model it prints a warning and returns

nil (an empty list).

19



Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

> (all-productions)
(START INCREMENT STOP)

E> (all-productions)

#|Warning: get-module called with no current model. |#
NIL

pPp

Syntax:

pp production-name* -> (production-name*)
pp-fct (production-name*) -> (production-name®*)

Arguments and Values:
production-name ::= a symbol which names a production in the current model
Description:

The pp command is used to print the production text of a production. It takes any number of
production names and for each one prints out the text of the named production in the current model.
If no names are provided it prints out all of the productions in the current model (which can be useful
when production compilation is enabled to see what productions the model has learned). It returns a

list of the names of the productions that were printed.

If there is no current model a warning is printed and nil is returned. If an invalid production name is

given a warning is printed.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

> (pp)
(P START

=GOAL>
ISA COUNT-FROM
START =NUM1
COUNT NIL

==>

=GOAL>
COUNT =NuUM1

+RETRIEVAL>
ISA COUNT-ORDER
FIRST =NUM1

)
(P INCREMENT

19



=GOAL>
ISA COUNT-FROM

COUNT =NUM1
- END =NUM1

=RETRIEVAL>
ISA COUNT-ORDER

FIRST =NUM1
SECOND =NUM2
==>
=GOAL>
COUNT =NUM2

+RETRIEVAL>
ISA COUNT-ORDER

FIRST =NUM2
IOUTPUT! (=NUM1)

)
(P STOP
=GOAL>
ISA COUNT-FROM

COUNT =NUM
END =NUM
==>
-GOAL>
IOUTPUT! (=NUM)

)
(START INCREMENT STOP)

> (pp start)
(P START

=GOAL>
ISA COUNT-FROM

START =NUM1
COUNT NIL
==>
=GOAL>
COUNT =NUM1

+RETRIEVAL>
ISA COUNT-ORDER

FIRST =NUM1

)
(START)

> (pp-fct '(increment))

(P INCREMENT

=GOAL>
ISA COUNT-FROM

COUNT =NUM1
- END =NUM1
=RETRIEVAL>
ISA COUNT-ORDER
FIRST =NUM1
SECOND =NUM2

=GOAL>
COUNT =NUM2

+RETRIEVAL>
ISA COUNT-ORDER

FIRST =NUM2
IOUTPUT! (=NUM1)

)
(INCREMENT)

E> (pp bad-name start)
#|Warning: No production named BAD-NAME is defined

(P START
=GOAL>
ISA COUNT-FROM

| #

19



START =NUM1
COUNT NIL
==>
=GOAL>
COUNT =NUM1
+RETRIEVAL>
ISA COUNT-ORDER
FIRST =NUM1
)
(START)

> (pp)
#|Warning: get-module called with no current model. |#

#|Warning: No procedural module found |#
NIL

pbreak/punbreak

Syntax:

pbreak production-name* -> (break-production*)
pbreak-fct (production-name¥*) -> (break-production*)
punbreak production-name* -> (break-production*)
punbreak-fct (production-name¥*) -> (break-production*)

Arguments and Values:

production-name ::= a symbol that names a production in the current model

break-production ::= a symbol that names a production which is currently set to break the run in the
current model

Description:

The pbreak command can be used to force a break event to occur when particular productions are
selected during conflict resolution. Each production which is specified in a call to pbreak will force a
break event if it is selected. Before the break, the current instantiation of the production will be

output to the trace.

The punbreak command is used to remove the productions from the break condition. Each
production passed to punbreak will no longer force a break event upon its selection. If no

productions are specified for punbreak then all productions have their break status cleared.

Both commands return a list of all productions which currently have a break status set in the current

model.

If there is no current model or a production name is invalid a warning is printed.

19



Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

1> (pbreak)
NIL

2> (pbreak start)
(START)

3> (run 10)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
(P START
=GOAL>
ISA COUNT-FROM
START 2
COUNT NIL
==>
=GOAL>
COUNT 2
+RETRIEVAL>
ISA COUNT-ORDER
FIRST 2

0.000  ------ BREAK-EVENT PRODUCTION START

4> (pbreak-fct '(start increment))
(INCREMENT START)

5> (punbreak start)
(INCREMENT)

6> (pbreak start stop)
(STOP INCREMENT START)

7> (punbreak-fct '(increment stop))
(START)

8E> (pbreak bad-name)
#|Warning: BAD-NAME is not the name of a production |#
(START)

9E> (punbreak-fct '(not-a-production))
#|Warning: NOT-A-PRODUCTION is not the name of a production |#
(START)

10> (punbreak)
NIL

11> (pbreak)
NIL

E> (pbreak)
#|Warning: There is no current model - pbreak cannot be used. |#
NIL

E> (punbreak start)

#|Warning: There is no current model - punbreak cannot be used. |#
NIL

pdisable/penable



Syntax:

pdisable production-name* -> (disabled-production*)
pdisable-fct (production-name*) -> (disabled-production*)
penable production-name* -> (disabled-production®)
penable-fct (production-name*) -> (disabled-production*)

Arguments and Values:

production-name ::= a symbol that names a production in the current model
disabled-production ::= a symbol that names a production which is currently disabled in the current
model

Description:

The pdisable command can be used to disable particular productions. A production which is disabled
will not participate in conflict resolution. Each production which is specified in a call to pdisable will
be disabled.

The penable command is used to enable productions which have been disabled. Each production
passed to penable will no longer be disabled. If no productions are specified for penable then all

productions will be enabled.

Both commands return a list of all productions which currently have been disabled in the current

model.
If there is no current model or a production name is invalid a warning is printed.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

1> (pdisable)
NIL

2> (pdisable start stop)
(STOP START)

3> (penable-fct '(start))
(STOP)

4> (pdisable-fct '(start increment))
(STOP INCREMENT START)

5> (penable)
NIL

E> (penable)

#|Warning: There is no current model - penable cannot be used. |#
NIL

19



E> (pdisable bad-name)

#|Warning: BAD-NAME is not the name of a production |#
NIL

E> (penable-fct '(not-a-production))

#|Warning: NOT-A-PRODUCTION is not the name of a production |#
NIL

whynot

Syntax:

whynot production-name* -> (matching-production*)
whynot-fct (production-name*) -> (matching-production®)

Arguments and Values:

production-name ::= a symbol that names a production in the current model
matching-production ::= a symbol that names a production which matches at the current time in the
current model

Description:

The whynot command is a very useful model debugging tool. For each of the named productions
passed to it (or all productions if no names are provided) it will print out whether the production
matches the current state or not. If it does match, then the instantiation of the production is printed
and if it does not match then the production text is printed and the first condition that is unsatisfied at

the current time is provided.

If the :ppm parameter is enabled to allow for imperfect matching then the instantiation of a
production which is a partial match will indicate the current slot value, the imperfectly matching

buffer slot value and the similarity between those values.

It returns a list of all the productions which do match the current state in the current model

(regardless of whether they were passed into whynot for display).

If there is no current model then a warning is printed and nil is returned. If an invalid production-

name is provided a warning will be displayed.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

1> (reset)
DEFAULT

2> (whynot)

19



Production START does NOT match.
(P START
=GOAL>
ISA COUNT-FROM
START =NUM1
COUNT NIL
==>
=GOAL>
COUNT =NUM1
+RETRIEVAL>
ISA COUNT-ORDER
FIRST =NUM1

It fails because:
The GOAL buffer is empty.

Production INCREMENT does NOT match.
(P INCREMENT
=GOAL>
ISA COUNT-FROM
COUNT =NUM1
- END =NUM1
=RETRIEVAL>
ISA COUNT-ORDER
FIRST =NUM1
SECOND =NUM2

=GOAL>
COUNT =NUM2
+RETRIEVAL>
ISA COUNT-ORDER
FIRST =NUM2
IOUTPUT! (=NUM1)
)
It fails because:
The GOAL buffer is empty.

Production STOP does NOT match.
(P STOP
=GOAL>
ISA COUNT-FROM
COUNT =NUM
END =NUM
==>
-GOAL>
IOUTPUT! (=NUM)

It fails because:
The GOAL buffer is empty.

NIL

3> (run-n-events 2)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000  ------ Stopped because event limit reached

0.0

1

NIL

4> (whynot-fct '(increment))

Production INCREMENT does NOT match.
(P INCREMENT
=GOAL>
ISA COUNT-FROM
COUNT =NUM1
- END =NUM1



=RETRIEVAL>
ISA COUNT-ORDER
FIRST =NUM1
SECOND =NUM2

=GOAL>

COUNT =NUM2
+RETRIEVAL>

ISA COUNT-ORDER

FIRST =NUM2
IOUTPUT! (=NUM1)

It fails because:
The COUNT slot of the chunk in the GOAL buffer is empty.
(START)

5> (whynot start)

Production START matches:
(P START
=GOAL>
ISA COUNT-FROM
START 2
COUNT NIL
==>
=GOAL>
COUNT 2
+RETRIEVAL>
ISA COUNT-ORDER
FIRST 2

)
(START)

This example uses a simple model definition to show a production which is a partial match with :ppm
enabled:

1> (define-model test
(sgp :esc t :ppm 1)
(chunk-type test slot)
(define-chunks (buffer-value isa chunk) (production-test isa chunk))
(set-similarities (buffer-value production-test -.5))
(set-buffer-chunk 'goal (car (define-chunks (isa test slot buffer-value))))

(p test
=goal>
isa test
slot production-test
==>))

TEST
2> (whynot)

Production TEST partially matches the current state:
(P TEST
=GOAL>
ISA TEST
SLOT [PRODUCTION-TEST, BUFFER-VALUE, -0.5]
==>

E> (whynot)

#|Warning: Whynot called with no current model. |#
NIL

E> (whynot bad-name)

19



BAD-NAME does not name a production.
(START)

production-firing-only

Syntax:

production-firing-only event -> production-firing-event?

Arguments and Values:

event ::= an ACT-R event

production-firing-event? ::= a generalized boolean that is true if event has an action of production-fired
and is false otherwise

Description:

This is not a command which would be called by the modeler directly. It is provided as a possible
value for the :trace-filter parameter to restrict the trace to only the production-fired events.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

1> (reset)
DEFAULT

2> (sgp :trace-filter production-firing-only)
(PRODUCTION-FIRING-ONLY)

3> (run 10)
0.050 PROCEDURAL PRODUCTION-FIRED START
0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT
2
0.250 PROCEDURAL PRODUCTION-FIRED INCREMENT
3
0.300 PROCEDURAL PRODUCTION-FIRED STOP
4
0.300  ------ Stopped because no events left to process
0.3
46
NIL

un-delay-conflict-resolution

Syntax:
un-delay-conflict-resolution -> nil
Arguments and Values:

Description:

19



The un-delay-conflict-resolution command takes no parameters and will cause a new conflict-
resolution event to be scheduled in the current model if the procedural module is currently waiting for
some change in the system to schedule the next conflict-resolution. If there is no current model then
this command has no effect and a warning is output. Generally, this is not a command for use by a

modeler but may be necessary for those creating new modules.

Right now, it is only used by the procedural system modules (procedural, utility, and production-
compilation) to ensure that conflict resolution gets rescheduled if necessary when parameters are
changed or new productions are created. However, in rare circumstances other modules could put
the system in such situations and thus may need to use this command (though typically the other
module should just be able to schedule an event which would allow conflict resolution to occur

normally).

Examples:

> (un-delay-conflict-resolution)
NIL

> (un-delay-conflict-resolution)
#|Warning: get-module called with no current model. |#
NIL

clear-productions

Syntax:
clear-productions -> nil
Arguments and Values:
Description:

The clear-productions command will delete all of the productions from the current model. It is not
recommended, but there may be times where one finds doing so necessary. It will also print out a

warning indicating that it is not recommended. If there is no current model then a warning is printed.
It always returns nil.

Examples:

> (clear-productions)
#|Warning: Clearing the productions is not recommended |#
NIL

E> (clear-productions)
#|Warning: get-module called with no current model. |#

20



#|Warning: No procedural module was found. |#
NIL

declare-buffer-usage

Syntax:

declare-buffer-usage buffer type-name { [:all | slot*] } -> [ t | nil ]
declare-buffer-usage-fct buffer type-name { [:all | (slot*)] } -> [t | nil ]

Arguments and Values:

buffer ::= a symbol that is the name of a buffer
type-name ::= a symbol that is the name of a chunk-type
slot ::= a symbol that names a slot of the chunk-type type-name

Description:

The declare-buffer-usage command is used to indicate a chunk-type and any slots that are going to be
used with a particular buffer which are not created by the productions nor set initially in the model
definition. By declaring the types and slots it will prevent style warnings from the production
definitions for the type and slots provided. This will typically be needed when chunks are being
placed into buffers from code. In that situation using this command in the model definition to
indicate the appropriate items being set outside of the model definition will avoid possible style

warnings.

If buffer names a valid buffer, type-name names a valid chunk-type, and all slots specified are valid
for the chunk-type given then style warnings related to those items will be avoided and a value of t
will be returned. If the keyword :all is provided instead of slot names then that will be equivalent to

specifying all the slots of the chunk-type given as well as all subtypes of that chunk-type.
If any of the parameters are invalid then a warning will be printed and nil will be returned.

Examples:

\%

(declare-buffer-usage goal chunk)

T
> (declare-buffer-usage imaginal text screen-pos value)

T

> (declare-buffer-usage-fct 'imaginal 'visual-object '(value color))
T

> (declare-buffer-usage retrieval text :all)

T

20



> (declare-buffer-usage-fct 'imaginal 'visual-object :all)
T

E> (declare-buffer-usage not-a-buffer visual-location)

#|Warning: Cannot declare usage for NOT-A-BUFFER because it does not name a buffer in the
model. |#

NIL

E> (declare-buffer-usage-fct 'goal 'not-a-chunk-type)

#|Warning: Cannot declare usage for buffer GOAL because NOT-A-CHUNK-TYPE does not name a
chunk-type in the model. |#

NIL

E> (declare-buffer-usage goal chunk not-a-slot)

#|Warning: Cannot declare usage for buffer GOAL because the slots (NOT-A-SLOT) are not
valid for chunk-type CHUNK. |#

NIL

20



Utility module

The utility module provides the support for the productions’ subsymbolic utility value which is used
in conflict resolution. This is a numeric quantity associated with each production that can be learned
while the model runs or specified in advance for each production. The description here is for the
current default version of the mechanism and not the older version which is still available under the

extras of the system.

Only an overview of how utility works is provided here. The details of the utility calculation are
described in the additional documentation file new-utility.doc and tutorial units 6 and 7. The variable

noise mechanism discussed in the new-utility document is not implemented at this time.

Each production has a utility value associated with it, which we will call U. Of the productions in the
conflict set (those which match the current state) the one with the highest current U will be the one
selected. When the utility learning is enabled, the U value is based on the rewards that a production
receives and will change as the model runs. The learning of utilities is controlled by the following

equation for a production i at time n:

U,(n)=U,(n-1) +a[R(n)-U,(n-1)|

Qs the learning rate set by a parameter.

Ri(n) is the effective reward value given to production i at time n.

Ui(0) is set by a parameter.

The learning occurs when a reward is triggered, and all productions that have fired since the last
reward are updated. The effective reward of a production i is the reward value received at time n
minus the time since the selection of production i (unless overridden by use of the :reward-hook

parameter).

When :esc is enabled the utility values may also have a noise component added to them (regardless of
whether the learning mechanism is enabled). Each time a production’s utility is calculated it may
also have a noise value added to it. That noise is generated using the act-r-random command and the

s of the distribution is controlled with the :egs parameter.

Parameters

20



:alpha
This is the o parameter in the utility learning equation. The default value is .2.

:dat

The :dat (default action time) parameter specifies the default time that it takes to fire a production in
seconds. That is the amount of time that passes between the production’s selection and fired events.

The default value is .05 (50ms) and generally that value is not changed.
tegs

This is the expected gain s parameter. It specifies the s parameter for the noise added to the utility

values. It defaults to 0 which means there is no noise in utilities.
:iu

The initial utility value for a user defined production. This is the U(0) value for a production if utility

learning is enabled and the default utility if learning is not enabled. The default value is 0.
nu

This is the starting utility for a newly learned production (those created by the production compilation
mechanism described in the next module). This is the U(0) value for such a production if utility

learning is enabled and the default utility if learning is not enabled. The default value is 0.

:reward-hook

The reward-hook parameter allows the modeler to override the default calculation for effective
reward, Ri(n). It can be set to a function which must take three parameters. If the :reward-hook
parameter is not nil (which is the default value) then each time a reward is propagated back to a
production the reward-hook function will be called. It will be passed the name of the production as
the first parameter, the reward value being propagated as the second, and the time since the
production was selected (in seconds) as the third. If that function returns a number then that number
is used as the Ri(n) value in updating the production’s utility instead of the normal calculation (which
is the reward minus the time since the production’s selection). If any other value is returned, then the
standard calculation for Ri(n) is used. Only one reward-hook function may be specified at a time and

if the parameter is changed from one function to another a warning will be output.

20



:reward-notify-hook

This parameter allows one to specify functions which will be called whenever there is a reward
provided to the model. This parameter can be set to a function which takes one parameter and any
number of such functions may be set (the reported value of this parameter is a list of all functions
which have been set). Whenever trigger-reward is called the functions set with this parameter will be
called during the propagate-reward event that gets generated as a result of that trigger-reward. Each
of the functions that has been set for this parameter will be called with one parameter which is the
reward value passed to trigger-reward. The return value from a function called through this hook is
ignored. If the parameter is set to nil then all functions are removed from the reward-notify-hook list.
A function should only be set once. If a function is specified more than once as a value for the
reward-notify-hook a warning will be displayed and a value of nil will be returned as the current

value.
:ul

This is the utility learning flag. If it is set to t then the utility learning equation used above will be
used to learn the utilities as the model runs. If it is set to nil then the explicitly set utility values for
the productions are used (though the noise will still be added if :egs is non-zero). The default value is

nil.
:ult

This is the utility learning trace flag. If it is set to t then when a reward is received and utilities are
updated the corresponding changes will be output in the model trace. If it is set to nil then there will

be no additional trace output from utility updating. The default value is nil.
ut

This is the utility threshold. If it is set to a number then that is the minimum utility value that a
production must have to compete in conflict resolution. Productions with a lower utility value than
that will not be selected. The default value is nil which means that there is no threshold value and all

productions will be considered.
:utility-hook

The utility-hook parameter allows the modeler to override or bypass the default utility calculation. It

can be set to a function which must take one parameter. If the :utility-hook parameter is not nil

20



(which is the default value) then each time a production’s utility is to be calculated, first this hook
function is called with the name of the production as the parameter. If that function returns a number
then that number is used as the production’s utility instead of using the normal mechanisms. Only
one utility-hook function may be specified at a time and if the parameter is changed from one

function to another a warning will be output.

:utility-offsets

This parameter allows one to specify functions which can extend the utility equation with new terms.
This parameter can be set to a function which takes one parameter and any number of such functions
may be set (the reported value of this parameter is a list of all functions which have been set).
Whenever a production’s utility is computed each of the functions that has been set for this parameter
will be called with one parameter which is the name of the production. If a function called returns a
number then that value will be added to the utility of the production. If a function returns any other
value then no change is made to the utility of the production. If the parameter is set to nil then all
functions are removed from the utility-offsets list. A function should only be set once. If a function
is specified more than once as a value for the utility-offsets a warning will be displayed and a value

of nil will be returned as the current value.

Commands

trigger-reward

Syntax:
trigger-reward reward -> [ t | nil ]
Arguments and Values:

reward ::= [ reward-value | nil]
reward-value ::= a number which indicates the amount of reward to apply.

Description:

The trigger-reward command allows the modeler to present rewards to the current model for the
purposes of utility learning. If the reward specified is a number then that value is used in computing
the updated utility for all of the productions that have fired since the last reward. If the reward is nil

then no utilities are updated but this still indicates when the last reward was given. This function can

20



be called at any time to introduce a reward to the model — it does not need to be called synchronously
with a production’s firing. If there is a current model and the reward value is valid, then a propagate-
reward event will be generated in the trace to perform the new computations and t will be returned.

The event will show the value of the reward being used like this:

0.000 UTILITY PROPAGATE -REWARD 10

If utility learning is not enabled, then that will be followed by a warning indicating that no change has

occurred:

#|Warning: Trigger-reward can only be used if utility learning is enabled. |#

If there is no current model or the parameter provided is invalid then a warning is printed, no utilities

are changed, and nil is returned.

Examples:

\%

(trigger-reward 10)

(trigger-reward nil)

-V

E> (trigger-reward "value")
#|Warning: Trigger-reward must be called with a number or nil. |#
NIL

E> (trigger-reward 10)
#|Warning: No current model. Trigger-reward has no effect. |#
NIL

Spp
Syntax:

spp [{[production-name | (production-name*)H{[ param-name*| param-value-pair*|} |
(production-name [ param-name*| param-value-pair*])*] -> (param-values®*)
spp-fct ([{[production-name | (production-name*)K[ param-name*| param-value-pair*]} |
(production-name [ param-name*| param-value-pair*])*])-> (param-values*)

Arguments and Values:

production-name ::= a symbol which is the name of a production in the current model
param-name ::= a keyword which names a production parameter

param-value-pair ::= param-name new-param-value

new-param-value ::= a Lisp value to which the preceding param-name is to be set
param-values ::= [(param-value*) | (production-name?*)| :error]

param-value ::= the current value of a requested production parameter or :error

20



Description:

Spp is used to set or get the value of the parameters of the productions in the current model. It is very

similar to the sgp command which is used to set and get the module parameter.

Each production has five parameters associated with it. Two of those are read only, but the other

three can be adjusted by the modeler. Those parameters are:
at

The action time of the production, how long between the production's selection and when it fires.

This can be set explicitly and defaults to the :dat value at the time the production was created.
name

The name parameter returns the name of the production. This cannot be changed. Requesting this

parameter is useful for annotating the results that are returned as seen in the examples.

The u parameter returns the current U(n) value for the production. This can be set directly when the
utility learning mechanism is not enabled. It defaults to the value of the :iu parameter at the time the

production is created.
utility

The last computed utility value of the production during conflict resolution (including any noise
which was added). This cannot be changed by the modeler. If the production has not yet been a

member of the conflict set, then the value will be nil.
reward

This is a reward value to apply when this production fires. The default is nil which means the
production does not provide a reward. If it is set to a number then after this production fires a trigger-
reward call will be made using that reward value. If it is set to t then after the production fires a
trigger-reward call will be made with a value of nil (a null reward which clears the history without

adjusting any utilities).

20



When spp prints the parameters for a production it prints the production’s name followed by the
parameters which are currently appropriate based on the settings of :esc and :ul. If :esc is nil, then
the :u and :at parameters are printed. If :escis t and :ul is nil :utility, :u and :at are printed, and if :esc

is t and :ul is t, then :utility, :u, :at, and :reward are printed.

If no parameters are provided to spp, then all of the current model's productions’ parameters are

printed and a list of all the production names is returned.

If a production or list of productions is specified as the first parameter to spp then the following
parameters are set or retrieved from only those productions. If no production names are provided

then the settings are applied to or retrieved from all productions that exist at the time of the call to

SPpPp.

If production names are specified but no specific parameters are specified then the parameters for

those productions are printed and the list of those production names is returned.

If any of the production names provided are invalid a warning will be printed and the corresponding

element of the return list will be :error.

If all of the parameters passed to spp (after any production names) are keywords, then it is a request
for the current values of the parameters named. Those parameters are printed for the productions
specified and a list containing a list for each production specified is returned. Each sub-list contains
the values of the parameters requested in the order requested and the sub-lists are in the order of the
productions which were requested. If an invalid parameter is requested, then a warning is printed and

the value returned in that position will be the keyword :error.

If there are any non-keyword parameters in the call to spp and the number of parameters (not
counting the production names) is even, then they are assumed to be pairs of a parameter name and a
parameter value. For all of the specified productions (or all productions if none are specified) those
parameters will be set to the provided values. The return value will be a list containing a list for each
production specified. Each sub-list contains the values of the parameters set in the order they were set

and the sub-lists are in the order of the productions which were specified. If a particular parameter

20



value was not of the appropriate type, then a warning is printed and the value returned in that position

will be the keyword :error.

It is also possible to pass lists of production-name and parameter settings to spp. Essentially, each list
provided must be formatted as something that could be passed to spp on its own and they will each be

processed as appropriate.
If there is no current model at the time of the call, then a warning is displayed and nil is returned.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

1> (sgp :esc nil :ul nil)
(NIL NIL)

2> (spp)

Parameters for production START:
‘u 0.000
:at  0.050

Parameters for production INCREMENT:
u 0.000
rat 0.050

Parameters for production STOP:
‘u 0.000
:at  0.050

(START INCREMENT STOP)

3> (sgp :esc t)
(T)

4> (spp)

Parameters for production START:
rutility NIL
‘u 0.000
:at  0.050

Parameters for production INCREMENT:
rutility NIL
‘u 0.000
:at  0.050

Parameters for production STOP:
rutility NIL
‘u 0.000
:at  0.050

(START INCREMENT STOP)

5> (sgp :ul t)
(T)

6> (spp)
Parameters for production START:
rutility NIL

‘u 0.000
:at 0.050
:reward NIL

Parameters for production INCREMENT:
rutility NIL
u 0.000
rat 0.050

21



:reward NIL
Parameters for production STOP:
rutility NIL

‘u 0.000
:at 0.050
:reward NIL

(START INCREMENT STOP)

7> (spp start)
Parameters for production START:
rutility NIL
‘u 0.000
:at  0.050
‘reward NIL
(START)

> (spp-fct '((increment stop) :name

Parameters for production INCREMENT:

:NAME INCREMENT
U 0.000
Parameters for production STOP:
:NAME STOP
U 0.000
( (INCREMENT 0) (STOP 0))

1> (spp :at 10)
((10) (10) (10))

2> (spp-fct nil)
Parameters for production START:
rutility NIL
‘u 0.000
:at 10.000
:reward NIL

Parameters for production INCREMENT:

rutility NIL
u 0.000
rat 10.000
:reward NIL
Parameters for production STOP:
rutility NIL
‘u 0.000
:at 10.000
‘reward NIL
(START INCREMENT STOP)

1> (reset)
DEFAULT

2> (sgp :esc t :egs 3)
(T 3)

3> (run 10)
0.3
46
NIL

4> (spp-fct '(:name :utility :u))
Parameters for production START:
:NAME START
CUTILITY -1.806
U 0.000

Parameters for production INCREMENT:

:NAME INCREMENT
(UTILITY -1.594
U 0.000

u))

21



Parameters for production STOP:
:NAME STOP
UTILITY -3.252
U 0.000
((START -1.80585 0) (INCREMENT -1.5941277 0) (STOP -3.2521996 0))

5> (spp (start) (stop :name :utility) (increment :at 10))
Parameters for production START:
:utility -1.806
‘u 0.000
:at  0.050
Parameters for production STOP:
:NAME STOP
PUTILITY -3.252
(START (STOP -3.2521996) (10))

E> (spp (start end))
Parameters for production START:
rutility NIL
‘u 0.000
:at 10.000
‘reward NIL
#|Warning: Spp cannot adjust parameters because production END does not exist
(START :ERROR)

E> (spp start :u :ve)

Parameters for production START:
U 0.000

#|Warning: NO PARAMETER VE DEFINED FOR PRODUCTIONS. |#
:VE ERROR

((® :ERROR))

E> (spp)
#|Warning: get-module called with no current model. |#
NIL

| #

21



Production Compilation Module

The production compilation module implements the process of learning new productions. More
details of the production compilation process can be found in the additional document

compilation.doc and tutorial unit 7. Only the basic mechanisms of the module will be described here.

Production compilation works by combining two productions that fire in sequence into one new
production. When enabled, it will attempt to create a new production for each pair of productions
that fire. To determine if two productions can be combined into one production all of the buffers that
are referenced in those productions (in any condition or action) are checked to see if they have a
compatible usage between the two productions. If any buffer does not have a compatible usage

between the two productions then the productions cannot be combined.

Compatible usage is determined by the “compilation type” of the buffer. The compilation type also
controls how the usage of that buffer in the productions gets combined into the new production. The
provided module specifies five different compilation types, and each of the buffers in the system is
considered to be of one of those types. The five types are goal, imaginal, retrieval, perceptual, and
motor. The details of what constitutes valid usage for those compilation types are described in the
excel spreadsheet compilation.xls and the mechanism used to create the new production based on the
compilation type is described in the compilation.doc file. It is possible to change the compilation
type of a buffer using the specify-compilation-buffer-type command described below and it is also
possible to add new compilation types to the system (see the section on adding new compilation types
for details). For the buffers provided in the default system this is the assignment of buffer to

compilation type:

Buffer Name Compilation Type
goal Goal
imaginal Imaginal
retrieval Retrieval
aural Perceptual
aural-location Perceptual
visual Perceptual
visual-location Perceptual
temporal Perceptual
imaginal-action Motor
production Motor
manual Motor
vocal Motor

21




Any buffer added with a new module will be of the motor compilation type by default, but may be

changed with the specify-compilation-buffer-type command.

If all of the buffers have a compatible usage between two successive productions which fire then the

following situations are checked. If any of these are true the productions cannot be combined:

- is the time between the productions greater than the threshold time?

- does either production have a !eval! condition or action?

- does either production have a !bind! or !safe-bind! condition?

- does either production have a !bind! action?

- does either production use !'mv-bind! in either the conditions or actions?
- does either production test the same buffer more than once in its conditions?
- does either production have a buffer overwrite action?

- does either production use a direct chunk request?

- does either production use slot modifiers other than = in its conditions?
- does the first production make multiple requests using the same buffer?
- does the first production have a RHS !stop! action?

If none of those situations are true, then the two productions are combined into one new production.

If either of the productions which is being combined was defined using the p* command then the
newly created production will also be defined using the p* command if after the combining of the

conditions and actions there is still dynamic pattern matching required (variablized slot names).

After creating the new production, it is compared against the other productions in the procedural
memory of the model. If the new production is not semantically equivalent to an existing production
then the new production is also added to the procedural memory of the model. The parameters for

the new production are set as follows:

* The utility is the value of the :nu parameter.

* The at parameter is set to the max of the at parameters from its two parent productions.

* If both of the parent productions have a numeric reward the new production gets the max of
those two as its reward. If only one of the parents has a numeric reward the new production
gets that value as its reward. If neither parent has a numeric reward, but at least one has a
value of t for the reward then the new production will get a value of t. If both parents have a

nil reward value the new production also gets a nil reward value.

21



If the newly formed production is semantically equivalent to an existing production then what
happens depends on whether the production to which it is equivalent was also created by production
compilation or whether it was one of the explicitly specified productions of the model and also

whether utility learning is enabled.

If the production is equivalent to one of the explicitly specified productions or utility learning is not

enabled, then nothing happens and the newly created production is ignored.

If the production is equivalent to one which was previously created by production compilation and
utility learning is enabled then that production receives an update to its utility. The reward which it

receives is the current u value of the first of the two productions which fired to create it.

Parameters
:epl

The :epl (enable production learning) parameter controls whether the production compilation process
is enabled or disabled. If :epl is set to t then the process is enabled and if it is set to nil then it is

disabled. The default value is nil.

:pct

The :pct (production compilation trace) parameter controls whether information about the production
compilation process is output to the trace. If it is set to t then after each production fires a notice
about the production compilation process will be displayed. If a new production was created then
that production will be printed along with its parameter values. If a new production was not created
then information indicating why not will be displayed. If the parameter is set to nil then no output

will be given for production compilation. The default value is nil.
ittt

The :tt (threshold time) parameter specifies the maximum amount of time in seconds that is allowed
to pass between the firing of two productions and still allow them to be combined through production

compilation. The default value is 2 seconds.

21



Commands

show-compilation-buffer-types

Syntax:
show-compilation-buffer-types -> nil
Description:

The show-compilation-buffer-types command can be used to print out the current assignments of all

the buffers’ compilation types in the current model. If there is no current model a warning is printed.

Examples:

> (show-compilation-buffer-types)

Buffer Type
VISUAL PERCEPTUAL
TEMPORAL PERCEPTUAL
AURAL-LOCATION PERCEPTUAL
VISUAL-LOCATION PERCEPTUAL
PRODUCTION MOTOR
AURAL PERCEPTUAL
VOCAL MOTOR
IMAGINAL-ACTION MOTOR
MANUAL MOTOR
GOAL GOAL
IMAGINAL IMAGINAL
RETRIEVAL RETRIEVALNIL

E> (show-compilation-buffer-types)

#|Warning: get-module called with no current model. |#
#|Warning: No production compilation module found |#
NIL

compilation-buffer-type

Syntax:

compilation-buffer-type buffer-name -> [buffer-type | nil ]
compilation-buffer-type-fct buffer-name -> [buffer-type | nil ]

Arguments and Values:

buffer-name ::= should be a symbol which names a buffer
buffer-type ::= the compilation type of buffer-name in the current model

Description:

21



compilation-buffer-type will return the compilation type for a buffer in the current model. If there is

no current model or the buffer name is invalid then nil is returned.

Examples:

> (compilation-buffer-type-fct 'manual)
MOTOR

> (compilation-buffer-type goal)
GOAL

> (compilation-buffer-type not-a-buffer)
NIL

E> (compilation-buffer-type goal)
#|Warning: get-module called with no current model. |#

#|wWarning: No production compilation module found |#
NIL

specify-compilation-buffer-type

Syntax:

specify-compilation-buffer-type buffer-name buffer-type -> [ t | nil ]
specify-compilation-buffer-type-fct buffer-name buffer-type -> [ t | nil ]

Arguments and Values:

buffer-name ::= should be a symbol which names a buffer
buffer-type ::= a symbol which names a valid compilation type

Description:

Specify-compilation-buffer-type allows one to change the compilation type for the buffers of the
current model. If buffer-name and buffer-type are both valid, then that buffer will now be treated as a
buffer-type buffer for compilation purposes, and t will be returned. If either parameter is invalid or

there is no current model, then a warning is printed and nil is returned.

Note that this setting is only valid until the model is reset because the production compilation module
will return all buffers to their default types when it is reset. For that reason, if one wants to make a
new module’s buffers default to a type other than motor automatically (without needing to specify
this call in each model definition) this setting must be placed into the secondary reset function for that
module to ensure that the setting is not overwritten by the resetting of the production compilation

module (it uses the primary reset function to set the default values).

Examples:

21



1> (specify-compilation-buffer-type goal motor)
T

2> (specify-compilation-buffer-type-fct

T

3> (show-compilation-buffer-types)

Buffer
VISUAL
TEMPORAL
AURAL-LOCATION
VISUAL-LOCATION
PRODUCTION
AURAL
VOCAL
IMAGINAL-ACTION
MANUAL
GOAL
IMAGINAL
RETRIEVAL
NIL

Type
PERCEPTUAL
PERCEPTUAL
PERCEPTUAL
RETRIEVAL
MOTOR
PERCEPTUAL
MOTOR
MOTOR
MOTOR
GOAL
IMAGINAL
RETRIEVAL

E> (specify-compilation-buffer-type visual bad-type)
#|Warning: Invalid compilation buffer type BAD-TYPE. |#

NIL

E> (specify-compilation-buffer-type-fct

#|Warning: No buffer named BAD-BUFFER found. |#

NIL

E> (specify-compilation-buffer-type goal perceptual)
#|Warning: get-module called with no current model. |#
#|Warning: No production compilation module found |#

NIL

'visual-location 'retrieval)

'bad-buffer 'motor)

21



Goal Module

The goal module provides the system with a goal buffer which is typically used to maintain the
current task state of a model and to hold relevant information for the current task. The goal buffer
also serves as a source of activation for retrievals by default. The only action which the goal module

provides to a model is the creation of new chunks.

Goal buffer

The goal module sets the goal buffer to not be strict harvested.

Activation spread parameter: :ga
Default value: 1.0

Queries

The goal buffer only responds to the default queries.

‘State busy’ will always be nil.
‘State free’ will always be t.

‘State error’ will always be nil.

Requests

Isa any-valid-chunk-type
{slot value}*

Each slot in the request should be specified at most once and no modifiers are allowed.

The request is used to create a new chunk which is placed into the goal buffer immediately. It will

result in two events which look like this in the trace:

0.050 GOAL CREATE-NEW-BUFFER-CHUNK GOAL ISA CHUNK
0.050 GOAL SET-BUFFER-CHUNK GOAL CHUNKO

21



There is also a third event generated which will not show up in the trace. It is a maintenance event
with the action clean-up-goal-chunk which performs some system clean up and will occur after the

set-buffer-chunk event.

Modification Requests

{slot value}*

The goal buffer accepts modification requests and those specified buffer modifications are passed to
mod-buffer-chunk for the goal buffer at the time of the request. It is assumed that the chunk will still
be there at that time. If there are slots specified which are not valid for the chunk-type of the chunk

in the goal buffer then that chunk-type will be extended to have such slots as part of the modification.

The event below will show up in the trace as a result of such an action being made by a production

(always at the same time as the procedural request):

0.050 GOAL MOD-BUFFER-CHUNK GOAL

If there are any new slots added to the chunk-type then there will also be an event which looks like

this indicating that the type named by <type> was extended:

0.050 GOAL EXTENDING-CHUNK-TYPE <type>

Such a request is equivalent to doing a direct modification of the chunk in the buffer using a buffer
modification action in the production. The only difference is that by using a modification request to
perform the change to the chunk an event is attributed to the goal module in the trace which may be

important for purposes of predicting the BOLD response or useful for tracing purposes.

Commands

goal-focus

Syntax:

goal-focus {chunk-name} -> [ goal-chunk | nil ]
goal-focus-fct {chunk-name} -> [ goal-chunk | nil ]

Arguments and Values:

22



chunk-name ::= should be a symbol which names a chunk
goal-chunk ::= a symbol which names the chunk in the goal buffer or the chunk which will be in the
goal buffer

Description:

If chunk-name is provided, then goal-focus will schedule an event to put that chunk into the goal
buffer of the current model at the current time with a priority of :max. This will result in the
unrequested query being true for the buffer because this chunk was not placed into the buffer as a
result of a module request. There will also be a maintenance event scheduled with an action of clear-
delayed-goal following the set-buffer-chunk event which updates some internal information for the
goal module but which will not show up in the trace. If an event is created to place this chunk into
the buffer then chunk-name is returned. If chunk-name is not a valid chunk or there is no current

model, then a warning is printed and nil is returned.

If chunk-name is not provided, then the chunk currently in the goal buffer is printed if there is one
and that chunk’s name is returned. If the buffer is empty, then a message stating that is printed and
nil is returned. If there is a pending change to the chunk in the goal buffer (an event generated by
goal-focus has been scheduled but not executed), then a notice of that is printed along with any chunk
which may be in the buffer currently and the name of the chunk which will be in the buffer is

returned.

This command typically occurs in a model to provide the initial state in the goal buffer. If declarative
learning of past goals is something that the model will be doing, then one should consider using
define-chunks to create that initial goal instead of add-dm so that it is not in declarative memory prior

to the start of the task.

Examples:

> (goal-focus)
Goal buffer is empty
NIL

1> (goal-focus black)
BLACK

2> (goal-focus)
Will be a copy of BLACK when the model runs
BLACK
ISA COLOR
BLACK

3> (run-n-events 1)
0.000 GOAL SET-BUFFER-CHUNK GOAL BLACK REQUESTED NIL

22



0.000  ------ Stopped because event limit reached
0.0
1
NIL

4> (goal-focus)
BLACK-0
ISA COLOR

BLACK-0

5> (goal-focus-fct 'free)
FREE

6> (goal-focus-fct )
Will be a copy of FREE when the model runs
Currently holds:
BLACK-0
ISA COLOR

FREE

7> (run-n-events 1)
0.000 GOAL SET-BUFFER-CHUNK GOAL FREE REQUESTED NIL
0.000  ------ Stopped because event limit reached

0.0

1

NIL

8> (goal-focus)
FREE-0
ISA CHUNK
FREE-0
E> (goal-focus notchunk)
#|Warning: NOTCHUNK is not the name of a chunk in the current model - goal-focus failed |#
NIL
E> (goal-focus black)
#|Warning: get-module called with no current model. |#
#|Warning: get-chunk called with no current model. |[#

#|Warning: BLACK is not the name of a chunk in the current model - goal-focus failed |#
NIL

mod-focus

Syntax:

mod-focus {slot-name slot-value }* -> [ chunk-name | nil ]
mod-focus-fct ({slot-name slot-value }*) -> [ chunk-name | nil ]

Arguments and Values:
slot-name ::= a symbol that should be the name of a slot of the chunk in the goal buffer

slot-value ::= a Lisp value to set for the value of the corresponding slot-name
chunk-name ::= a symbol which will be the name of the chunk in the goal buffer

Description:

22



Mod-focus is used to modify the chunk currently in the goal buffer. The slot-name and slot-value
pairs provided are passed to mod-chunk along with the name of the chunk which is in the goal buffer
of the current model. In addition, an event is scheduled with the action goal-modification and

priority :max so that the model can detect that the buffer has been changed outside of its actions.

If there is a chunk in the buffer and the modifications are valid for that chunk, then that chunk’s name
is returned. If there is no current model, no chunk in the goal buffer, or the modifications are invalid

a warning is printed and nil is returned.

Examples:

1> (goal-focus)
G-0
ISA TASK
COLOR NIL
STATE START

G-0

2> (mod-focus color green)
G-0

3> (goal-focus)
G-0
ISA TASK
COLOR GREEN
STATE START

G-0

4> (run 1)
0.000 GOAL GOAL-MODIFICATION
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 ------ Stopped because no events left to process
0.0
2
NIL

5> (mod-focus-fct '(state finished))
G-0

6> (goal-focus)
G-0
ISA TASK
COLOR GREEN
STATE FINISHED

G-0

E> (mod-focus slot)

#|Warning: 0dd length modifications list in call to mod-chunk. |#
NIL

E> (mod-focus slot value)

#|Warning: No chunk in the goal buffer to modify |#
NIL

22



E> (mod-focus bad-slot green)
#|Warning: Invalid slot name in modifications 1list.
NIL

E> (mod-focus slot value)

#|Warning: buffer-read called with no current model.
#|Warning: No chunk in the goal buffer to modify |#
NIL

| #

| #

22



Imaginal Module

The imaginal module provides the system with an imaginal buffer which is typically used to maintain
context relevant to the current task and a buffer called imaginal-action which can be used to call user
functions for manipulating the contents of the imaginal buffer. The imaginal buffer operates like the
goal buffer in creating new chunks. However, unlike the goal buffer, requests to create chunks using
the imaginal module take time (which can be specified by a parameter). It also allows one to make

modification requests, which function like a RHS = modification, but also take time to complete.

Parameters
:imaginal-delay

The imaginal-delay parameter controls how long it takes a request or modification request to the

imaginal buffer to complete. It can be set to a non-negative time (in seconds) and defaults to .2.
:vidt

The variable imaginal delay time parameter controls whether the actions of the imaginal buffer take
exactly the amount of time specified by :imaginal-delay or if they are randomized with the
randomize-time command. If it is set to t, then randomize-time is used to variablize the delay time,

and if it is set to mil, which is the default, then the delay times are fixed at the :imaginal-delay time.

Imaginal buffer

The imaginal buffer is typically used to create and hold task relevant information. It operates similar
to the goal buffer except that there is a time cost associated with creating and manipulating the

chunks.

Activation spread parameter: :imaginal-activation
Default value: 0.0

Queries

The imaginal buffer only responds to the default queries. Both buffers of the module will respond in

the same way regardless of which is queried because they report the module’s state information.

22



‘State busy’ will be t after a new request or modification request is received (through either buffer).
If the request came through the imaginal buffer the state will return to nil once the request is
completed. If the request came through the imaginal-action buffer then the busy state will remain t

until the set-imaginal-free command is used to clear the busy state back to nil.

‘State free’ will be t when the ‘state busy’ flag is nil i.e. when the module is not currently handling a

request and it will be nil when the module is handling a request.

‘State error’ will be nil unless set by the user with the set-imaginal-error command which will cause
it to be t. If set with the command, it will stay t until the next request is made to either of the

module’s buffers.

Requests

Isa any-valid-chunk-type
{slot value}*

Each slot should be specified at most once and no modifiers are allowed.

The request is used to create a new chunk which is placed into the imaginal buffer after :imaginal-
delay seconds. That will result in two events showing up in the trace:

0.750 IMAGINAL CREATE-NEW-BUFFER-CHUNK IMAGINAL ISA VISUAL-OBJECT
0.750 IMAGINAL SET-BUFFER-CHUNK IMAGINAL VISUAL-OBJECT1

There are three other maintenance events generated which will occur at the same time as the two
actions shown but will not show up in the trace. The first occurs before the create-new-buffer-chunk
event and will have an action of goal-style-request. The second has an action of clean-up-goal-chunk
which performs some system cleanup as happens for the goal module and will occur after the set-
buffer-chunk event. The final event, which occurs after the clean-up-goal-chunk event, has the action
set-imaginal-free and serves to set the module back to the state free after it has created the new
chunk.

The module can only handle one request at a time. If a request is made while the module is busy

processing a previous request it will print a warning and ignore the newer request.

#|Warning: Imaginal request made to the IMAGINAL buffer while the imaginal module was
busy. New request ignored. |#

22



Modification requests

{slot value}*

The imaginal buffer accepts modification requests and those specified buffer modifications are
passed to mod-buffer-chunk for the imaginal buffer after :imaginal-delay seconds have passed. It is
assumed that the chunk will still be there at that time. If there are slots specified which are not valid
for the chunk-type of the chunk in the imaginal buffer then that chunk-type will be extended to have

such slots as part of the modification.

This event will show up in the trace as a result of such an action:

1.000  IMAGINAL MOD - BUFFER-CHUNK IMAGINAL
If there are any new slots added to the chunk-type then there will also be an event which looks like

this indicating that the type named by <type> was extended:

1.000 IMAGINAL EXTENDING-CHUNK-TYPE <type>

There will also be a maintenance event generated which will not output to the trace. It will have the
action of set-imaginal-free and occur after the mod-buffer-chunk event. It serves to set the module

back to the free state after the buffer-modification is complete.

Imaginal-action buffer

The imaginal-action buffer is available for users to extend the capabilities of the imaginal module. It
does not perform any actions on its own nor does the module place any chunks into the buffer. It
essentially provides a hook for the modeler to perform actions on the imaginal buffer which are

attributed to the imaginal module for purposes of the graphic trace or predicting BOLD responses.

Activation spread parameter: :imaginal-action-activation
Default value: 0.0

Queries

The imaginal-action buffer only responds to the default queries. Both buffers of the module will
respond in the same way regardless of which is queried because they report the module’s state

information.

22



‘State busy’ will be t after a new request or modification request is received (through either buffer).
If the request came through the imaginal buffer the state will return to nil once the request is
completed. If the request came through the imaginal-action buffer then the busy state will remain t

until the set-imaginal-free command is used to clear the busy state back to nil.

‘State free’ will be t when the ‘state busy’ flag is nil i.e. when the module is not currently handling a

request and it will be nil when the module is handling a request.

‘State error’ will be nil unless set by the user with the set-imaginal-error command which will cause
it to be t. If set with the command, it will stay t until the next request is made to either of the

module’s buffers.

Requests

Isa generic-action
action function-name
{slots slot-list}

This request to the imaginal-action buffer requires the action slot be specified and its value must
name a function. An optional list of slot names may be provided as the slot-list value in the request.
Every item in the slot-list list must name a slot of the chunk currently in the imaginal buffer. When
the request is received by the module the state busy query for the module will be set to t, the state
error query will be set to nil, and the function specified by function-name will be called. If there is a
slot-list provided the function will be applied to that list otherwise the function will be called with no
parameters. No chunks will be placed into the buffer by default and the function which is called must
return the module to the state free using the set-imaginal-free command either directly or by
scheduling an event to do so at a later time. The function may also call the set-imaginal-error

command to set the state error to t for the module if that is needed.

This action essentially allows users to manipulate the chunk which is in the imaginal buffer via
arbitrary functions and have the action attributed to the imaginal module i.e. it is essentially the same
as a call to !eval! in a production except that the request is marked as going to the imaginal module
and the module is in the state busy during that time. This allows modelers to add commands which
they feel should be attributed to the imaginal module (for example rotations, translations or other

manipulations of the representation) without having to change the code for the module. Eventually,

22



such actions could become normal requests one could make to the imaginal module, but because
there is no consensus as to how things should be represented or manipulated at this time it is left open

for the modeler to use as needed.

No events are explicitly generated by this request, but the function which is called should generate

events for any changes it makes to the buffer and to schedule the call to set-imaginal-free.

Isa simple-action
action function-name
{slots slot-list}

This request to the imaginal-action buffer requires the action slot be specified and its value must
name a function. An optional list of slot names may be provided as the slot-list value in the request.
Every item in the slot-list list must name a slot of the chunk currently in the imaginal buffer. When
the request is received by the module the state busy query for the module will be set to t, the state
error query will be set to nil, the imaginal buffer will be cleared, and the function specified by
function-name will be called. If there is a slot-list provided the function will be applied to that list
otherwise the function will be called with no parameters. The named function must return either the
name of a chunk or nil. If it returns the name of a chunk then after the current imaginal-delay time
passes that chunk will be copied into the imaginal buffer and the module will be returned to the free
state. If the function returns nil then after the imaginal-delay time passes the module will be set to
the free state and it will be marked as also being in the error state. This request provides an easy way
to have code create arbitrary chunks for the imaginal buffer without having to schedule any events or

manage the internal imaginal state flags directly.

A valid request of this type will generate two events. One will be an event with the action of set-
imaginal-free. The other depends on whether the action function returned a chunk of nil. If it returns
a chunk then an event with the action set-buffer-chunk will be generated, but if nil was returned an

event with the action set-imaginal-error will be created.

Commands
set-imaginal-free
Syntax:

set-imaginal-free -> [ t | nil ]

22



Description:

Set-imaginal-free is used to clear the busy state of the imaginal module in the current model. It
should only be used by functions that are called as a result of a generic-action request to the imaginal-

action buffer.

If there is a current model then it returns t. If there is no current model then it returns nil and no

change is made.

Examples:

> (set-imaginal-free)
T

E> (set-imaginal-free)
#|Warning: get-module called with no current model. |#

#|Warning: Call to set-imaginal-free failed |#
NIL

set-imaginal-error

Syntax:
set-imaginal-error -> [ t | nil ]
Description:

Set-imaginal-error is used to set the error state of the imaginal module in the current model. It should
only be used by functions that are called as a result of a generic-action request to the imaginal-action
buffer. It causes queries of either of the imaginal module’s buffers for ‘state error’ to return t. That

error state will remain until another request is made to either of the module’s buffers.

If there is a current model then it returns t. If there is no current model then it prints a warning,

returns nil, and no change is made.

Examples:

> (set-imaginal-error)
T

E> (set-imaginal-error)

#|Warning: get-module called with no current model. |#
#|Warning: Call to set-imaginal-error failed |#

NIL

23



Declarative module

The declarative module provides the model with a declarative memory which stores the chunks that
are generated by the model and it provides a mechanism for retrieving those chunks. The retrieval of
chunks from the declarative memory depends on many factors that affect the accuracy and speed with

which a chunk can be retrieved which is based on research of human memory performance.

The model’s declarative memory (DM) consists of all the chunks which are explicitly added to it by
the modeler as well as all of the chunks which are cleared from the buffers. Whenever a chunk is
cleared from a buffer the declarative module merges that chunk into the model’s DM. The merging
process compares the chunk being added to the chunks already in DM. If the chunk being added is
equivalent to a chunk which is already in DM, then the new chunk is merged with the existing chunk
(see the merge-chunks command for details) and that chunk is strengthened by giving it another
reference at the time of the merging. If the chunk being added is not equivalent to any chunk in DM
then that chunk is added to DM.

Retrieval of chunks from DM is done through requests to the module. A request specifies a
description of a chunk which is desired (see the request details below). If there are chunks in DM
which match the specification request, then one of those chunks is placed into the retrieval buffer as a
response. If no such chunk is found then it signals that a failure to retrieve occurred by signaling the

state error and leaving the buffer empty.

The time it takes to complete the request and how a single chunk is chosen among possibly many
which match the request are controlled by several parameters. First, the setting of the :esc parameter

determines very coarsely what process is used.

If the :esc parameter is nil then only the symbolic matching is considered. The chunks are always
retrieved immediately and if there is more than one chunk which matches the request the setting of :er
determines how a chunk is chosen. If :er is t then the choice is made randomly. If :er is nil then a
deterministic process is used such that the same chunk will be chosen for that model each time the
same set of possible chunks could be retrieved. However, that process is not specified as part of the
declarative module’s definition because it is not intended to be a process which one relies on for

chunk preferences.

If the :esc parameter is t then the selection of which chunk is retrieved and how long it takes is

controlled by a quantity called activation. Each chunk in DM has an activation value associated with

23



it and among the chunks which match the request the one with the highest activation value, above a
parameterized threshold, is the one that will be retrieved. If no matching chunk has an activation
above the threshold then a failure to retrieve occurs. The activation of that chunk also determines
how long the request takes to complete. If multiple matching chunks have the same highest
activation, then the :er parameter determines how one of those chunks is chosen in the same way it

happens when :esc is nil.

Activation

How the activation of a chunk is computed is based on the setting of several parameters which
determine which mechanisms are to be used and those will be discussed in the specific sections

which follow. Here is the general equation for the activation (A) of a chunk i:
141' = Bi +Si +R +gi

Bl.: This is the base-level activation and reflects the recency and frequency of use of the chunk.
Si: This is the spreading activation value computed for the chunk which reflects the effect that the

contents of the buffers have on the retrieval process.
Pl.: This is the partial matching value computed for the chunk which reflects the degree to which the

chunk matches the specification requested.
&:: A noise value with both a transient and permanent component.

Each of those components will be described in more detail below. Note that for each of those
components it is possible for the modeler to replace the mechanism as described with their own

mechanism using the hook functions available in the declarative module.

Base-level

The base-level component, B, is computed differently based on the setting of the :bll and :ol

parameters.

If :bll is nil then the setting of :ol does not matter and the base-level is a constant value determined by

the :blc parameter or specific user settings for the chunk.

B =
Bi: A constant offset which is determined by the :blc parameter or the chunk’s :base-level parameter
if specified.

23



If :bll is set to a number, then the setting of :o0l determines how the base-level is computed.

If :0l is nil then this equation is used:

B =In(3 t;)+f
=1

n: The number of presentations for chunk i.

t: The time since the jth presentation. A presentation is either the chunk’s initial entry into DM or
when another chunk is merged with a chunk which is in DM (these are also called the chunk’s
references).

d: The decay parameter which is set using the :bll (base-level learning) parameter.

Bi: A constant offset determined by the :blc parameter

If :ol is t then this approximation to that equation is used which does not require recording the

complete history of the chunk:
B, =In(n/(1—d)) —d *In(L) +3

n: The number of presentations of chunk i.
L: The lifetime of chunk i (the time since its creation).
d: The decay parameter (the value of :bll)
Bi: A constant offset determined by the :blc parameter

If ol is set to a number, then a hybrid of those is used such that the specified number of true
references are used and the approximation is used for any remaining references (if there are not more
total references than the parameter setting for :0l (n <= k) then the full equation is used and the extra

term in this equation is not computed):

k 1) s 0md _ 1-d
B =1 Td (I’l k) (tn tk
9 T i S pry

))+ﬁi

k: is the value of the :ol parameter.

t;: The time since the jth presentation (for this equation t; is the time since the most recent
presentation and t, the time since the first presentation)

n: The total number of presentations of chunk i.

d: The decay parameter (the value of :bll)

Bi: A constant offset determined by the :blc parameter

23



Spreading Activation

Whether spreading activation is used is determined by the setting of the :mas parameter. If it is nil,
which is the default value, then the value of S is 0 in the activation equation. If :mas is set to a

number, then this equation determines the spreading activation component of chunk i’s activation:

The elements k being summed over are all of the buffers in the model.

The elements j being summed over are the chunks which are in the slots of the chunk in buffer k
(these are referred to as the sources of activation).

ij: This is the amount of activation from source j in buffer k. It is the source activation of buffer k

divided by the number of sources j in that buffer.

Sji: This is the strength of association from source j to chunk i.

strength of association

The strength of association, S , between two chunks is computed using the following equations by
Ji
default, but can be set explicitly by the modeler using the add-sji command or thorough the sji-hook

parameter.
If chunks j and i are not the same chunk and j is not in a slot of chunk i:

S, =0

Ji

If chunks j and i are the same chunk or chunk j is in a slot of chunk i:
S; =S —In(fan;)
S: The maximum associative strength set with the :mas parameter.

fan;:: a measure of how many chunks are associated with chunk j.

The fan is typically thought of as the number of chunks in which j is the value of a slot plus one for
chunk j being associated with itself. However, because j may appear in more than one slot of the

chunk i, this is the general calculation which is used to compute the fan:

23



1+ slotsj
fanji

B slotsof ;

slots;: the number of slots in which j is the value across all chunks in DM.
slotsof;i: the number of slots in chunk i which have j as the value (plus 1 when chunk i is chunk j).

The S value can become negative as the fan value grows, but that is generally an undesirable
n ji
situation. By default the declarative module will print a warning if S becomes negative due to that
ji
calculation and use 0.0 instead of the negative value, but that can be changed using the :nsji

parameter.

Partial Matching

When the partial matching process is enabled it is possible for a chunk that is not a perfect match to
the retrieval specification to be the one that is retrieved. To enable the partial matching one needs to
set the :mp parameter to a number instead of its default of nil. When enabled, the similarity of the
values requested to those in the slots of the chunks of the appropriate chunk-type in DM are
computed to determine the activation value. If partial matching is disabled then Pi is 0, but if it is

enabled it is computed with this equation:

p=3Pm,

The elements k being summed over are the slot values of the retrieval specification for slots with an =

or — modifier only.

P: This is a match scale parameter (set with :mp) that reflects the amount of weighting given to the
similarity.

M,i: The similarity between the value k in the retrieval specification and the value in the
corresponding slot of chunk i.

similarities

The possible range of default similarity values is configurable using the maximum similarity
parameter (:ms) and the maximum difference parameter (:md). The default range is from 0 to -1 with

0 being the most similar and -1 being the largest difference. In general, the similarity can be thought

23



of more as a difference penalty because the concept is not to boost the similar items, but to penalize
the different ones. Since it gets added to the activation value, the values should be negative for items

that are not the same and using positive similarities is not recommended (though not prohibited).

By default, a chunk has a maximum similarity to itself and a maximum difference to all other chunks.
Any other similarities must be set explicitly by the modeler either using the set-similarities command
or the sim-hook parameter. For non-chunk slot values in the retrieval request, the similarity is the
maximum similarity if the values are equal using the chunk-slot-equal function and the maximum
difference if they are not. The only way to set non-default similarity values for items which are not
chunks is through the sim-hook capability. Similarities set explicitly with the declarative commands

or through the sim-hook function are not constrained by the :ms and :md parameters.

One final note on the computation of the Mki values. If the retrieval specification is requesting the
value using the negation modifier, then the Mki value for that slot test k is not the specific similarity
value between the items involved. If the similarity between those the items is equal to the maximum
similarity then Mki is set to the maximum difference. Otherwise, Mki is set to 0 for that slot.
Essentially, if they are the same (or perfectly similar items), then the chunk is given the maximum
penalty since the request specified that it not have that value and if they are different (any similarity

other than a perfect match) then no penalty is applied.

Noise

The noise calculation has two components. There is a transient component which is computed each
time a retrieval request is made and there is a permanent component which is associated specifically
with the chunk which is generated once when the chunk is entered into DM. The total noise added to
the activation is the sum of the two components. Often, the transient component is sufficient for

modeling and the permanent noise is left disabled.

Each one is generated using the act-r-noise command. Thus they are generated from a logistic
distribution with a mean of 0 and an s as specified by the corresponding parameter of the declarative
module. The parameter for the transient noise s value is :ans and the parameter for the permanent
noise s value is :pas. The default value for each parameter is nil. For the transient noise that means
to not generate any transient noise and for the permanent noise it means to leave the chunk’s
permanent noise set to 0. The permanent noise is always added to the activation of the chunk and can

be set by the modeler using the sdp command for creating specific offset values when needed.

23



Retrieval time

The time that it takes the declarative module to respond to a request for a chunk, i, is determined by

the activation that the chunk has using this equation when the subsymbolic computations are enabled:

RT = Fe ™

RT: The time to retrieve the chunk in seconds.

Ai: The activation of the chunk i which is being retrieved.
F: The latency factor parameter.

f : The latency exponent parameter.

If there is no chunk found in response to a request or the chunk with the highest activation is below
the retrieval threshold then the time required to indicate a failure to retrieve any chunk is determined

by this equation when subsymbolic computations are enabled:

RT =Fe "™

RT: The time until the failure is noted in seconds.
T : The retrieval threshold parameter (:rt)

F: The latency factor parameter (:1f)

f : The latency exponent parameter (:le)

Declarative finsts

The declarative module maintains a record of the chunks which have been retrieved and provides a
mechanism which allows one to explicitly retrieve or not retrieve one which is so marked. This is
done through the use of a set of finsts (fingers of instantiation) which mark those chunks. The finsts
are limited in the number that are available and how long they persist. The number and duration are
both controlled by parameters. If more finsts are required than are available, then the oldest one (the
one marking the chunk retrieved at the earliest time) is removed and used to mark the most recently
retrieved chunk. Details on how to use the finsts in a request are covered in the section detailing the

use of the retrieval buffer.

Parameters

23



The declarative module has a lot of parameters which can be set and they fall into four general
categories. The first category contains the parameters which are used in the activation equations as
described above. The next category contains the parameters which control basic functionality of the
module. The third category is parameters which allow the user to adjust the chunk activation
equation: each of the four primary components may be replaced by the user, the default
computations for strengths of association and similarities can be replaced, and additional terms may
be added to the equation. The final set of parameters allow the user to install functions to monitor the

operations of the module.

Note on parameters for the declarative module. It is recommended that one not change parameters
for the declarative module once chunks have been entered into DM (this also includes the :ol and :esc
parameters which are used by the declarative module). The reason for this is that the module does
not attempt to reconcile differences in interpretations which may result due to such changes i.e.
chunks which have had their internal parameters set under one set of parameters may no longer be
valid under different settings. A warning will be printed if one does change such parameters after
there are chunks in DM. That warning does not mean that things will necessarily break (there are
situations where the warning can be safely ignored), but one should be cautious when changing

things in that manner.

:act

The activation trace parameter controls whether or not the declarative module should print the details
of the activation computation when it is computed (during a retrieval request or otherwise). If it is set
to t then all of the components of the equation are output to the model’s trace when a chunk’s

activation is computed, and if it is set to nil then no extra trace is generated. The default value is nil.

There are also two lesser output levels available for the activation trace if one specifies a setting of
medium or low for the parameter value. = The medium output level does not print the information
about chunks which did not match the retrieval request and the low level only prints the final

activation values computed for the chunks.

:activation-offsets

This parameter allows one to specify functions which can extend the activation equation with new

terms. This parameter can be set to a function which takes one parameter and any number of such

23



functions may be set (the reported value of this parameter is a list of all functions which have been
set). Whenever a chunk’s activation is computed each of the functions that has been set for this
parameter will be called with one parameter which is the name of the chunk. If a function called
returns a number then that value will be added to the activation of the chunk and if the activation
trace is enabled a line will be shown indicating the name of the function and the offset added. If a
function returns any other value then no change is made to the activation of the chunk. If the
parameter is set to nil then all functions are removed from the activation-offsets list. A function
should only be set once. If a function is specified more than once as a value for the activation-offsets

a warning will be displayed and a value of nil will be returned as the current value.

«dns

The activation noise s parameter specifies the s value used to generate the instantaneous noise added
to the activation equation if it is set to a positive number. If it is set to nil, which is the default, then

no instantaneous noise is added to the activations.

:bl-hook

This parameter allows one to override the base-level calculation. If it is set to a function then that
function will be passed one parameter which is the name of the chunk for which a base-level is

needed. If the function returns a number then that will be the B value used in the activation equation.
1
:blc

The base-level constant parameter specifies the default value for the Si component of the base-level
equations. If base-level learning is disabled (:bll is nil) and the :base-level parameter for the chunk is

set (see sdp below) then that overrides the :blc setting. The default value is 0.0.

:bll

The base-level learning parameter controls whether base-level learning is enabled, and if so what the
value of the decay parameter, d, is set to. It can be set to any positive number or the value nil. The
value nil means do not use base-level learning and is the default value, any number means that base-

level is enabled.

:chunk-add-hook

23



This parameter allows one to specify functions to be called automatically when chunks are added to
the current model’s DM. This parameter can be set with a function which takes one parameter and
any number of such functions may be set (the reported value of this parameter is a list of all functions
which have been set). Whenever a chunk is added into DM each of the functions that has been set
will be called with one parameter which is the name of the chunk that was added into DM. This call
is made after the chunk has been added to DM and its declarative parameters updated appropriately.
The return values of those functions are ignored. If the parameter is set to nil then all functions are
removed from the chunk-add-hook. A function should only be set once. If a specific function is
specified more than once as a value for the chunk-add-hook a warning will be displayed and a value

of nil will be returned as the current value.

:chunk-merge-hook

This parameter allows one to specify functions to be called automatically when chunks are merged
into to the current model’s DM. This parameter can be set with a function which takes one parameter
and any number of such functions may be set (the reported value of this parameter is a list of all
functions which have been set). Whenever a chunk is merged into DM each of the functions that has
been set will be called with one parameter which is the name of the chunk that was merged into DM.
This call is made after the chunk has been merged into DM and its declarative parameters updated
appropriately. The return values of those functions are ignored. If the parameter is set to nil then all
functions are removed from the chunk-merge-hook. A function should only be set once. If a specific
function is specified more than once as a value for the chunk-add-hook a warning will be displayed

and a value of nil will be returned as the current value.

:declarative-num-finsts

This parameter controls how many finsts are available to the declarative module. It can be set to any

positive number and the default is 4.

:declarative-finst-span

This parameter controls how long a finst can mark a chunk as having been retrieved. After a finst has
been on a chunk for this amount of time the finst is removed and the chunk is no longer marked as

recently retrieved. It can be set to any positive number and defaults to 3.0.

:fast-merge

24



This parameter controls whether a fast lookup algorithm can be used to determine if a chunk needs to
be merged with any chunks in DM. If it is set to t, which is the default, then that lookup algorithm is
used. If it is set to nil, then for each chunk that is to be merged a complete scan of all chunks of that
type in DM must be performed to determine if it should be merged. Generally, one will leave this
parameter at t, but if one is modifying the chunks that are already in DM explicitly then the lookup
algorithm may fail to merge chunks which should be merged and you will need to set this to nil.
Modifying chunks which are already in DM is not a recommended practice and it cannot happen with
the default production actions or buffer manipulations — you would have to call mod-chunk directly

to do so.
le

The latency exponent value, f, in the equation for retrieval times. It can be set to any non-negative

value and defaults to 1.0.
:Af

The latency factor value, F, in the equation for retrieval times. It can be set to any non-negative value

and defaults to 1.0.
:mas

The maximum associative strength parameter controls whether the spreading activation calculation is
used, and if so, what the S value in the Sji calculations will be. It can be set to any number or the
value nil. The value nil means do not use spreading activation and is the default value, any number

means that spreading activation is enabled.
:md

The maximum difference. This is the default similarity value between a chunk and any chunk other

than itself. It can be set to any number and defaults to -1.0.
:mp

The mismatch penalty parameter controls whether the partial matching system is enabled, and if so,
what the value of the penalty parameter, P, in the activation equation is set to. It can be set to any

number or the value nil. The value nil means do not use partial matching, and is the default. When

24



partial matching is not enabled only chunks which match the retrieval request exactly will be

retrieved. If it is set to a number then partial matching is enabled.
:ms

The maximum similarity. This is the default similarity value between a chunk and itself. It can be

set to any number and defaults to 0.0.
:nsji

Whether or not to allow negative Sji values from the S-log(fan) calculation, Can be set to t which
means that they are allowed, warn which means that negative values will be treated as 0 activation
spread and a warning will be displayed, or nil which means that negative values will be treated as 0
activation spread and no warning will be displayed. A value of warn or nil does not prevent the user

from setting explicit negative values if desired. The default is warn.

:noise-hook

This parameter allows one to override the noise calculation. If it is set to a function then that function
will be passed one parameter which is the name of the chunk for which a noise value is needed. If

the function returns a number then that will be the noise value used in the activation equation.

:partial-matching-hook

This parameter allows one to override the partial matching calculation. If it is set to a function then
that function will be passed two parameters. The first will be the name of the chunk for which a
partial matching value is needed and the second will be the chunk-spec of the request. If the function

returns a number then that will be the P value used in the activation equation.
1
:pas

The permanent activation noise s parameter specifies the s value used to generate the permanent noise
added to the activation equation of a chunk if it is set to a positive number. The permanent noise is
only generated once when the chunk is added to DM. If it is set to nil, which is the default, then no
permanent noise is generated for the chunks, but they may still have such a value set explicitly using

the sdp command described below.

:retrieved-chunk-hook

24



This parameter allows one to specify functions to be called automatically when chunks are retrieved
or a failure to retrieve occurs. This parameter can be set with a function which takes one parameter
and any number of such functions may be set (the reported value of this parameter is a list of all
functions which have been set). When there is a retrieved-chunk event these functions will be called
with the name of the chunk which has been retrieved, and when there is a retrieval-failure event these
functions will be called with nil as the parameter. The return values of those functions are ignored.
If the parameter is set to nil then all functions are removed from the retrieved-chunk-hook. A
function should only be set once. If a specific function is specified more than once as a value for the
retrieved-chunk-hook a warning will be displayed and a value of nil will be returned as the current

value.

:retrieval-request-hook

This parameter allows one to specify functions to be called automatically when a retrieval request is
made. This parameter can be set with a function which takes one parameter and any number of such
functions may be set (the reported value of this parameter is a list of all functions which have been
set). When there is a start-retrieval event these functions will be called with the chunk-spec of the
request as the parameter. The return values of those functions are ignored. If the parameter is set to
nil then all functions are removed from the retrieval-request-hook. A function should only be set
once. If a specific function is specified more than once as a value for the retrieval-request-hook a

warning will be displayed and a value of nil will be returned as the current value.

:retrieval-set-hook

This parameter allows one to specify functions to be called during the retrieval process. This
parameter can be set with a function which takes one parameter and any number of such functions
may be set (the reported value of this parameter is a list of all functions which have been set). After
the set of chunks which match have been determined and their activations are calculated this function
will be called with the list of the chunk names that match the request. The first chunk on the list is
the one that will be retrieved (if its activation is above the threshold). This function can be used to
override the choice of which chunk to retrieve. If this function returns a cons of a chunk name and a
number, then that chunk will be the one placed in the retrieval buffer after that many seconds pass. If
the function returns a number, then the declarative module will signal a retrieval failure after that
many seconds pass. If the function returns anything else then the normal retrieval process will occur.
If more than one function on the list for this parameter return a value, then none of those values will

be used and the default mechanisms will be applied. If the parameter is set to nil then all functions

24



are removed from the retrieval-set-hook. A function should only be set once. If a specific function is
specified more than once as a value for the retrieval-set-hook a warning will be displayed and a value

of nil will be returned as the current value.
irt

The retrieval threshold. This is the minimum activation a chunk must have to be able to be retrieved,

T, in the retrieval failure time equation. It can be set to any number and defaults to 0.0.

:sact

The save activation trace parameter controls whether or not the declarative module should save the
details of the activation computation when it is computed during a retrieval request. If it is set to a
non-nil value then all of the components of the activation calculations are saved and a trace like the
one displayed when using the :act parameter can be printed out after a run using the print-activation-

trace and print-chunk-activation-trace commands. The default value is nil.

The parameter can be set to values like :act i.e. t, medium, low, or nil. The output of the print-
activation-trace and print-chunk-activation-trace commands will use the specific setting of this

parameter to display the requested amount of detail in the traces shown.
:sim-hook

This parameter allows one to override the similarity calculation. If it is set to a function then that
function will be passed two parameters. The first will be the slot contents of the request
specification, the k from the partial matching equation, and the second will be the considered chunk’s
value for that slot. If the function returns a number that will be the Mki value used for that term in the
partial matching equation. If the function returns nil or a non-numeric value the default Mk value

1

will be used.
:sji-hook

This parameter allows one to override the strength of association calculation. If it is set to a function
then that function will be passed two parameters. The first will be the chunk j from a slot in a buffer
chunk and the second will be the considered chunk i. If the function returns a number that will be the
S value used in the equation of Si for the chunk i. If the function returns nil or a non-numeric value

J

the default S value will be used.
ji

24



:spreading-hook

This parameter allows one to override the spreading activation calculation. If it is set to a function
then that function will be passed one parameter which is the name of the chunk for which a spreading
activation value is needed. If the function returns a number then that will be the S value used in the

activation equation. If the function returns nil or a non-numeric value the default spreading

activation calculation will be used.
:w-hook

This parameter allows one to override the default values for ij in the strength of association
calculation. If it is set to a function then that function will be passed two parameters. The first will
be the name of the buffer, the k, and the second will be the name of a slot for which the source of
activation, the j, is being spread. If the function returns a number that will be the W value used in

kj

the equation of S at that time. If the function returns nil or a non-numeric value the default Wk'
i J

value will be used.

Retrieval buffer

The retrieval buffer is used to retrieve chunks from the model’s declarative memory using the

mechanisms described above.

Activation spread parameter: :retrieval-activation
Default value: 0.0

Queries

In addition to the default queries the retrieval buffer can be queried with recently-retrieved which can

be checked for the values of t or nil.

‘State busy’ will be t while a retrieval request is being processed — the time between the start-retrieval

event and either the retrieved-chunk or retrieval-failure event. It will be nil at all other times.

‘State free’ will be nil while a retrieval request is being processed — the time between the start-

retrieval event and either the retrieved-chunk or retrieval-failure event. It will be t at all other times.

24



‘State error’ will be t if no chunk matching the most recent request was found — when there is a
retrieval-failure event and nil otherwise. Once it becomes t it will not change back to nil until the

next retrieval request is made.

‘Recently-retrieved t” will be t if there is a chunk in the retrieval buffer and there is a chunk in DM
from which that chunk was copied which is currently marked with a declarative finst. Otherwise this

query will be nil.

‘Recently-retrieved nil’ will be t if there is a chunk in the retrieval buffer and there is a chunk in DM
from which that chunk was copied which is currently not marked with a declarative finst. Otherwise

this query will be nil.

Requests

Isa any-valid-chunk-type

{{modifier} slot value}*

{:recently-retrieved [t | nil | reset]}

{:mp-value [ nil | temp-value]}
A request to the retrieval buffer is a description of a chunk which the declarative module will try to
find in DM and place into the retrieval buffer. If the chunk-type specified has subtypes then the slots
provided may include those which are valid for the given chunk-type and for any of its subtypes. For
the declarative module to consider a chunk in DM as a possible candidate it must have all of the slots

specified.

There are two request parameters which can be used to modify how that request is handled. The
:recently-retrieved request parameter can be used to test the declarative finsts associated with the
chunks in addition to the chunks' contents. If :recently-retrieved is specified as t then the request will
only match to chunks which have a finst set on them at the time of the request. If :recently-retrieved
is specified as nil then the request will only match to chunks which do not have a finst set on them at
the time of the request, and if :recently-retrieved is specified as reset then all of the declarative finsts
are removed before the request is processed. The :mp-value request parameter allows one to
temporarily change the setting of the declarative module's :mp parameter while this request is
processed. That can only be used if the :mp parameter has been enabled (set to a number) for the

model, and the value provided can be anything that is valid for :mp (a number or nil).

24



If a chunk which matches the request is found it will be placed into the retrieval buffer. If no chunk
is found, or no chunk which matches has an activation which is above the retrieval threshold when

the :esc parameter is t, then the buffer is left empty and an error is signaled.

The declarative module will only process one request at a time. If a new request comes in prior to the
completion of a previous request the older request is terminated immediately — no chunk will be
placed into the buffer or error signaled as a result of that request. A warning will be output to the
trace indicating the early termination of the previous request and the module will remain busy while

processing the new request.

A successful request to the declarative module will show events like this:

0.050 DECLARATIVE START-RETRIEVAL
0.100 DECLARATIVE RETRIEVED-CHUNK C
0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL C

A failed request will show events like this:

10.250 DECLARATIVE START-RETRIEVAL

10.300 DECLARATIVE RETRIEVAL-FAILURE

If a request is terminated prematurely by a new request this is the warning that will show in the trace:

10.350 DECLARATIVE START-RETRIEVAL

#|Warning: A retrieval event has been aborted by a new request |#

Commands

add-dm

Syntax:

add-dm ({[ chunk-name | chunk-name doc-string]} isa chunk-type {slot value}*)* -> [chunk-name-list | nil ]
add-dm-fct (({[ chunk-name | chunk-name doc-string]} isa chunk-type {slot value}*)*) -> [chunk-name-list | nil ]

Arguments and Values:

chunk-name ::= a symbol that will be the name of the chunk

doc-string ::= a string that will be the documentation for the chunk

chunk-type ::= a symbol that should name an existing chunk-type of the model

slot ::= a symbol that names a valid slot in chunk-type

value ::= any Lisp value which will be the contents of the preceding named slot for this chunk

24



chunk-name-list ::= a list of chunk-name symbols
Description:

The add-dm command functions exactly like the define-chunks command to create new chunks for
the model (see define-chunks for more details). In addition, add-dm places those chunks into the

current model’s declarative memory. It returns a list of the names of the chunks that were created.

If the syntax is incorrect or any of the components are invalid a list describing a chunk then a warning
is displayed and no chunk is created for that chunk description, but any other valid chunks defined

will still be created.
If there is no current model then a warning is displayed, no chunks are created and nil is returned.

Add-dm is used to provide the model with a set of initial memories. It should not be used for creation
of general chunks. In particular, it should not be used by other modules to create the chunks to place
into their buffers because those chunks will be added to DM automatically when the buffer is cleared

and should not be placed there prior to that.

Examples:

1> (chunk-type number value)
NUMBER

2> (add-dm (isa number value 1)
(two isa number value 2))
(NUMBER® TWO)

3> (add-dm-fct (list '(three isa number value 3)
'"(isa number value three)))
(THREE NUMBER1)

E> (add-dm (bad-chunk isa invalid-chunk-type))

#|Warning: Invalid chunk definition: (BAD-CHUNK ISA INVALID-CHUNK-TYPE) chunk-type
specified does not exist. |#

NIL

E> (add-dm (four isa number value 4))

#|Warning: get-module called with no current model. |#

#|Warning: Could not create chunks because no declarative module was found |#
NIL

dm

Syntax:

dm chunk-name* -> (chunk-name®*)
dm-fct (chunk-name®) -> (chunk-name*)

24



Arguments and Values:
chunk-name ::= should be a symbol which names a chunk
Description:

The dm command is used to print out chunks which are in the declarative memory of the current
model. For each chunk name provided that chunk will be printed to the current model’s command
output stream. If no chunk names are provided then all of the chunks in DM will be printed. A list of

the names of the chunks which are printed will be returned.
If there is no current model then a warning is printed and nil is returned.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

> (dm)
FIRST-GOAL
ISA COUNT-FROM
START 2
END 4
COUNT NIL

ISA COUNT-ORDER
FIRST 5
SECOND 6

ISA COUNT-ORDER
FIRST 4
SECOND 5

ISA COUNT-ORDER
FIRST 3
SECOND 4

ISA COUNT-ORDER
FIRST 2
SECOND 3

ISA COUNT-ORDER
FIRST 1
SECOND 2

(FIRST-GOAL F E D C B)

> (dm b d)

B
ISA COUNT-ORDER
FIRST 1
SECOND 2

24



D
ISA COUNT-ORDER
FIRST 3
SECOND 4

(B D)

> (dm-fct '(first-goal c))
FIRST-GOAL

ISA COUNT-FROM

START 2

END 4

COUNT NIL

c
ISA COUNT-ORDER
FIRST 2
SECOND 3

(FIRST-GOAL C)

E> (dm bad-name)
NIL

E> (dm)
#|Warning: get-module called with no current model. |#

#|Warning: No declarative memory module found |#
NIL

sdm

Syntax:

sdm [isa chunk-type slot-test* | slot-value*] -> (chunk-name®*)
sdm-fct ([isa chunk-type slot-test* | slot-value*]) -> (chunk-name¥*)

Arguments and Values:

chunk-type ::= a symbol which names a chunk-type
slot-test ::= {slot-modifier} slot-value

slot-modifier ::=[=]-| <| >| <=]| >=]

slot-value ::= slot value

slot ::= a symbol which names a slot

value ::= any Lisp value

chunk-name ::= a symbol which names a chunk

Description:

The sdm command is used to search the declarative memory of the current model and print out
chunks which match the search specification. If no parameters are provided then all chunks in DM
are printed. If parameters are provided then all chunks which match the specification provided are
printed. If the chunk-type is specified then the slots given must be valid for that chunk-type and slot

modifiers may be used. If no chunk-type is provided then only slots and values may be provided, but

25



any chunk which has a slot by that name can match. A list of the names of the chunks which are

printed is returned.

If there is an error in the specification or there is no current model a warning is printed and nil is

returned.

Examples:

1> (chunk-type typel slotl slot?)
TYPE1

2> (chunk-type number name value)
NUMBER

3> (chunk-type type2 name slot1l)
TYPE2

4> (add-dm (one isa chunk)
(a isa typel slotl 1 slot2 a)
(b isa typel slotl 2 slot2 a)
(c isa number name one value 1)
(d isa type2 name one slotl 3))
(ONE A B C D)

5> (sdm isa typel)

A
ISA TYPE1
SLOT1 1
SLOT2 A
B
ISA TYPE1l
SLOT1 2
SLOT2 A
(A B)
6> (sdm name one)
D
ISA TYPE2
NAME ONE
SLOT1 3
C
ISA NUMBER
NAME ONE
VALUE 1
(D C)
7> (sdm-fct '(isa typel < slotl 2))
A
ISA TYPE1
SLOT1 1
SLOT2 A
(A)
8> (sdm-fct '(slot2 a))
A
ISA TYPE1

25



SLOT1 1

SLOT2 A
B
ISA TYPE1
sLoT1 2
SLOT2 A
(A B)

9E> (sdm-fct '(isa type2 value))

#|Warning: Invalid slot-name VALUE in call to define-chunk-spec. [#
#|Warning: chunk-spec-chunk-type called with a non-chunk-spec [#

#|Warning: NIL is not a valid chunk-spec in call to find-matching-chunks. |#
NIL

E> (sdm isa bad-chunk-type)

#|Warning: Invalid chunk-type BAD-CHUNK-TYPE passed to sdm |#

NIL

E> (sdm < slotl 1)

#|Warning: Specification list to sdm without an isa is not an even length |#
NIL

E> (sdm)

#|Warning: get-module called with no current model. |#

#|Warning: No declarative memory module found [#
NIL

print-dm-finsts

Syntax:

print-dm-finsts -> (<chunk-name time-stamp>*)

Arguments and Values:

chunk-name ::= a symbol which names a chunk in DM

time-stamp ::= a number indicating the time the finst was applied to the chunk chunk-name
Description:

Print-dm-finsts can be used to see which chunks in the current model have declarative finst markers.
It takes no parameters and will print out a table of the chunks with finsts on them showing the time at
which the finst was set in seconds. It returns a list of cons cells where each cell has the name of a

chunk with a finst on it as the car and the creation time of its finst as the cdr.
If there is no current model then a warning is printed and nil is returned.

Examples:

This example assumes that the count model from tutorial unit 1 has been loaded.

25



1> (print-dm-finsts)

Chunk name Time Stamp

2> (run 10)

3> (print-dm-finsts)

Chunk name Time Stamp

E 0.300

D 0.200

C 0.100

((E . 0.3) (D . 0.2) (C . 0.1))

E> (print-dm-finsts)
#|Warning: get-module called with no current model. |#
NIL

sdp

Syntax:

sdp [{[chunk-name | (chunk-name*)}{[ param-name*| param-value-pair*]} |
(chunk-name [ param-name*| param-value-pair*])*] -> (param-values*)
sdp-fct ([{[chunk-name | (chunk-name*){[ param-name*| param-value-pair*]} |
(chunk-name [ param-name*| param-value-pair*])*])-> (param-values*)

Arguments and Values:

chunk-name ::= a symbol which is the name of a chunk in the declarative memory of the current
model

param-name ::= a keyword which names a declarative parameter

param-value-pair ::= param-name new-param-value

new-param-value ::= a Lisp value to which the preceding param-name is to be set

param-values ::= [(param-value*) | (chunk-name¥*)| :error]

param-value ::= the current value of a requested declarative parameter or :error.

Description:

Sdp is used to set or get the declarative parameters of the chunks in the current model. It is very

similar to the sgp command which is used to set and get the module parameters.

Each chunk has several declarative parameters associated with it, and most of those are relate to the
computation of the activation equation. The declarative parameters are only relevant when the :esc
parameter is enabled, and even then, some of the parameters are only available when specific options

of the declarative module are also enabled.

25



The declarative parameters available through sdp are listed below. An important thing to note is that

while these declarative parameters are maintained using general chunk parameters not all of the

general chunk parameters are available through sdp. Only the chunk parameters which are relevant

to the declarative module are accessible through the sdp command, and the mapping of declarative

parameters onto chunk parameters may not be one-to-one. Thus, these parameters should only be

accessed through the sdp command and should not be read or changed through the general chunk

parameter accessors since their internal representations are not part of the declarative module’s API.

name := the name of the chunk. Cannot be changed.

activation := the chunk’s current activation value. Cannot be changed through sdp.
permanent-noise := the permanent noise is a value which is added to the activation of the
chunk each time it is computed. It defaults to 0.0. If :pas is set to a number, then when a
chunk is initially added to DM a random noise value generated using the :pas value as the s
parameter to act-r-noise will be generated and set as the chunk’s permanent noise. It can be
set by the modeler to any number, which will override the default and automatically generated
values.

base-level := the chunk’s current base-level value. Cannot be changed directly through sdp
when base-level learning is enabled because in that case it is controlled by the chunk’s
creation-time, reference-count, and/or reference-list. If base-level learning is disabled then it
can be set to a number which will be the [31 value for the chunk.

creation-time := the time (in seconds) when the chunk was first added to DM. Used by the
base-level equations to determine the t values and the chunk’s life time. Can be set to any
time (including negative values) which ]is less than or equal to the current time. This is only
applicable when :bll is set to a non-nil value.

reference-count := the number of references which the chunk has received. Can be set to any
positive value. It is applicable when :bll is non-nil and :ol is either t or a number. It is the n
value used in the optimized base-level equations. If the reference-count is set by the user then
the reference-list for the chunk will be adjusted to contain an appropriate number of
references as follows. If the reference-list is as long as the reference-count specified or :ol is t
then the reference-list will be unchanged. If the reference-list is currently longer than the
specified reference-count it will be truncated to that many of the most recent entries. If the
reference-list is shorter than the specified reference-count but has as many items as the current
setting of :ol it will be unchanged. Otherwise, the reference-list will be set to an evenly

distributed set of references as would be done by the set-base-level command.

25



reference-list := the list of times at which the chunk’s references have occurred (most recent
first). Can be set to a list of times. It is applicable when :bll is non-nil and :ol is either nil or
a number. If :ol is nil, then the list will contain all of the reference times of the chunk. If :ol
is set to a number then it will only hold that many references (the most recent). If more
references are provided than are needed, the list is truncated to the necessary length. When
the reference-list is set by the user the reference-count may be adjusted automatically. If :o0l is
nil, then the reference-count will be updated to the length of the reference-list (even though
the reference-count is not actually used when :ol is nil). If :ol is a number and the reference-
count is less than the length of the (possibly truncated) reference-list it will be set to the length

of the reference-list. Otherwise, the reference-count will be unchanged.

references := This parameter is deprecated and should not be used, but is still available for
compatibility with older models. This parameter will not be shown for a chunk and modelers

should use reference-count and reference-list instead to get/set the relevant values.

source := the chunk’s current activation spread from the current buffer contents. Cannot be

changed directly through sdp. Only applicable when the :mas parameter is set to a number.

sjis := this reports the S value for chunks j to the chunk i (where i is the chunk for which the
value is being 1reported)J.1 The reported value is a list of cons cells where the car of a cons is
the name of a chunk j and the cdr is the S between that chunk j and the chunk i. Only chunks
j which have a connection with i are rejll)orted — all other S wvalues to chunk i will be 0.0
(unless a provided :sji-hook overrides that). This parameterﬂis only relevant when the :mas
parameter is set to a number. It is possible to set this parameter using a list of cons cells (or
two element lists). Each value specified is effectively added to the set of S values for the
chunk as if the add-sji command was called (possibly replacing a value whichﬂwas previously
set or overriding a default value). The add-sji command is the recommended way to set S
values instead of using this parameter through sdp. '

similarities := this reports the similarities (the Mki values) between other chunks k and this
chunk, i. The reported value is a list of cons cells where the car of the cell is the name of the
chunk k and the cdr is the similarity value Mki. Only chunks k for which a similarity value
has been set and the similarity of the chunk with itself are reported. All other Mki values will
be the maximum difference (the :md parameter setting). This parameter is only relevant when
the :mp parameter is set to a number. It is possible to set this parameter using a list of cons
cells (or two element lists). Each value specified is effectively added to the similarity values
for the chunk (possibly replacing a value which was previously set or overriding a default

value). The set-similarities command is the recommended means of setting similarities, but if

25



one wants asymmetric similarities between chunks they must be set explicitly with sdp per
chunk (set-similarities always sets the values symmetrically).

= last-retrieval-activation := the activation that the chunk had the last time that it was attempted
to be retrieved. This value is computed during the start-retrieval event and will be updated for
all chunks which match the retrieval request. Cannot be changed through sdp.

= Jast-retrieval-time := the time at which the last attempt to retrieve this chunk occurred i.e. the

time at which the last-retrieval-activation value was set. Cannot be changed through sdp.

Note: because parameter settings are applied in the order provided and there are dependences
between the creation-time, reference-count, and reference-list the order in which they are given may
affect the resulting values. The ordering to achieve what is typically wanted would be to set creation-
time, then reference-count, and then reference-list. That ensures that the creation-time has been
updated before any automatic references are generated and that the specified reference-list is not
overwritten by one automatically created by the reference-count. It is not required that they be
provided in that order however, and one may use other orderings to achieve different resultant values

as desired.

If no parameters are provided to sdp, then all of the current model's chunks’ parameters are printed

and a list of all the chunk names is returned.

If a chunk or list of chunks is specified as the first parameter to sdp then the following parameters are
set or retrieved from only those chunks. If no chunk names are provided then the settings are applied

to or retrieved from all chunks in DM at the time of the call to sdp.

If chunk names are specified but no specific parameters are specified then the parameters for those

chunks are printed and the list of those chunk names is returned.

When sdp prints the parameters for a chunk its name is printed followed by the parameters which are
currently appropriate based on the declarative module’s parameter settings to the command output

stream.

If any of the chunk names provided are invalid a warning will be printed and the corresponding

element of the return list will be :error.

If all of the parameters passed to sdp (after any chunk names) are keywords, then it is a request for

the current values of the parameters named. Those parameters are printed for the chunks specified

25



and a list containing a list for each chunk specified is returned. Each sub-list contains the values of
the parameters requested in the order requested and the sub-lists are in the order of the chunks which
were requested. If an invalid parameter is requested, then a warning is printed and the value returned

in that position will be the keyword :error.

If there are any non-keyword parameters in the call to sdp and the number of parameters (not
counting the chunk names) is even, then they are assumed to be pairs of a parameter name and a
parameter value. For all of the specified chunks (or all chunks in DM if none are specified) those
parameters will be set to the provided values. The return value will be a list containing a list for each
chunk specified. Each sub-list contains the values of the parameters set in the order they were set and
the sub-lists are in the order of the chunks which were specified. If a particular parameter value was
not of the appropriate type, then a warning is printed and the value returned in that position will be

the keyword :error.

It is also possible to pass lists of a chunk name and parameter settings to sdp. Essentially, each list
provided could be formatted as something that could be passed to sdp and they will each be processed

as appropriate.
If there is no current model at the time of the call, then a warning is displayed and nil is returned.

There is one small issue worth noting about using sdp. If the :activation or :base-level value is
returned (either because it is explicitly specified or because no parameters were specified and thus it
gets returned automatically) that will cause the chunk’s activation to be recomputed at the current
time if it is not currently at the time of the chunk’s last retrieval attempt (the value of the :last-
retrieval-time parameter). That activation computation will include the activation noise if there is
any. There are two consequences of that. First, multiple calls to sdp will likely return different
:activation values for a given chunk, even if those calls occur at the same model time. The other
consequence is that if there is noise in the activations then if sdp has to recomputed the chunk
activations it will affect the random sequence which will likely change how a model with a set :seed

parameter runs from that point on relative to how it would had sdp not been called.

Examples:

The examples assume that this model has been defined:

(define-model test
(sgp :esc t :bll .5 :mas 2 :mp 1)
(chunk-type test slotl slot2)
(add-dm (a isa test)
(b isa test slotl a slot2 c)

25



(c isa test slotl a slot2 c)
(d isa test slot2 b)))

> (sdp)

Declarative parameters for chunk D:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time ©0.000
:Reference-Count 1.000
:Source-Spread 0.000
:Sjis ((D . 2.0) (B . 1.3068528))
:Similarities ((D . 0.0))
:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL

Declarative parameters for chunk C:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1.000
:Source-Spread 0.000
:Sjis ((A . 0.9013877) (C . 1.5945349))
:Similarities ((C . 0.0))
:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL

Declarative parameters for chunk B:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1.000
:Source-Spread 0.000
:Sjis ((B . 1.3068528) (A . 0.9013877) (C . 0.9013877))
:Similarities ((B . 0.0))
:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL

Declarative parameters for chunk A:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1.000
:Source-Spread 0.000
:Sjis ((A . 0.9013877))
:Similarities ((A . 0.0))

:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL
(D C B A)

1> (sdp a :permanent-noise)
Declarative parameters for chunk A:
:PERMANENT-NOISE 0.000

((0.0))

2> (sdp a :permanent-noise .3)

((0.3))

3> (sdp a)

Declarative parameters for chunk A:
:Activation 2.491
:Permanent-Noise 0.300
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1.000
:Source-Spread 0.000
:Sjis ((A . 0.9013877))



:Similarities ((A . 0.0))

:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL
(A)

4> (sdp (a b) :name :activation)
Declarative parameters for chunk A:
:NAME A
ACTIVATION 2.491
Declarative parameters for chunk B:
:NAME B
ACTIVATION 2.191
((A 2.4910133) (B 2.1910133))

5> (sdp-fct '(c))
Declarative parameters for chunk C:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1.000
:Source-Spread 0.000
:Sjis ((A . 0.9013877) (C . 1.5945349))
:Similarities ((C . 0.0))

:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL
(C)

6> (sdp-fct '((d b) :sjis))
Declarative parameters for chunk D:
:SJIS ((D . 2.0) (B . 1.3068528))
Declarative parameters for chunk B:
:SJIS ((B . 1.3068528) (A . 0.9013877) (C . 0.9013877))

((((D . 2.0) (B . 1.3068528))) (((B . 1.3068528) (A . 0.9013877) (C .

7> (sdp (a :base-level) (b :creation-time -1.0))
Declarative parameters for chunk A:

'BASE-LEVEL 2.191
((2.1910133) (-1.0))

8> (sdp b)
Declarative parameters for chunk B:
:Activation 0.693
:Permanent-Noise 0.000
:Base-Level 0.693
:Creation-Time -1.000
:Reference-Count 1.000
:Source-Spread 0.000
:Sjis ((B . 1.3068528) (A . 0.9013877) (C . 0.9013877))
:Similarities ((B . 0.0))

:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL
(B)

9> (sdp-fct '(:reference-count 3.0))
((3.0) (3.0) (3.0) (3.0))

10> (sdp-fct '((a b)))

Declarative parameters for chunk A:
:Activation 3.590
:Permanent-Noise 0.300
:Base-Level 3.290
:Creation-Time 0.000
:Reference-Count 3.000
:Source-Spread 0.000
:Sjis ((A . 0.9013877))
:Similarities ((A . 0.0))

0.9013877))))

25



:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL
Declarative parameters for chunk B:
:Activation 1.792
:Permanent-Noise 0.000
:Base-Level 1.792
:Creation-Time -1.000
:Reference-Count 3.000
:Source-Spread 0.000
:Sjis ((B . 1.3068528) (A . 0.9013877) (C . 0.9013877))
:Similarities ((B . 0.0))

:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL
(A B)

E> (sdp bad-chunk)
#|Warning: BAD-CHUNK does not name a chunk in DM. |#
(:ERROR)

E> (sdp a :bad-parameter)

Declarative parameters for chunk A:

#|Warning: BAD-PARAMETER is not a declarative parameter for chunks. |#
( (:ERROR))

E> (sdp a :name value)
#|Warning: CHUNK NAME CANNOT BE SET. |#
( (:ERROR))

E> (sdp a)

#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found [#

NIL

sji/add-sji
Syntax:

sji chunk-name-j chunk-name-i -> [ sji | nil ]

sji-fct chunk-name-j chunk-name-i -> [ sji | nil ]

add-sji (chunk-name-j chunk-name-i sji)* -> ([sji | :error]*)
add-sji-fct ((chunk-name-j chunk-name-i sji)*) -> ([sji | :error]*)

Arguments and Values:

chunk-name-j ::= should be a symbol which names a chunk

chunk-name-i ::= should be a symbol which names a chunk

sji ::= a number which is the associative strength from chunk-name-j to chunk-name-i i.e. the Sji value
in the spreading activation equation

Description:

The sji command is used to get the S value between two chunks in the current model. It takes two
N

parameters which are the names of the chunk j and the chunk i respectively, and it returns the S_
n

value between them. The S value will be either the value determined by the equation provided
J

above, the explicit value which has been set using the add-sji command, or the result returned by the

26



sji-hook if it is specified. The sji-hook function overrides an explicit setting and the default
calculation, and an explicitly set value will override the default calculation. If either of the chunk

names is invalid then a warning is printed and an S of 0.0 is returned. If there is no current model
ji

then a warning is printed and nil is returned.

The add-sji command is used to specify explicit S values between chunks. It can be used to set any
ji

number of S values at a time. Each parameter to add-sji (or element of the list passed to add-sji-fct)
il
should be a list of three items. Those items are the chunk j, the chunk i, and the S value between
ji
them respectively. It applies the S values in order left to right. Thus, if any pair of items is specified
J1

more than once it will be the right most setting for the pair that will be their S~1' It returns a list of the
S_i values set in the order they were specified. If any of the lists are not three ejlernents long, have bad
cljlunk names, or an invalid S‘i value then that item is ignored for purposes of setting an S'i, a warning
is printed, and the correspondjing element of the return list will be :error. J

Examples:

The example assumes this initial model is defined.

(define-model sji-demo

(sgp :esc t :mas 2)

(chunk-type item slot)

(add-dm (a isa item slot nil)
(b isa item slot a)
(c isa item slot d)
(d isa item slot c)
(e isa item slot c)
(f isa item slot f)
(g isa item slot f)))

> (sji a b)
1.3068528

> (sji b a)
(0]

> (sji c d)
0.9013877

> (sji d c)
1.3068528

> (sji-fct 'a 'a)
1.3068528

> (sji-fct 'f 'f)
1.5945349

E> (sji-fct 'bad-name 'a)
#|Warning: BAD-NAME does not name a chunk in the current model. |#
0.0

E> (sji-fct 'b 'c)

#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found |#

26



NIL

1> (add-sji (a b 2.5) (b a 10))
(2.5 10)

2> (sji a b)
2.5

3> (sji b a)
10

1> (add-sji-fct '"((f f 1) (d c 0)))
(1 0)

2> (sji f f)
1

3> (sji d c)
0

1> (add-sji (c d 1.0) (c d 2.0))
(1.0 2.0)

2> (sji c d)
2.0

E> (add-sji a b 1.0)

#|Warning: Bad Sji setting in A|#
#|Warning: Bad Sji setting in B [#
#|Warning: Bad Sji setting in 1.0 |#
(:ERROR :ERROR :ERROR)

E> (add-sji (a bad-name 1.0))
#|Warning: Bad Sji setting in (A BAD-NAME 1.0) |#
( :ERROR)

E> (add-sji-fct '(a b 2))
#|Warning: Bad Sji setting in
#|Warning: Bad Sji setting in
#|Warning: Bad Sji setting in
(:ERROR :ERROR :ERROR)

N>
S

E> (add-sji (a b 2))

#|Warning: get-chunk called with no current model. |[#
#|Warning: Bad Sji setting in (A B 2) |#

(:ERROR)

similarity/set-similarities

Syntax:

similarity item1 item2 -> [ sim | nil ]

similarity-fct item1 item2-> [ sim | nil ]

set-similarities (chunk-name-k chunk-name-i sim)* -> ([sim | :error]*)
set-similarities-fct ((chunk-name-k chunk-name-i sim)*) -> ([sim | :error]*)

Arguments and Values:

item1 ::= any value
item2 ::= any value
chunk-name-k ::= should be a symbol which names a chunk

26



chunk-name-i ::= should be a symbol which names a chunk
sim ::= a number which is the similarity between the specified items

Description:

The similarity command is used to get the similarity value between two items in the current model
(they do not have to be chunks). It takes two parameters which are the items, and it returns the
similarity value between them (the Mki from the partial matching equation). The computation of the
similarity value is described above and it will be determined either by the default calculation, explicit
user settings, or the hook function. The sim-hook function overrides an explicit setting and the
default calculation, and an explicitly set value will override the default calculation. If there is no

current model then a warning is printed and nil is returned.

The set-similarities command is used to specify explicit similarity values between chunks (to use
values other than the defaults between non-chunk items one must use the hook function). It can be
used to set any number of similarity values at a time. Each parameter to set-similarities (or element
of the list passed to set-similarities-fct) should be a list of three items. Those items are the chunk k,
the chunk i, and the similarity value between them respectively. It applies the similarity values in
order left to right. Thus, if any pair of items is specified more than once it will be the right most
setting for the pair that will be their similarity. Note that similarities are set reciprocally with this
command, and thus setting the similarity for k i also sets the similarity for i k. It returns a list of the
similarity values set in the order they were specified. If any of the lists are not three elements long,
have bad chunk names, or an invalid similarity value then that item is ignored for purposes of setting
a similarity, a warning is printed, and the corresponding element of the return list will be :error. If

there is no current model then a warning will be printed and all elements in the list will be :error.

Examples:

This example assumes that this initial model is defined.

(define-model sim-demo
(sgp :esc t :mp 1)
(add-dm (a isa chunk)

(b isa chunk)
(c isa chunk)))

> (sgp :ms :md)

:MS 0.0 (default 0.0) : Maximum Similarity
:MD -1.0 (default -1.0) : Maximum Difference
(0.0 -1.0)

> (similarity a b)
-1.0

> (similarity a a)

26



0.0

> (similarity-fct 'a 'c)

-1.0

> (similarity-fct "String" "string")
0.0

> (similarity "String" string)

-1.0

> (similarity-fct 3.4 3.4)

0.0

E> (similarity a b)

#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found [#

NIL

1> (set-similarities (a b -.5) (b c -2))
(-0.5 -2)

2> (similarity a b)
-0.5

2> (similarity b a)
-0.5

3> (similarity b c)
-2

1> (set-similarities-fct '((a a .5) (ac -1) (ac -2)))
(0.5 -1 -2)

2> (similarity a c)
-2

3> (similarity a a)
0.5

E> (set-similarities a b .5)

#|Warning: Bad similarity setting in A |#
#|Warning: Bad similarity setting in B |#
#|Warning: Bad similarity setting in 0.5 [#
(:ERROR :ERROR :ERROR)

E> (set-similarities (d e .5))
#|Warning: Bad similarity setting in (D E 0.5) |#
( :ERROR)

E> (set-similarities (a b 1.0) (a d 1.0) (b c 1.0))
#|Warning: Bad similarity setting in (A D 1.0) |#
(1.0 :ERROR 1.0)

E> (set-similarities (a b 1))
#|Warning: get-chunk called with no current model. |[#

#|Warning: Bad similarity setting in (A B 1) |#
(:ERROR)

get-base-level/set-base-levels/set-all-base-levels

Syntax:

26



get-base-level {chunk-name*} -> ([base-level | :error ]*)

get-base-level-fct (chunk-name*) -> ([base-level | :error ]*)

set-base-levels (chunk-name level {creation-time})* -> ([base-level | :error ]*)
set-base-levels-fct ((chunk-name level {creation-time})*) -> ([base-level | :error ]*)
set-all-base-levels level {creation-time} -> [t | nil]

Arguments and Values:

chunk-name ::= should be a symbol which names a chunk

base-level ::= a number representing the base-level activation of a chunk

level ::= a number which is the setting for the base-level of chunk-name (interpretation depends on
the :bll parameter setting)

creation-time ::= a number which represents the time at which chunk-name was added to DM

Description:

Get-base-level will return a list of the current base-level activations in the current model for the
chunks provided in the same order as they are given. This will result in the base-level being
recomputed for those chunks. If a chunk-name given does not name a chunk which is in the DM of
the current model then the corresponding base-level value will be :error. If there is no current model

then a warning is printed and nil is returned.

Set-base-levels is used to set the base-level activation for chunks in the DM of the current model. For
each chunk specified, its base-level is set as described below and if a new creation time is specified
that is also set for the chunk. The list of current base-level activations is returned for the chunks
specified in the same order as they were given. If a chunk-name is invalid, the level is not a number,
or the creation time is specified and is not a number then a warning is printed, no change is made to

the chunk’s parameters and the corresponding base-level returned will be :error.

The setting of the chunk’s base-level depends on the settings of the :bll and :o0l parameters. If :bll is
nil then the level provided is used directly as the chunk’s base-level. If :bll is non-nil then the setting
of the :ol parameter determines how the level is used. If :ol is t then the level is the number of
references for the chunk (n in the optimized learning equation). If :ol is nil then the level specifies
how many references the chunk has and a history of the chunk is generated which evenly spaces
those references between the current time and the chunk’s creation time (which will be the new value
if provided). If :ol is a number, then the level specifies the number of references for the chunk (the n
in the hybrid optimized equation) and a history list is generated which evenly spaces either the value
of :ol or level (whichever is lesser) references between the current time and the chunk’s creation-

time.

26



The set-all-base-levels command works like the set-base-levels command except that it applies the
level and creation-time (if provided) to all chunks in DM of the current model at the time it is called.

If it was successful it returns t. If there was a problem then a warning is printed and nil is returned.

Examples:

1> (define-model test-base-levels
(sgp :esc t :bll nil)
(add-dm (a isa chunk)
(b isa chunk)
(c isa chunk)))
TEST-BASE-LEVELS

2> (get-base-level a b)
(0.0 0.0)

3> (set-all-base-levels 1.5)
T

4> (set-base-levels (c -1))

(-1)

5> (get-base-level a b c)
(1.5 1.5 -1)

1> (define-model test-base-levels-2
(sgp :esc t :bll .5 :0l t)
(add-dm (a isa chunk)
(b isa chunk)
(c isa chunk)))
TEST-BASE-LEVELS-2

2> (get-base-level-fct '(a b c))
(2.1910133 2.1910133 2.1910133)

3> (set-all-base-levels 4 -1)
T

4> (sdp)

Declarative parameters for chunk C:
:Activation 2.079
:Permanent-Noise 0.000
:Base-Level 2.079
:Creation-Time -1.000
:Reference-Count 4.000
:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL

Declarative parameters for chunk B:
:Activation 2.079
:Permanent-Noise 0.000
:Base-Level 2.079
:Creation-Time -1.000
:Reference-Count 4.000
:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL

Declarative parameters for chunk A:
:Activation 2.079
:Permanent-Noise 0.000
:Base-Level 2.079

26



:Creation-Time -1.000
:Reference-Count 4.000

:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL
(C B A)

5> (set-base-levels-fct '"((a 2 -10)))
(0.2350018)

6> (get-base-level-fct '(a b c))
(0.2350018 2.0794415 2.0794415)

E> (get-base-level bad-name)
( :ERROR)

E> (set-all-base-levels :not-a-number)
#|Warning: Invalid level :NOT-A-NUMBER |#
NIL

E> (set-all-base-levels 1.5 :not-a-number)

#|Warning: Invalid creation-time :NOT-A-NUMBER |#

NIL

E> (set-base-levels (a))

#|Warning: Invalid level in setting (A) [#

(:ERROR)

E> (set-base-levels (a 1.5) (:not-a-chunk 1.5))
#|Warning: :NOT-A-CHUNK does not name a chunk in DM. |#
(1.5 :ERROR)

E> (get-base-level a)

#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found |#

NIL

E> (set-base-levels (b 3))

#|Warning: get-module called with no current model. |#
#|Warning: No declarative memory module found [#

NIL

E> (set-all-base-levels 10)

#|Warning: get-module called with no current model. |#

#|Warning: No declarative memory module found |#
NIL

clear-dm

Syntax:

clear-dm -> [t | nil ]
Arguments and Values:
Description:

The clear-dm command can be used to remove all chunks from the declarative memory of the current
model. It is not recommended for general use, but one may encounter situations where it would be

needed. The command returns t if the current model’s DM was cleared and nil if there was no

26



current model or some other problem was encountered. It will always print a warning that states

either that all chunks were cleared or that a problem occurred.

Examples:

> (clear-dm)

#|warning: All the chunks cleared from DM. |#

T

E> (clear-dm)

#|wWarning: get-module called with no current model. |#

#|Warning: No declarative memory module found [#
NIL

reset-declarative-finsts

Syntax:
reset-declarative-finsts -> nil
Arguments and Values:
Description:

The reset-declarative-finsts command can be used to remove all of the finst markers from the
declarative module of the current model. It takes no parameters and always returns nil. If there is no

current model, then it will print a warning.

This command is not recommended for typical modeling use because the “:recently-retrieved reset”
request parameter setting can be used in the procedural requests to accomplish the same thing in a
more model driven manner. However, sometimes it may be necessary or more convenient to do that

through the Lisp code driving the model.

Examples:

> (reset-declarative-finsts)
NIL

E> (reset-declarative-finsts)
#|Warning: get-module called with no current model. |#

#|Warning: No declarative module found - cannot reset the finsts. |#
NIL

merge-dm

26



Syntax:

merge-dm ({{chunk-name | chunk-name doc-stringl} isa chunk-type {slot value}*)* -> [chunk-name-list | nil ]
merge-dm-fct (({[chunk-name | chunk-name doc-string]} isa chunk-type {slot value}*)*) -> [chunk-name-list |
nil ]

Arguments and Values:

chunk-name ::= a symbol that will be the name of the chunk

doc-string ::= a string that will be the documentation for the chunk

chunk-type ::= a symbol that should name an existing chunk-type of the model

slot ::= a symbol that names a valid slot in chunk-type

value ::= any Lisp value which will be the contents of the preceding named slot for this chunk
chunk-name-list ::= a list of chunk-name symbols

Description:

The merge-dm command functions exactly like the add-dm command to create new chunks for the
model. However, unlike add-dm merge-dm will merge those chunks into the current model’s
declarative memory in the same way they would be merged if they had been cleared from a buffer.
Thus, if any of the chunks created by merge-dm are equal to a chunk in declarative memory that
existing declarative memory chunk is strengthened with a new reference at the current time and those
two chunks are merged. If a chunk created by merge-dm is not equal to an existing chunk in the
current model’s declarative memory then that new chunk is added to declarative memory as if it had

been created using add-dm.

If there are dependencies among the chunks created with merge-dm then those chunks will be merged
into declarative memory in an order that allows for proper merging of all chunks if such an order
exists. If there are dependencies and no safe order exists a warning will be displayed to indicate that
and the chunks will be merged into declarative memory in the order that they are provided. Merge-
dm returns a list of the names of the chunks that were created in the order in which they were merged

into declarative memory (first chunk returned was the first merged).

If the syntax is incorrect or any of the components are an invalid list describing a chunk then a
warning is displayed and no chunk is created for that chunk description, but all valid chunks defined

will still be created.
If there is no current model then a warning is displayed, no chunks are created and nil is returned.

Examples:

26



These examples assume that the base-level learning is enabled so that there is a strengthening of
activations when additional references to a chunk occur.

1> (chunk-type node slotl slot2)
NODE

2> (add-dm (a isa node slotl b slot2 c)
(b isa node slotl 10)
(c isa node slot2 20))

(A BC)
3> (dm)
c
ISA NODE
SLOT1 NIL
SLOT2 20
B
ISA NODE
SLOT1 10
SLOT2 NIL
A
ISA NODE
SLOT1 B
SLoT2 C
(C B A)
4> (sdp)

Declarative parameters for chunk C:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1.000
:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL

Declarative parameters for chunk B:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1.000
:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL

Declarative parameters for chunk A:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1.000

:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL
(C B A)

5> (merge-dm (d isa node slotl e slot2 f)
(e isa node slotl 10)
(f isa node slot2 20)
(x isa node slotl 30))

(E F D X)

6> (dm)
X

ISA NODE
SLOT1 30



SLOT2 NIL

C
ISA NODE
SLOT1 NIL
SLOT2 20
B
ISA NODE
SLOT1 10
SLOT2 NIL
A
ISA NODE
SLOT1 B
SLOT2 C
(X C B A)
7> (sdp)

Declarative parameters for chunk X:
:Activation 2.191
:Permanent-Noise 0.000
:Base-Level 2.191
:Creation-Time 0.000
:Reference-Count 1.000
:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL

Declarative parameters for chunk C:
:Activation 2.884
:Permanent-Noise 0.000
:Base-Level 2.884
:Creation-Time 0.000
:Reference-Count 2.000
:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL

Declarative parameters for chunk B:
:Activation 2.884
:Permanent-Noise 0.000
:Base-Level 2.884
:Creation-Time 0.000
:Reference-Count 2.000
:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL

Declarative parameters for chunk A:
:Activation 2.884
:Permanent-Noise 0.000
:Base-Level 2.884
:Creation-Time 0.000
:Reference-Count 2.000

:Last-Retrieval-Activation NIL
:Last-Retrieval-Time NIL
(X C B A)

8> (merge-dm-fct '((y isa node)))
(Y)

9> (merge-dm (g isa node slotl h)
(h isa node slot2 g))
#|Warning: Chunks in call to merge-dm have circular references. |#

#|Warning: Because of that there is no safe order for merging and they will be merged in
the order provided. |#
(G H)

E> (merge-dm (isa not-a-chunk-type))
#|Warning: Invalid chunk definition: (ISA NOT-A-CHUNK-TYPE) chunk-type specified does not
exist. |#

27



NIL
E> (merge-dm (i isa node))
#|Warning: get-module called with no current model. |#

#|Warning: Could not create chunks because no declarative module was found |#
NIL

print-activation-trace

Syntax:

print-activation-trace time -> nil

Arguments and Values:

time ::= a number which is the time in seconds of a start-retrieval event
Description:

The print-activation-trace command works in conjunction with the :sact parameter to allow one to
print the activation trace information for retrieval requests that occurred during a model run after the
model has stopped. If the :sact parameter is non-nil, then this command will print out the activation
trace for the time provided from the current model in the current meta-process as it would have
appeared in the model trace if the :act parameter had been set, except that this trace information will
be printed to the command output instead of the model output. If the :sact parameter is nil, the time
provided does not correspond to the time of a start-retrieval event, or there is no current model or

meta-process then a warning will be printed instead of an activation trace.

Examples:

These examples assume that the fan model from unit 5 of the ACT-R tutorial has been loaded and
modified to set the :sact parameter to t.

1> (fan-sentence-model "hippie" "park" t 'person)
0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATIONO-0 REQUESTED NIL

1.444 PROCEDURAL CONFLICT-RESOLUTION
1.444  ------ Stopped because no events left to process
(1.354 T)

2> (print-activation-trace 0.485)

Chunk PARK matches

Computing activation for chunk PARK

Computing base-level

User provided chunk base-level: 10.0

Total base-level: 10.0

Computing activation spreading from buffers

Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCEQG-0

sources of activation are: (HIPPIE)
Spreading activation 0.0 from source HIPPIE level 1.0 times Sji 0.0

Total spreading activation: 0.0

Adding transient noise 0.0

27



Adding permanent noise 0.0

Chunk PARK has an activation of: 10.0

Chunk PARK with activation 10.0 is the best
NIL

3> (print-activation-trace 0.585)
Chunk P3 matches
Chunk P2 matches
Chunk P1 matches
Computing activation for chunk P3
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCEQ@-0
sources of activation are: (HIPPIE PARK)
Spreading activation 0.10685283 from source HIPPIE level 0.5 times Sji 0.21370566
Spreading activation 0.0 from source PARK level 0.5 times Sji 0.0
Total spreading activation: 0.10685283
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P3 has an activation of: 0.10685283
Computing activation for chunk P2
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCEQ-0
sources of activation are: (HIPPIE PARK)
Spreading activation 0.10685283 from source HIPPIE level 0.5 times Sji 0.21370566
Spreading activation 0.0 from source PARK level 0.5 times Sji 0.0
Total spreading activation: 0.10685283
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P2 has an activation of: 0.10685283
Computing activation for chunk P1
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCEQ@-0
sources of activation are: (HIPPIE PARK)
Spreading activation 0.10685283 from source HIPPIE level 0.5 times Sji 0.21370566
Spreading activation 0.10685283 from source PARK level 0.5 times Sji 0.21370566
Total spreading activation: 0.21370566
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P1 has an activation of: 0.21370566
Chunk P1 with activation 0.21370566 is the best
NIL

4> (print-activation-trace 0.050)
#|Warning: No activation trace information available for time 0.05 |#
NIL

E> (PRINT-ACTIVATION-TRACE 0.0)
#|Warning: get-module called with no current model. |#

#|Warning: No declarative module available for reporting activation trace. |#
NIL

print-chunk-activation-trace

Syntax:

27



print-chunk-activation-trace chunk-name time -> [nil | total base-level spreading similarity noise]
print-chunk-activation-trace-fct chunk-name time -> [nil | total base-level spreading similarity noise]

Arguments and Values:

chunk-name ::= a symbol which should name a chunk in the model’s declarative memory

time ::= a number which is the time in seconds of a start-retrieval event

total ::= a number which is the total activation the chunk had for the retrieval

base-level ::= a number which is the total value of the base-level component of the chunk’s activation

spreading ::= a number which is the total spreading activation component of the chunk’s activation or

nil if spreading activation is not enabled

similarity ::= a number which is the total partial matching component of the chunk’s activation or nil if
partial matching is not enabled

noise ::= a number which is the total amount of noise added to the chunk’s activation

Description:

The print-chunk-activation-trace command works in conjunction with the :sact parameter to allow
one to print the activation trace information for the retrieval requests that occurred during a model
run after the model has stopped. If the :sact parameter is non-nil, then this command will print out
the activation trace for the specified chunk at the time provided from the current model in the current
meta-process similar to how it would have appeared in the model trace if the :act parameter had been
set, except that this trace information will be printed to the command output instead of the model
output. If the :sact parameter is nil, the time provided does not correspond to the time of a start-
retrieval event, or there is no current model or meta-process then a warning will be printed instead of
an activation trace. If the provided chunk-name doesn’t name a chunk or wasn’t an element in
declarative memory then the output will indicate it doesn’t have any activation information to

display.

If there was chunk activation information displayed then this command will return five values. The
first value will be the total activation for the chunk. The remaining four values are the primary
components of that activation value: base-level activation, spreading activation, partial matching
penalty, and noise. The spreading activation and partial matching penalty values will be nil if the
corresponding mechanism is not enabled for the model. If there is no chunk activation information

displayed then the return value of the command is nil.

Examples:

These examples assume that the fan model from unit 5 of the ACT-R tutorial has been loaded and
modified to set the :sact parameter to t.

1> (fan-sentence-model "hippie" "park" T 'person)

27



0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATIONO-0 REQUESTED NIL

1.444  ------ Stopped because no events left to process
(1.354 T)

2> (print-chunk-activation-trace park .485)

Computing activation for chunk PARK

Computing base-level

User provided chunk base-level: 10.0

Total base-level: 10.0

Computing activation spreading from buffers

Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCEQ-0

sources of activation are: (HIPPIE)
Spreading activation 0.0 from source HIPPIE level 1.0 times Sji 0.0

Total spreading activation: 0.0

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk PARK has an activation of: 10.0

10.0

10

0.0

NIL

0.0

3> (print-chunk-activation-trace-fct 'pl 0.585)

Computing activation for chunk P1

Computing base-level

Starting with blc: 0.0

Total base-level: 0.0

Computing activation spreading from buffers

Spreading 1.0 from buffer IMAGINAL chunk COMPREHEND-SENTENCEQ@-0

sources of activation are: (HIPPIE PARK)
Spreading activation 0.10685283 from source HIPPIE level 0.5 times Sji 0.21370566
Spreading activation 0.10685283 from source PARK level 0.5 times Sji 0.21370566

Total spreading activation: 0.21370566

Adding transient noise 0.0

Adding permanent noise 0.0

Chunk P1 has an activation of: 0.21370566

0.21370566

0.0

0.21370566

NIL

0.0

4> (print-chunk-activation-trace-fct 'p5 0.585)
Chunk P5 did not match the request.
NIL

5> (print-chunk-activation-trace park 0.585)
Chunk PARK was not considered.
NIL

6> (print-chunk-activation-trace not-a-chunk 0.585)
Chunk NOT-A-CHUNK was not considered.
NIL

7E> (print-chunk-activation-trace park 0.0)
#|Warning: No activation trace information available for time 0.0 |#
NIL

E> (print-chunk-activation-trace chunk 0.0)

#|Warning: get-module called with no current model. |#

#|Warning: No declarative module available for reporting activation trace. |#
NIL



saved-activation-history

Syntax:
saved-activation-history -> (activation-history*)

Arguments and Values:

activation-history ::= (time chunk-name¥)
time ::= a number which is the time of a retrieval request for which a history has been saved
chunk-name ::= a symbol which names a chunk for which activation information was stored at time

Description:

The saved-activation-history command returns a list which indicates what retrieval information has
been saved as a result of the :sact parameter being enabled for the current model in the current meta-
process. If the :sact parameter is enabled then this command will return a list of lists where each sub-
list consists of a time and the chunks which were attempted to be retrieved at that time for which the
activation information was recorded. There will be a separate sub-list for each time for which
activation details are recorded and those lists will be in order based on the times (lowest time first).
If the :sact parameter is not enable or there is no current model or meta-process then a warning will

be printed and the return value will be nil.

Examples:

This first example assume that the fan model from unit 5 of the ACT-R tutorial has been loaded and
modified to set the :sact parameter to t.

1> (fan-sentence-model "hippie" "park" T 'person)
0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATIONO-0® REQUESTED NIL

1.444  ------ Stopped because no events left to process
(1.354 T)

2> (saved-activation-history)
((0.235 HIPPIE) (0.485 PARK) (0.585 P3 P2 P1))

E> (saved-activation-history)

#|Warning: No activation trace information available |#
NIL

E> (saved-activation-history)

#|Warning: get-module called with no current model. |#

#|Warning: No declarative module available for reporting activation trace. |#
NIL

whynot-dm
Syntax:

27



whynot-dm chunk-name* -> (matching-chunk*)
whynot-dm-fct (chunk-name*) -> (matching-chunk*)

Arguments and Values:

chunk-name ::= a symbol that names a chunk in the current model
matching-chunk ::= a symbol that names a chunk which matched the last retrieval request

Description:

The whynot-dm command can be used to determine which chunks in the current model’s declarative
memory matched the last retrieval request which the declarative module has received and to indicate
reasons why a chunk did not get retrieved. If there has been a retrieval request made to the
declarative module then the whynot-dm command will display the time at which the most recent
request occurred along with the display of the request’s specification. Then, for each of the chunks
names passed to it (or all chunks in the model’s declarative memory if no names are provided) it will
print out the chunk, its appropriate parameters if subsymbolic computations are enabled, and then

whether the chunk matched that request or not.

It returns a list of all the chunks which did match that request at the time it was made (regardless of
whether they were passed into whynot-dm for display). The list is sorted by the chunks’ activations
at the time of the request (highest activation first), and if there was a chunk retrieved it will be the

first element of the list.

If there is no current model then a warning is printed and nil is returned. If an invalid chunk-name is

provided it will indicate that in the output.

Examples:

This example assumes the count model from unit 1 of the tutorial has been loaded.

1> (reset)
DEFAULT

2> (whynot-dm)
No retrieval request has been made.

NIL
3> (run .1)
0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED START
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD -BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL

27



.050
.050
.160
.100
.160
.100
.160
.100
.160

[cNoNoNoNoNoNoNoNo)

0.1
20
NIL

DECLARATIVE
PROCEDURAL
DECLARATIVE
DECLARATIVE
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL

4> (whynot-dm)

Retrieval request made at time 0.05:

ISA COUNT-ORDER

FIRST 2

ISA COUNT-ORDER

FIRST 5
SECOND 6

Declarative parameters for chunk F:

:Activation

0.000

:Permanent-Noise 0.000

:Base-Level

F did not match the request

E

0.000

ISA COUNT-ORDER

FIRST 4
SECOND 5

Declarative parameters for chunk E:

:Activation

0.000

:Permanent-Noise 0.000

:Base-Level

E did not match the request

D

0.000

ISA COUNT-ORDER

FIRST 3
SECOND 4

Declarative parameters for chunk D:

:Activation

0.000

:Permanent-Noise 0.000

:Base-Level

D did not match the request

c

0.000

ISA COUNT-ORDER

FIRST 2
SECOND 3

Declarative parameters for chunk C:

:Activation

0.000

:Permanent-Noise 0.000

:Base-Level

:Last-Retrieval-Activation
:Last-Retrieval-Time

0.000

C matched the request

0.050

START-RETRIEVAL
CONFLICT-RESOLUTION
RETRIEVED-CHUNK C
SET-BUFFER-CHUNK RETRIEVAL C
CONFLICT-RESOLUTION
PRODUCTION-SELECTED INCREMENT
BUFFER-READ-ACTION GOAL
BUFFER-READ-ACTION RETRIEVAL
Stopped because time limit reached



C was the chunk chosen to be retrieved

B
ISA COUNT-ORDER
FIRST 1
SECOND 2

Declarative parameters for chunk B:
:Activation 0.000
:Permanent-Noise 0.000
:Base-Level 0.000

B did not match the request

FIRST-GOAL
ISA COUNT-FROM
START 2
END 4
COUNT NIL

Declarative parameters for chunk FIRST-GOAL:

:Activation 0.000
:Permanent-Noise 0.000
:Base-Level 0.000

FIRST-GOAL did not match the request
()

5> (whynot-dm b)

Retrieval request made at time 0.05:
ISA COUNT-ORDER
FIRST 2

B
ISA COUNT-ORDER
FIRST 1
SECOND 2

Declarative parameters for chunk B:
:Activation 0.000
:Permanent-Noise 0.000
:Base-Level 0.000

B did not match the request
()

6> (whynot-dm-fct (list 'c))
Retrieval request made at time 0.05:
ISA COUNT-ORDER
FIRST 2

C
ISA COUNT-ORDER
FIRST 2
SECOND 3

Declarative parameters for chunk C:
:Activation 0.000
:Permanent-Noise 0.000
:Base-Level 0.000
:Last-Retrieval-Activation ©0.000
:Last-Retrieval-Time 0.050

C matched the request
C was the chunk chosen to be retrieved

(C)

27



E> (whynot-dm :bad-name)

Retrieval request made at time 0.05:
ISA COUNT-ORDER
FIRST 2

:BAD-NAME does not name a chunk in the current model.

(C)

E> (whynot-dm first-goal-0)
Retrieval request made at time 0.05:
ISA COUNT-ORDER
FIRST 2

Chunk FIRST-GOAL-0 is not in the model's declarative memory.
()

E> (whynot-dm)
#|Warning: Whynot-dm called with no current model. |[#
NIL

simulate-retrieval-request

Syntax:

simulate-retrieval-request specification -> (matching-chunk*)
simulate-retrieval-request-fct (specification) -> (matching-chunk*)

Arguments and Values:

specification ::= [ chunk-name | isa chunk-type {{modifier} slot value}* ]
chunk-name ::= a symbol which names a chunk in the current model

chunk-type ::= a symbol which names a chunk-type in the current model
modifier ::=[=|-| <| >| <=| >=]
slot ::= [ possible-slot | request-param ]

possible-slot ::= a symbol which names a slot in the specified chunk-type or one of its subtypes

request-param ::= a Lisp keyword
value ::= any Lisp value

matching-chunk ::= a symbol that names a chunk in DM which matched specification
Description:

The simulate-retrieval-request command can be used to simulate the results of making a request to
the retrieval buffer under the current model conditions. If there is a current model in the current
meta-process then the specification provided is used to create a chunk-spec which is used to simulate
a request to the retrieval buffer. That request will perform the matching and activation calculations
based on the current buffer contents for spreading activation and report the results of whether chunks
match the request or not and show the activation for those which do similar to the low detail

activation trace.

28



The simulated request does not perform many of the side effects which occur with a normal retrieval
request. The simulated request does not trigger calls to the retrieval-request-hook, retrieval-set-hook,
or the retrieved-chunk-hook functions. The results of the simulated request are not recorded for use
with why-not-dm. The activations computed will include noise, but the model’s seed parameter will
be restored to the value it had prior to those computations. It does however set the chunk-activation

parameter of the chunks that are matched.

It returns a list of all the chunks which match the request specified sorted by the chunks’ activations
(highest activation first) with any chunk which would have been retrieved as the first element of the
list. However, just because there is a first element in the list does not mean that it would necessarily

be retrieved because it may have an activation below the current retrieval threshold.

If there is no current model then a warning is printed and nil is returned. If an invalid specification is

provided it will indicate that in the output and return nil.

Examples:

This example assumes the grouped model from unit 5 of the tutorial has been loaded.

> (simulate-retrieval-request isa item)

Chunk ITEM1 has the current best activation 0.13675894
Chunk ITEM2 has activation -0.36428827

Chunk ITEM3 has activation -0.2693139

Chunk ITEM4 is now the current best with activation 0.15103722
Chunk ITEM5 has activation 0.069821134

Chunk ITEM6 has activation 0.14088637

Chunk ITEM7 has activation 0.05243059

Chunk ITEM8 has activation -0.31867743

Chunk ITEM9 has activation -0.010031511

Chunk ITEM4 with activation 0.15103722 is the best
(ITEM4 ITEM6 ITEM1 ITEM5 ITEM7 ITEM9 ITEM3 ITEM8 ITEM2)

> (simulate-retrieval-request-fct (list 'isa 'item 'position 'third))
Chunk ITEM1 has the current best activation -0.8632411

Chunk ITEM2 has activation -0.8642883

Chunk ITEM3 is now the current best with activation -0.2693139
Chunk ITEM4 has activation -0.8489628

Chunk ITEM5 has activation -0.43017888

Chunk ITEM6 is now the current best with activation 0.14088637
Chunk ITEM7 has activation -0.94756943

Chunk ITEM8 has activation -0.8186774

Chunk ITEM9 has activation -0.010031511

Chunk ITEM6 with activation 0.14088637 is the best

(ITEM6 ITEM9 ITEM3 ITEM5 ITEM8 ITEM4 ITEM1 ITEM2 ITEM7)

> (simulate-retrieval-request item5)

Chunk ITEM1 has the current best activation -2.363241

Chunk ITEM2 has activation -2.3642883

Chunk ITEM3 has activation -2.7693138

Chunk ITEM4 is now the current best with activation -1.3489628
Chunk ITEM5 is now the current best with activation 0.069821134
Chunk ITEM6 has activation -1.3591137

Chunk ITEM7 has activation -2.4475694

28



Chunk ITEM8 has activation -2.3186774

Chunk ITEM9 has activation -2.5100315

Chunk ITEM5 with activation 0.069821134 is the best
(ITEM5 ITEM4 ITEM6 ITEM8 ITEM1 ITEM2 ITEM7 ITEM9 ITEM3)

E> (simulate-retrieval-request isa bad-type)

#|Warning: Second element in define-chunk-spec isn't a chunk-type. (ISA BAD-TYPE) |#
#|Warning: Invalid request specification passed to simulate-retrieval-request. |#
NIL

1> (clear-all)
NIL

2> (simulate-retrieval-request isa chunk)

#|Warning: get-module called with no current model. |#

#|Warning: No declarative memory module available. Simulate-retrieval-request cannot
perform the request. |#

NIL

28



Perceptual & Motor modules

The perceptual and motor modules provide a model with a way to interact with a world. The
provided perceptual modules allow the model to attend to visual and aural stimuli and the given
motor modules provide the model with hands and a voice. The perceptual and motor modules
provided with ACT-R 6 are essentially updated versions of the modules which comprised those same
components in the ACT-R/PM system. ACT-R/PM was developed by Mike Byrne as a combination
of ACT-R, the Visual Interface for ACT-R created by Mike Matessa, and the EPIC cognitive
architecture created by David Kieras and David Meyer. Providing a model access to an external
world was an important development in the advancement of ACT-R modeling, and that integration
lead to many of the changes that came about with the introduction of ACT-R 5. Those components
are now fully integrated with ACT-R 6 - ACT-R/PM is no longer a separate system because the
perceptual and motor modules which it contained are now integral components of the main ACT-R

system.

Unlike the cognitive modules, the perceptual and motor modules each work with chunks of specific
types and take specific request types as actions. Each module creates those chunk-types
automatically, and it may also define some initial chunks. Those chunk-types and any such chunks

will be listed with the modules’ descriptions.

These modules also have more complicated internal states than the basic state free and state busy
which can be queried for all modules. Each of these modules has three separate internal systems:
preparation, processor, and execution. Each of those systems can be queried individually for being
busy or free. Different requests to these modules may require the use of different internal systems
and thus may not require that all internal states be free before being allowed to progress. This is
particularly useful in the motor module to request an action before the previous has completed. How
the modules respond to the queries and how that affects the requests which can be made to them vary

from module to module.

Before describing the perceptual and motor modules themselves, however, the interface that they

have to the world will be described.

28



The Device Module

The world with which a model interacts is called the device. The device defines the operations which
the perceptual modules can use for gathering information and the operators available to the motor
modules for manipulating that device. The device module provides a model with its interface to the

device and provides the commands to the modeler for installing and configuring a device.

The typical device used for modeling is one where the model is operating a computer. Essentially, the
model is sitting in front of a monitor, has its hands on a keyboard/mouse, and the computer has
speaker outputs and an input microphone. That is the situation generally assumed by the device
module, and the one for which many of the parameters are relevant. However it is not the only
device with which a model can be interfaced. Models have also been situated within driving and
flight simulation systems as well as in virtual worlds as provided by the game Unreal Tournament or
the RoboCup soccer simulation and models have also been connected with devices that allow them to

receive the inputs and control the actions of real robots.

In general, a device can be any Lisp object and the control of the device is handled by defining
methods specific to that type of object. For this section and the description of the following modules,
the assumption is that the world with which the model is interacting is the basic computer device
created using one of the default devices included with ACT-R 6. Construction of custom devices is

described in a later section.

The system includes devices for the basic GUI classes in MCL, LispWorks, ACL w/IDE as well as a
“virtual” windowing system that works in any Lisp. There is a set of commands called the AGI
(ACT-R GUI Interface) which can be used with any Lisp to create such an interface device. When
used with the ACT-R Environment or in MCL, LispWorks, or ACL the AGI can create a “real” GUI

with which a person or model can interact. The AGI is described in another section.

Parameters

:mouse-fitts-coeff

This parameter is the b coefficient in the Fitts's Law equation for aimed movements which is used
when the model moves the mouse cursor. The default value is .1 and it can be set to any positive

value.

28



:needs-mouse

This parameter controls whether or not the model will take control of the computer’s mouse cursor
when interacting with a real interface. If it is set to t, then the system will attempt to keep the mouse
pointer located where the model has placed it within the current device. The default value is t. If the
model does not need to use the mouse, but is interacting with a real interface then setting this

parameter to nil will prevent the system from taking over the mouse cursor.
:pixels-per-inch

This is the number of pixels/inch assumed for the device which the model is looking at. It is used in
computations of the size of items in terms of degrees of visual angle. The default value is 72 and it

can be set to any positive number.

process-cursor

This parameter controls whether the mouse cursor should be included as a feature for the vision
module when processing a display. If it is set to t, then a feature for the mouse will be generated.

The default value is nil.

:show-focus

This parameter controls whether a red circle is drawn in a real device window to indicate where the

model’s visual attention is located. If it is set to t, then a red circle is drawn. The default is nil.

:stable-loc-names

When using the virtual device windows, this parameter determines whether the device sorts the items
found in the window before generating the visual features. If the model is not using the virtual device
windows, then this parameter has no effect. Setting the parameter to t, which is the default value,
will force the items to be sorted which means that the same interface display will result in the same
feature names each time it is run on all systems — it will be deterministic. If it is set to nil then the
items in the interface will not be sorted and the names could vary among runs or across systems.
Setting it to nil should not affect the model’s performance and may improve the time it takes to run

the simulation at the potential cost of debugging time needed to compare different model runs.

:trace-mouse

28



This parameter controls whether or not the device module maintains a record of where the model has
moved the mouse. If it is set to t then one can use the get-mouse-trace command to access the history

of mouse positions. The default value is nil.
:viewing-distance

This is the assumed distance between the model’s eyes and the display in inches. It is used in
determining the size of items in terms of degrees of visual angle. The default is 15 and it can be set

to any positive number.
‘vwt

The :vwt parameter (virtual window trace) controls whether the included virtual window devices
report their interactions with the model in the trace. If the parameter is set to t, then virtual window
interactions will be printed in the trace surrounded by “<<” and “>>” characters. The default value is
nil.

Commands

These are the general commands relating to the device itself. Commands which are related to a
specific module’s interaction with the device will be described with that module. Methods necessary

to implement a new device are described in another section.

install-device

Syntax:

install-device {device} -> [ device | nil ]

Arguments and Values:
device ::= any Lisp value for which the appropriate device methods have been defined
Description:

The install-device command takes one parameter which should be an item for which the appropriate

methods have been defined. It makes that item the current device for the current model. The device

28



itself is returned if no problems occurred. If there is no current model, then a warning is printed and

nil is returned.

A model must have a device installed before it issues any requests to the perceptual or motor

modules.

Examples:

> (install-device (make-instance 'my-device))
#<MY-DEVICE @ #x2b481f72>

> (install-device nil)
NIL

E> (install-device (make-instance 'my-device))
#|Warning: install-device called with no current model. |#
NIL

current-device

current-device -> [ device | nil ]
Arguments and Values:

device ::= the currently installed device
Description:

The current-device command takes no parameters. It returns the device which has been installed for

the current model. If there is no current model, then a warning is printed and nil is returned.

Examples:

1> (install-device (make-instance 'my-device))
#<MY-DEVICE @ #x2b5a7972>

2> (current-device)
#<MY-DEVICE @ #x2b5a7972>

E> (current-device)
#|Warning: current-device called with no current model. |#
NIL

get—mouse-trace
get-mouse-trace -> [ trace | :mouse-trace-off | nil |
Arguments and Values:

trace ::= a list of times and mouse positions

28



Description:

The get-mouse-trace command takes no parameters. If tracing of the mouse has been enabled by
setting the :trace-mouse parameter to t then it returns a list of cons which record every time the model
has moved the mouse and where it was moved to. The car of the cons is the time of the action and
the cdr is a vector indicating the x and y coordinates (respectively). If the mouse tracing has not been
enabled, then the keyword :mouse-trace-off is returned. If there is no current model, then a warning

is printed and nil is returned.

Examples:

> (get-mouse-trace)
((0.909 . #(130 160)))

> (get-mouse-trace)
:MOUSE-TRACE -OFF

E> (get-mouse-trace)
#|Warning: get-module called with no current model. |#

#|Warning: No device interface found for get-mouse-trace. |#
NIL

model-generated-action

model-generated-action -> [ model-name | nil ]

Arguments and Values:

model-name ::= a symbol which names the model that generated the action
Description:

The model-generated-action command takes no parameters. It can be used in writing the methods for
a device as a way to determine whether the model performed the action which caused the particular
method to be called, and if so, which model it was if there are multiple models defined. If a model
performed the action which triggered the method it returns the name of the model which generated
the action. If the method was called other than through a model’s action then it returns nil. Outside
of a method called from a device interaction this command will always return nil. That last point is
an important one and puts some limits on where this command can be used. It should only be used in
the device’s methods or those functions and methods which are called directly by those methods. If
an interface method is called indirectly, for example the rpm-window-key-event-handler or button

actions when using the native interface in ACL and LispWorks, because they get called after the

28



model generates a real mouse or keyboard action which is indistinguishable from a person’s action,
then this is not guaranteed to work correctly, but it will work for the rpm-window handlers and button
actions in visible virtual windows through the ACT-R environment because those are all handled

directly.
Examples:

> (model-generated-action)
NIL

28



Vision module

The vision module is used to provide a model with information about what can be seen in the current
device and provides a system for modeling visual attention. The vision module has two subsystems,
a "where" system and a "what" system. The two subsystems work together, but each has its own
buffer and accepts specific requests. The basic operations of the module are described in this section

and more advanced topics will be covered in later sections.

One important thing to note is what the vision module does not do — it does not model eye
movements. It is a model of visual attention abstracted away from what is occurring with the eyes.
There has been work done by Dario Salvucci to create a more detailed vision module which takes
into account eye movements and makes the time required for attention shifts dependent on the
eccentricity between the requested location and the current point of gaze, with nearer objects taking
less time than further objects. That work resulted in the creation of a system called EMMA (eye
movements and movements of attention) which was built as a replacement for the default vision

module of ACT-R. That module is not part of the default system and will not be described here.

The model’s visual world

The vision module sees the features that are made available by the current device. The device
provides a set of features to which a model may attend. That set of features is referred to as the
visicon (visual icon). The features in the visicon are the items which can be found with the where
system, and contain basic information about items like their general type, location and color. When
one of those features is then attended by the what system the device produces a more detailed
representation of the item that was attended. More details on the where and what systems are

described in the next two sections.

The Where System

The where system takes requests through the visual-location buffer. A request to the visual-location
buffer specifies a series of constraints, and the where system returns a chunk representing a location
meeting those constraints. This is often referred to as “finding a location”. Constraints are attribute-
value pairs which can restrict the search based on visual properties of the object (such as “color red”),
the spatial location of the object (such as “screen-y greater-than 153), coarse temporal information
such as whether it recently became visible, and tests of whether the model has previously attended to

that location. This is akin to so-called “pre-attentive” visual processing (Triesman & Gelade, 1980)

29



and supports visual pop-out effects. For example, if the display consists of one green object in a field
of blue objects, the time to determine the location of the green object is constant regardless of the

number of blue objects.

When such a request is made, if there is an object on the display that meets those constraints, then a
chunk representing the location of that object is placed in the visual-location buffer. If multiple
objects meet the constraints, then the newest one (the one with the most recent onset time) will be
returned. If multiple objects meet the constraints and they have the same onset, then one will be
picked randomly. If there are no objects which meet the constraints, then the buffer will be left empty
and an error will be indicated. See the section on the visual-location buffer for more details on how

to use the where system.

Finsts

As noted above, one property of the objects in the visicon which can be tested is whether the item has
been previously attended by the model. The vision module is able to keep track of a small number of
locations to which it has attended. It does so using a set of markers called finsts which are limited
both in number and in duration. When a location is attended to by the model using the what system
(described below) a finst marker is placed upon it. The finst marker will remain until the finst’s
duration expires, at which time the location will revert to unattended, or until an attention shift
requires a finst and there are none available. If all finsts are in use and a new one is needed then the
oldest one which was assigned will be removed (thus forcing that location to revert to unattended)

and reused for the newly attended location.

The What System

The what system takes requests through the visual buffer. Its primary use is to attended to locations
which have been found using the where system. A request to the what system entails providing a
chunk representing a visual location, which will cause the what system to shift visual attention to that
location, process the object located there, and place a chunk representing the object into the visual
buffer. If there is more than one object at the location specified when the attention shift completes,
only one of them gets encoded and placed into the buffer. The vision module arbitrates among the
objects by using the constraints last passed to the where system for that visual location. Thus, if the
location passed in was constrained to be red, and there are three objects at the location, one of which

is red, then the red one will be encoded.

29



The what system has a rudimentary tolerance for movement. That is, if the location chunk passed in
to be attended specifies a location of (100 125) and the object there moves a little, there will be no
error generated if the movement is small. Just how far an object can move and still be encoded is
configurable with a parameter, and the default tolerance is 0.5 degrees of visual angle. That means
the object can have moved by up to 0.5 degrees of visual angle and still be processed without finding

a new location with the where system.

The basic assumption behind the vision module is that the visual-object chunks placed into the visual
buffer as a result of an attention operation are episodic representations of the objects in the visual
scene. Thus, a visual-object chunk with the value "3" represents a memory of the character "3"
available via the eyes, not the semantic THREE used in arithmetic—a declarative retrieval would be
necessary to make that mapping. Note also that there is no "top-down" influence on the creation of
these chunks; top-down effects are assumed to be a result of the system’s processing of these basic
visual chunks, not anything that’s done by the vision module. (See Pylyshyn, 1999 for a clear

argument about why it should work this way.)

Re-encoding

Once a location has been attended to, if the visual world changes at that location, the module will
automatically update the chunk in the visual buffer. The module will register briefly as busy while it

re-encodes the new object (or lack of one) at that location.

This behavior is sometimes undesirable. For instance, in response to the model clicking the mouse or
typing a key, the stimulus disappears and a new one appears somewhere else. Attention cannot be
shifted to that new location right away because the visual system is busy processing the current

location. This could make a response to the new stimulus slower than desired.

If this is a problem, it is possible for the model to un-allocate visual attention after it has processed
the visual chunk. The clear request to the visual buffer will cause the vision module to stop attending

to the visual scene and then it will no longer re-encode until a new attention shift is performed.

Scene change

The vision module will signal when there is a significant change to the visual display. When there is
a change to the visual world the module computes the proportion of the items which have changed. If
that value is greater-than or equal to a threshold (set with the :scene-change-threshold parameter)

then the module will signal that there has been a scene change. That signal will only last for a short

29



time (controlled with the :visual-onset-span parameter). That signal of a scene change is made

available to the model through the scene-change query of the visual buffer.
This is the calculation which computes the proportion of items which have changed:

+n

d
Change =
9 o+n

o: The number of features in the scene prior to the update
d : The number of features which have been deleted from the original scene
n: The number of features which are newly added to the scene by the update

Note: if both 0 and n are 0 then the change value will also be 0.

Tracking

The vision module has a rudimentary ability to track moving objects. The basic pattern is to attend
the object, then issue a request to start tracking. While the module is tracking an object the chunks
representing that item in the visual-location and visual buffers will be updated as the object moves,
and the where system will remain busy. Tracking will continue until an explicit request to stop

tracking is made or a new request is made of the what system.

Parameters

:auto-attend

This parameter controls whether or not a visual-location request results in an automatic move-
attention action to the location which is found. This is designed as a modeling shortcut to allow one
to skip productions which make move-attention requests when they will always follow visual-
location requests in the model. It does not affect the timing of the model because there is a 50ms
delay before the request to compensate for the skipped production’s firing time. It is off by default
(mil) but setting it to t will enable that functionality.

:optimize-visual

This parameter controls how text is processed with the default devices. If it is set to t (the default
value), then each word in the text will be parsed into one feature for the visicon. If it is set to nil, then

each letter is parsed into multiple features.

29



There are several options for what features will result from carving up the letters; there is no
universally agreed-upon way to do this. The default option is to carve the letters into features
consisting of a LED-type representation of the characters of the text. Different feature sets are also

available, including Gibson's (1968) set and Briggs & Hochevar's (1975) set.

:scene-change-threshold

This parameter controls the smallest proportion of change in the visicon which will result in signaling

that the scene has changed. It must be set to a number in the range [0.0 — 1.0] and defaults to .25.

:test-feats

This parameter controls how items in the visicon are compared on successive calls to proc-display to
determine which items are the same between the two calls for purposes of maintaining the finsts and
tracking information. If it is set to nil then the only test performed is whether the same chunk names
are used. If it is set to t then the items are also compared across all of their features (slot values). The

default value is t.

Setting it to nil can allow for a significant performance improvement in proc-display. However, there
are only certain circumstances where setting it to nil is safe i.e. if it is set to nil in other circumstances
it may result in incorrect operation of the module. One safe situation is if all proc-display calls also
specify “:clear t”. In that case the screen is always considered as all new items and there is no need
to perform the checks between the old and new visicon items. The other situation is if the device’s
build-vis-locs-for method(s) always return the same chunks for the visicon items (chunks with the
same names). For the included devices the virtual windows meet that criteria, but the Lisp specific
devices do not. So, this parameter should only be set to nil if proc-display is only called with “clear”
screens, the model only uses the virtual windows without modifying the object features explicitly, or

if a custom device is installed which satisfies the “same chunk name” constraint on visual items.

:visual-attention-latency

This parameter specifies how long a visual attention shift will take in seconds. The default value is .
085.

:visual-finst-span

This parameter controls how long a finst marker will remain on a location. It is measured in seconds
and default to 3.0.

29



:visual-movement-tolerance

This parameter controls how far an object can move and still being considered the same object by the

vision module. It is measured in degrees of visual angle and defaults to 0.5.

:visual-num-finsts

This parameter controls how many finsts are available to the vision module. It can be set to any

positive number and defaults to 4.
:visual-onset-span

This parameter specifies how long an item recently added to the visicon will be marked as new and
how long a scene change notice will be available. It is measured in seconds, and the default value is
0.5.

Visual-location buffer

The visual-location buffer is used to access the where system of the vision module as described
above. In addition to taking requests to find locations, the vision module will also place chunks into
the visual-location buffer automatically without a model request (a process referred to as “buffer
stuffing”). Whenever there is an update to the visual scene (as indicated to the model by calling proc-
display), if the visual-location buffer is empty, a visual-location chunk of some visual feature will be
placed into the visual-location buffer. The feature which gets “stuffed” into the buffer is chosen
based on preferences which can be set either by the modeler or directly by the model. The default

preference is for the left-most unattended item.

Activation spread parameter: :visual-location-activation
Default value: 0.0

Queries

‘State busy’ will always be nil.

‘State free’ will always be t.

29



‘State error’ will be t if the last visual-location request failed to find a matching visual-location and it
will be nil in all other situations. Once it becomes t it will remain t until a new visual-location

request is made or the explicit clear request is made of the visual buffer.

The visual-location buffer has an additional query that allows one to check the attended status of the

location represented by the chunk in the visual-location buffer.

‘Attended t’ will be t if there is a chunk in the visual-location buffer and that location currently has a

finst marker on it. Otherwise it will be nil.

‘Attended nil’ will be t if there is a chunk in the visual-location buffer and that location does not

currently have a finst marker on it. Otherwise it will be nil.

‘Attended new’ will be t if there is a chunk in the visual-location buffer, that location does not
currently have a finst marker, and that feature was added to the model’s visicon within the :visual-

onset-span. Otherwise it will be nil.

Requests

Isa visual-location-type

{{modifier} valid-slot [value | variable]}*
{:nearest nearest-spec}

{:attended [t | nil | new]}

{:center [vis-loc | vis-obj]}

visual-location-type ::= a chunk-type which is a subtype of visual-location

modifier :=[=|-|>|<|>=|<=]

valid-slot ::= the name of a slot which exists in the type given for visual-location-type

value ::= any Lisp value, but the symbols lowest, highest and current have special meanings.

variable ::= a Lisp symbol which starts with the character &

nearest-spec ::= [vis-loc | current | current-x | current-y | current-distance | clockwise |
counterclockwise |

vis-loc ::= a chunk which has a type that is a subtype of visual-location

vis-obj ::= a chunk which has a type that is a subtype of visual-object

A visual-location request is an attempt to find an item in the visicon. The chunk-type of the request
must be a subtype of the chunk-type visual-location. All of the items in the visicon are compared
against the specification provided in the request and if there is an item which matches that

specification a visual-location chunk describing that item is placed into the visual-location buffer.

29



The specification given describes the properties which the item must have in order to match. If a

property is not specified then its value is not considered for the matching.

Any of the slots may be specified using any of the modifiers (-, <, >, <=, or >=) in much the same
way one specifies a retrieval request. Each of the slots may be specified any number of times. In
addition, there are some special tests which one can use that will be described below. All of the
constraints specified will be used to find a visual-location in the visicon to be placed into the visual-
location buffer. If there is no visual-location in the visicon which satisfies all of the constraints then

the visual-location buffer will indicate an error state.

When the slot being tested holds a number it is also possible to use the slot modifiers <, <=, >, and
>= along with specifying the value. If the value being tested or the value specified is not a number,

then those tests will result in warnings and are not considered in the matching.

You can use the values lowest and highest in the specification of any slot which has a numeric value.
Of the chunks which match the other constraints the one with the numerically lowest or highest value
for that slot will then be the one found. There is one note about using lowest and highest when more
than one slot is specified in that way. First, all of the non-relative values are used to determine the set
of items to be tested for relative values. Then the relative tests are performed one at a time in the

order provided to reduce the matching set.

It is also possible to use the special value current in a slot of the request. That means the value of
the slot must be the same as the value for the location of the currently attended object (the one
attention was last shifted to with a move-attention request to the visual buffer). If the model does not
have a currently attended object (it has not yet attended to anything or has cleared its attention) then

the tests for current are ignored.

A newly added component of the visual-location requests is the ability to use variables to compare
the particular values within a visual-location to each other in the same way that the LHS tests of a
production use variables to match chunks. If a value for a slot in a visual-location request starts with
the character & then it is considered to be a variable in the request. The request variables can be

combined with the modifiers and any of the other values allowed to be used in the requests.

The :nearest request parameter can be used to find the items closest to the currently attended location
in some way, or closest to some other location. If there are constraints other than :nearest specified

then they are all tested first. The nearest of the locations that matches all of the other constraints is

29



the one that will be placed into the buffer. There are several options available for using the nearest
request parameter. To find the location of the object nearest to the currently attended location
(computed as the straight line distance based on screen-x, screen-y, and distance values) we can again
use the value current. Alternatively, one can specify any location chunk for the nearest test, and the
location of the object nearest to that location will be the one returned. It is also possible to find the
locations of objects nearest to the current object along a particular axis by specifying current-x,
current-y, or current-distance. Finally, one can request locations which are nearest in angular
distance relative to an arbitrary center point using either clockwise or counterclockwise as the
nearest specification. The center point used for the calculation is the location specified using the
:center request parameter (or the location of the object if a visual object is provided as the :center). If
no :center is specified in the request then the most recent center specified by the set-visual-center-
point command is used, or the default center point of 0,0 is used if set-visual-center-point has not

been called.

If the :attended request parameter is specified, that is used as a test with the finsts: :attended t means
that the item is currently marked with a finst, :attended nil means that it is not, and :attended new
means that it is not currently marked and it has recently been added to the visicon (within the time

specified by the :visual-onset-span parameter).

If there is more than one item which is found as a match, then the one which has been added to the
visicon most recently will be the one chosen, and if there is more than one with the same recent onset

time, then a random one of those will be chosen.

This request takes no time to return the resulting chunk and will show up with the following events

when successful:

0.050 VISION Find-location
0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION LOC1

When no location in the visicon matches the request a failure will be indicated in the trace with a

find-loc-failure event:

0.755 VISION FIND-LOC-FAILURE

When the :auto-attend parameter is set to t a move-attention request will follow all successful visual-

location requests. The move-attention will occur 50ms after the find-location event and the vision

29



module will be busy during the entire time from the find-location request until the attention shift is

completed:
0.050  VISION Find-location
0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1-0
0.050 VISION automatically attending VISUAL-LOCATION1-0
0.100 VISION Move-attention VISUAL-LOCATION1-0
0.185  VISION Encoding-complete VISUAL-LOCATION1-0 NIL

Isa set-visloc-default-type

{{modifier} valid-slot [value | variable]}*
{type vis-loc-type}

{:nearest nearest-spec}

{:attended [t | nil | new]}

{:center [vis-loc | vis-obj]}

set-visloc-default-type ::= a chunk-type which is a subtype of set-visloc-default

modifier ::=[=|-|>|<|>=|<=]

valid-slot ::= the name of a slot which exists in the type given for set-visloc-default-type except the
slot named type

value ::= any Lisp value, but the symbols lowest, highest and current have special meanings.

variable ::= a Lisp symbol which starts with the character &

vis-loc-type ::= a symbol which names a chunk-type that is a subtype of visual-location

nearest-spec ::= [vis-loc | current | current-x | current-y | current-distance | clockwise |

counterclockwise |
vis-loc ::= a chunk which has a type that is a subtype of visual-location
vis-obj ::= a chunk which has a type that is a subtype of visual-object

A set-visloc-default request allows the model to change the constraints that are used when
determining which (if any) chunk from the visicon will be stuffed into the visual-location buffer

when the screen is updated. It works the same as the set-visloc-default command described below.

The slot values provided can be specified in the same way that they can for a visual-location request.

The type slot may be specified only once to specify the chunk-type to test. If it is not given, then the

default is a chunk of type visual-location.

This request does not directly place a chunk into the visual-location buffer. It works essentially as a
delayed request — for each future screen change this specification will be used to determine if a chunk

should be placed into the visual-location buffer.

29



This request will automatically trigger a check of the current visicon elements to determine if a chunk

should be stuffed into the buffer based on the new specification.

It will generate an event in the trace which looks like this:

0.850 VISION Set-visloc-default

Visual buffer

The visual buffer is used to access the what system of the vision module as described above. It takes
requests to attend to locations, track features, or to stop attending to items. As described above under
re-encoding, the chunk in the visual buffer may be updated even when there is no explicit request

made to the module.

Activation spread parameter: :visual-activation
Default value: 0.0

Queries

‘State busy’ will be t between the time any visual request is started and the time it completes. It will

also be t between when an unrequested re-encoding starts and it completes. It will be nil otherwise.

‘State free’ will be nil between the time any visual request is started and the time it completes. It will

also be nil between when an unrequested re-encoding starts and it completes. It will be t otherwise.

‘State error’ will be t if the last visual request failed or nil otherwise. It will not change from t to nil
until a successful request is completed -- any of the available visual requests will reset the error state

to nil if completed.

‘Scene-change t’ will be t if there has been a detected scene change which has not been explicitly

cleared within the past :visual-onset-span seconds. Otherwise it will be nil.

‘Scene-change nil’ will be t if there has not been a detected scene change within the past :visual-

onset-span seconds or such a scene change has been explicitly cleared. Otherwise it will be nil.

‘Scene-change-value value’ will be t if value is a number and the last scene change had a proportion
of change which is greater than or equal to value. Otherwise it will be nil. This query is intended

primarily as a debugging aid so that a modeler can see the last change value via the buffer-status

30



command, but there may be circumstances where it would be useful to test that directly within a

model.

The visual buffer can be used to query the internal states of the vision module, but this is generally
not needed since there is no benefit to doing so since the requests cannot be “pipelined” by checking

for particular subsystems being free.

‘Preparation busy’ will be t during the time of a clear request and its completion and it will be nil

otherwise.

‘Preparation free’ will be nil during the time of a clear request and its completion and it will be t

otherwise.

‘Processor busy’ will be t between the time a move-attention request is started and the time it

completes and it will be nil otherwise.

‘Processor free’ will be nil between the time a move-attention request is started and the tim